Build up of Stellar Mass in Cluster Cores

Chris Collins Liverpool John Moores University

Claire Burke, Kate Furnell, Lee Kelvin, XCS, DES, SPIDERS

Overview

Plea for LSS All-Sky Working Group

How do cluster properties relate to the stellar content in cluster cores?

What is the evolutionary history of(i) BCGs (ii) companion galaxies and (iii) ICL?

And can we make a consistent picture

SPIDERS and LSST

eROSITA Clusters and Large-Scale Structure

- e.g. Presence of local and super voids probe cosmological parameters, neutrino mass, non-standard cosmologies etc...
 - ASTRONET 2008: 20 year vision for European Science

Comparison of REFLEX II with galaxies at the SGC

Whitbourn & Shanks data also shown

Field	Redshift limit	Underdensity					
6FGS-SGC	z < 0.05	0.60 ± 0.05 W&S	0.45 ± 0.10 REFLEX II				
6FGS-SGC	z < 0.1	0.75 ± 0.04 W&S	0.84 ± 0.09 REFLEX II				

Comparison of REFLEX II with galaxies at the NGC

Whitbourn & Shanks data also shown

Field	Redshift limit	Underdensity					
6FGS-NGC	z < 0.05	0.96 ± 0.10 W&S	1.02 ± 0.17 REFLEX II				
6FGS-NGC	z < 0.1	0.94 ± 0.07 W&S	1.18 ± 0.12 REFLEX II				

Future Prospects

All-Sky Survey (4 yrs) – 30 x deeper than ROSAT, DE probe + baryon physics; 100,000 clusters out to $z\sim1.5$ (inc. essentially all massive clusters in the Universe)

TABLE 1 The cluster sample

Sample I: BC I3 20 High z Xray Selected BCGs (e.g. XCS)

X-ray luminous clusters HST (ACS, WPFC2);

HAWK-IVLT 3-4 hrs, J=1.2µm SB 24.4 mag arcsec⁻²

Cluster	R.A.	Dec.	2	T_X	Cluster	BCG m _{Ks}	BCG
	(J20	000)		keV	M_{ass} $10^{14} M_{\odot}$		Stel. Mass ^a 10 ¹² M _☉
1. CL J0152.7-1357	01h52m41s	-13d57m45s	0.83	5.4+0.9	4.5+2.7	16.96 ± 0.08	0.58 ± 0.11
 XLSS J022303.0 - 043622^b 	02h23m53.9s	-04d36m22s	1.22	$3.5^{+0.4}$	1.8 + 0.9	17.72 ± 0.01	0.61 ± 0.08
 XLSS J022400.5 - 032526^b 	02h24m00s	-03d25m34s	0.81	$3.6^{+0.4}$	$2.3^{+1.4}$	16.49 ± 0.10	0.85 ± 0.18
4. RCS J0439 - 2904	04h39m38s	-29d04m55s	0.95	$1.5^{+0.3}$	0.5+0.4	17.70 ± 0.08	0.40 ± 0.07
5. 2XMM J083026 + 524133	08h30m25.9s	52d41m33s	0.99	$^{-0.2}_{8.2^{+0.9}}$	8.5+4.1	16.58 ± 0.05	1.24 ± 0.22
 RX J0848.9 + 4452^c 	08h48m56.3s	44d52m16s	1.26	6.2 + 1.0	4.7+2.8	17.00 ± 0.02	1.30 ± 0.15
7. RDCS J0910 + 5422	09h10m44.9s	54d22m09s	1.11	$6.4^{+1.5}$	5.3 + 4.1	17.88 ± 0.05	0.48 ± 0.08
 CL J1008.7 +5342 	10h08m42s	53d42m00s	0.87	3.6+0.8	2.2+1.6	16.42 ± 0.08	1.06 ± 0.21
 9. RX J1053.7 + 5735 (West) 	10h53m39.8s	57d35m18s	1.14	4.4 + 0.3	2.7 + 1.4	17.21 ± 0.06	1.03 ± 0.19
10. MS1054.4 – 0321	10h57m00.2s	-03d37m27s	0.82	$7.8^{+1.0}_{-0.0}$	8.5+4.9	16.04 ± 0.10	1.35 ± 0.29
11. CL J1226 + 3332	12h26m58s	33d32m54s	0.89	$10.6^{+1.1}_{-1.1}$	13.9 + 6.6	16.00 ± 0.06	1.66 ± 0.31
12. RDCS J1252.9 - 2927	12h52m54.4s	-29d27m17s	1.24	$7.2^{+0.4}_{-0.6}$	6.1+2.3	17.36 ± 0.03	0.89 ± 0.11
 RDCS J1317 + 2911 	13h17m21.7s	29d11m18s	0.81	4.0 + 1.3	2.7 + 2.9	17.27 ± 0.15	0.41 ± 0.10
 WARPS J1415.1 + 3612 	14h15m11.1s	36d12m03s	1.03	6.2 + 0.8	5.2 + 2.9	16.76 ± 0.04	1.15 ± 0.19
15. CL J1429.0 + 4241	14h29m06.4s	42d41m10s	0.92	6.2 + 1.5	5.5+5.3	17.43 ± 0.20	0.47 ± 0.13
 CL J1559.1 + 6353 	15h59m06s	63d52m60s	0.85	4.1 + 1.4	2.8 + 3.2	17.21 ± 0.09	0.49 ± 0.10
17. CL 1604+4304	16h04m25.2s	43d04m53s	0.90	2.5 + 1.1	$1.2^{+1.6}_{-0.6}$	17.61 ± 0.09	0.38 ± 0.07
 RCS J162009 + 2929.4 	16h20m09.4s	29d29m26s	0.87	$4.6^{+2.1}_{-1.1}$	3.4+5.5	17.63 ± 0.12	0.35 ± 0.07
19. XMMXCS J2215.9 1738 ^d	22h15m58.5s	-17d38m03s	1.46	4.1+0.6	2.1+1.9	18.72 ± 0.01	0.39 ± 0.05
 XMMU J2235.3 - 2557 	22h35m20.6s	-25d57m42s	1.39	8.6+1.3	$7.7^{+4.4}_{-3.1}$	17.34 ± 0.01	1.26 ± 0.14

Z = 0.8 - 1.5

Sample 2: 23 CLASH Clusters

Cluster	Z	Observed waveband for ICL measurement	$M_{ev}(z) - M_{rf}(z)$	dK	Surface brightness dimming correction $2.5 \log(1+z)^3$	Corrected surface brightness equivalent to 25 mag/arcsec ² at $z = z$ (cluster)
Abell 383	0.187	F606W	-0.68	-0.49	0.56	25.06
Abell 209	0.206	F606W	-0.62	-0.41	0.61	25.20
Abell 1423	0.213	F606W	-0.55	-0.34	0.63	25.29
Abell 2261	0.224	F606W	-0.55	-0.33	0.66	25.33
RXJ2129 + 0005	0.234	F606W	-0.44	-0.21	0.68	25.48
Abell 611	0.288	F606W	-0.39	-0.11	0.82	25.71
MS 2137-2353	0.313	F606W	-0.27	0.03	0.89	25.91
RXJ1532+30	0.345	F606W	-0.20	0.12	0.97	26.09
RXJ2248-4431	0.348	F606W	-0.20	0.13	0.97	26.10
MACSJ1115+01	0.352	F606W	-0.20	0.13	0.98	26.11
MACSJ1720+35	0.391	F625W	-0.23	0.13	1.07	26.21
MACSJ0416-24	0.396	F625W	-0.23	0.14	1.09	26.22
MACSJ0429-02	0.399	F625W	-0.23	0.14	1.09	26.23
MACSJ1206-08	0.440	F625W	-0.01	0.39	1.19	26.58
MACSJ0329-02	0.450	F625W	-0.01	0.40	1.21	26.61
RXJ1347-1145	0.451	F625W	-0.01	0.40	1.21	26.61
MACSJ1311-03	0.494	F625W	0.25	0.69	1.31	27.00
MACSJ1149+22	0.544	F625W	0.49	0.96	1.41	27.37
MACSJ1423+24	0.545	F775W	-0.78	-0.30	1.42	26.11
MACSJ2129-07	0.570	F775W	-0.73	-0.24	1.47	26.23
MACSJ0647+70	0.584	F775W	-0.68	-0.18	1.5	26.31
MACSJ0744+39	0.686	F775W	-0.50	0.07	1.7	26.77
CLJ1226+3332	0.890	F850LP	-0.89	-0.20	2.07	26.88

 $0.18 < z < 0.89, T_x > 5 \text{ keV}$ 16 Band HST photometry SB 26 - 27 mag arcsec⁻² (B band)

Brightest Cluster Galaxies at high redshift

BCG today

BCG 7 billion years ago z~0.9

BCGs are the sites of AGN feedback in clusters

Burke et al., 2015If BCG mass assembly is due to
merging then what growth is100 kpcexpected from companion galaxies

SED fitting to companions

since z=1?

Examine growth of BCGs via mergers: 14 BC13 clusters 0.8<z<1.4 + 23 CLASH clusters 0.2 <z<0.9 all with HST imaging data

Calculate dynamical friction timescale:

$$T_{\rm fric} = 1.17 \frac{r^2 v_{\rm c}}{G \mathcal{M}_{\rm c} \ln(\Lambda)}$$

Number of BCG companions vs z from: CLASH (black); BCI3 (red) – detection limit consistent

BCG + companion mass likely to merge vs BCG mass.

 Predict BCG mass growth of ~1.4 between z=1 and now from mergers

Total mass of BCG companions which will merge vs cluster mass

Fraction of total companion mass vs The number of BCG companions mass ratio with BCG for CLASH (red) split by luminosity ratio with BCG and BC13 (blue) at same detection limit and two literature results • Major mergers (~1:3) dominate at z~1, whereas by z~0.4

major mergers rare and minor mergers (~1:20) dominate

 Major merging responsible for mass build up in cores since z~l However the stellar mass growth since z~l may not end up in the core

The Intracluster Light (ICL) Burke et al, 2012, 2015 Virgo ICL, Rudick

ICL in z~I clusters

3-4 hr VLT, Hawk-I, J band

ICL in 0.2<z<0.9 CLASH clusters

For clarity ICL Defined as all pixels below limiting SB e.g. 25 mag arcsec⁻²

We do not fit profiles !

Table 3. ICL percentages of the total cluster light in our cluster sample measured above surface brightness limits in the line d. We also show percentages of the total cluster light contained in the BCG using two different measurements for complete on with previous set.

		% cluster light at surface brightness limit μ_J						% cluster light in BCG	
Cluster	18	19	20	20.5	21	21.5	22	DeVaucouleurs model	50 kpc aperture
CL J0152	84.7 ± 5.2	73.6 ± 35.2	51.6 ± 3.1	32.5 ± 2.9	13.6 ± 1.9	5.4 ± 6	2.7 ± 0.4	3.8 ± 0.6	2.0 ± 0.2
XLSS J0223	90.9 ± 4.2	82.0 ± 21.9	55.6 ± 2.5	29.9 ± 1.0	10.1 ± 0.8	3.6 ± 8	2.5 ± 0.4	2.0 ± 0.5	1.6 ± 0.2
XLSS J0224	89.2 ± 27.4	77.6 ± 12.4	34.7 ± 11.6	8.7 ± 2.0	5.3 ± 0.9	2.6 ± 8	1.3 ± 0.4	6.3 ± 0.7	3.7 ± 0.3
RCS J0439	80.0 ± 5.3	70.1 ± 13.0	47.2 ± 3.5	25.7 ± 3.7	9.3 ± 1.4	2.8 ± 2.1	1.5 ± 0.7	3.3 ± 0.4	1.3 ± 0.2
MS 1054	69.2 ± 7.9	60.2 ± 15.1	41.1 ± 4.2	23.3 ± 1.5	11.3 ± 2.7	$6.2 \pm 0.$	3.8 ± 0.2	4.7 ± 0.7	1.8 ± 0.3
RDCS J1317	78.5 ± 14.9	66.0 ± 12.6	32.4 ± 1.0	12.4 ± 5.6	4.6 ± 1.1	2.5 ± 0.4	1.5 ± 0.4	2.5 ± 0.5	1.3 ± 0.2

Determine final isophotal limit from simulations; Significant mass growth outside of 50 kpc at z=1

ICL Results

Compare with N-body GADGET simulations using simple SB cut definition (Rudick et al 2011)

- Detect the ICL (>100 kpc) at z=1 (~2-4% of cluster light)
- ICL increases rapidly since z=1 by factor ~5 to ~20% total cluster light
- Most of ICL growth occurs very late z< 0.1 (e.g. Contini et al 2014)
 ICL close to galaxies stripping rather than merging

Fraction of ICL light in CLASH Clusters at z=0.2-0.4

- Mass growth occurring in ICL not BCG (see Puchwein et al. 2010)
- ICL dominates stellar mass of BCG ~ 4-5:1 at low z in massive clusters
- (e.g. Gonzalez et al. 2007, 2013)
- (e.g. Comparable contributions at z~1, Burke et al. 2012)

ICL fraction is correlated with z independent of BCG mass but NO correlation between ICL and BCG mass at constant z

Spearman Rank Partial Spearman rank

 $R_{BCG \ ICL} = -0.7$ $R_{ICL \ z} = -0.9$

 $R_{BCG \ ICL,z} = 0.2$ $R_{ICL \ z,BCG} = -0.8$

Contini et al. 2014 – updated De Lucia 2007 SAM predictions Caveat: observations not well matched to predictions: e.g. apertures, SB limits

eROSITA: SPIDERS BCG Sample: Linking Morphology and Environment SPIDERS spectroscopically prioritises BCGs

- ~240 BCGs (0.05 < z < 0.55) selected from SPIDERS cluster catalogues (Nic's talk yesterday, Clerc et al. 2016).
 - (Currently) examining BCG morphology profiles
 (SIGMA; Kelvin et al., 2012) fit in SDSS bands (g,r,i) with respect to cluster X-ray/dynamical properties of host cluster
- Accurate SPIDERS redshifts for cluster member galaxies allows for robust studies of merger histories => link to prevalence of ICL

ABOVE:TL: gri SDSS composite,TR: SDSS r data, BL: Model (SIGMA), BR: Residual for $z \sim 0.05$ BCG LEFT: Comparison of SDSS gri Petrosian magnitude with respect to fit. Green = Sersic, Red = Sersic + Exponential

LSST History of stellar mass in cluster cores tied up in LSB ICL component. Current data too shallow c.f, simulations Aim to reach 29 mag arcsec⁻² in 5 bands

Essential to optimise sky background estimation and FF techniques for ICL work

e.g.VLT Hawk-I FF pattern using running median consistent with noise

Summary and Discussion Points

- ICL appears to form late (z<1) through stripping of major mergers, reaching ~ 2x10¹² Mo – dominating BCG stellar mass
- There is Improving consistency between slow BCG mass growth and predictions
- Selection effects (e.g. Cluster sample bias, observational SB limits not fully accounted for in comparisons with predictions)
- SPIDERS will consist of 4-5 thousand clusters z=0.2-0.5, BCG morphology work underway
- eROSITA need to maximise impact on LSS Science