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“Probability is the very guide of life” (Cicero’s thought summarized)

“Probability is good sense reduced to a calculus” (Laplace)
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Preamble

“ “I am a Bayesian in data

analysis,
I am a frequentist in Physics”

(A Rome PhD student, 2011)
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of these 6 boxes
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

Let us take randomly one of these 6 boxes

We are in a state of uncertainty concerning several events,
the most important of which correspond to the following
questions:

(a) Which box have we chosen, H0, H1, . . . , H5?

(b) If we extract randomly a ball from the chosen box, will
we observe a white (EW ≡ E1) or black (EB ≡ E2) ball?

Our certainties: ∪5j=0 Hj = Ω

∪2i=1Ei = Ω .
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

In particular:

who feels more confident on either color?
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Which box? Which ball?

H0 H1 H2 H3 H4 H5

In particular:

who feels more confident on either color?

if you were going to receive a rich prize, would you bet
on white or black?

would you prefer to bet on white in this game or tails
tossing a coin?

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 3



B? Vs B5−5
Let us call the previous box of unknown composition B?;

let us take a box of known composition (5 white and 5
black) and call it B5−5.
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B? Vs B5−5
Let us call the previous box of unknown composition B?;
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black) and call it B5−5.

1. Are you more confident to extract a white ball from B?

or from B5−5?
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B? Vs B5−5
Let us call the previous box of unknown composition B?;

let us take a box of known composition (5 white and 5
black) and call it B5−5.

1. Are you more confident to extract a white ball from B?

or from B5−5?

2. If you will receive a rich prize if you extract a black ball
would you prefer to make the extraction from B? or from
B5−5?
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B? Vs B5−5
Let us call the previous box of unknown composition B?;

let us take a box of known composition (5 white and 5
black) and call it B5−5.

1. Are you more confident to extract a white ball from B?

or from B5−5?

2. If you will receive a rich prize if you extract a black ball
would you prefer to make the extraction from B? or from
B5−5?

Ellsberg Paradox
most people choose B5−5 . . .
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B? Vs B5−5
Let us call the previous box of unknown composition B?;

let us take a box of known composition (5 white and 5
black) and call it B5−5.

1. Are you more confident to extract a white ball from B?

or from B5−5?

2. If you will receive a rich prize if you extract a black ball
would you prefer to make the extraction from B? or from
B5−5?

Ellsberg Paradox
most people choose B5−5 . . .

. . . and, mostly surprising, they continue to stick to B5−5

even in the second question!

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 4



Sequences from 2 extractions

Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.
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Sequences from 2 extractions

Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.

WW WB BW BB

B? ◦ ◦ ◦ ◦
B5−5 ◦ ◦ ◦ ◦
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Sequences from 2 extractions

Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.

WW WB BW BB

B? ◦ ◦ ◦ ◦
B5−5 ◦ ◦ ◦ ◦

We have agreed that

P (W (1) |B?) = P (W (1) |B5−5) = P (B(1) |B?) = P (B(1) |B5−5)
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Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.
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B? ◦ ◦ ◦ ◦
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We have agreed that

P (W (1) |B?) = P (W (1) |B5−5) = P (B(1) |B?) = P (B(1) |B5−5)
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Sequences from 2 extractions

Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.

WW WB BW BB

B? ◦ ◦ ◦ ◦
B5−5 ◦ ◦ ◦ ◦

We have agreed that

P (W (1) |B?) = P (W (1) |B5−5) = P (B(1) |B?) = P (B(1) |B5−5)

As well, we might easily agree that

P (W (2) |B?) = P (W (2) |B5−5) = P (B(2) |B?) = P (B(2) |B5−5)

Nevertheless, the eigth entries are not equally probable!
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Sequences from 2 extractions

Let us change the winning condition(s)

You can make two extractions with reintroduction

⇒ You can choose one of the following 4 sequences from
either box.

WW WB BW BB

B?
√ ◦ ◦ √

B5−5 ◦ ◦ ◦ ◦
We have agreed that

P (W (1) |B?) = P (W (1) |B5−5) = P (B(1) |B?) = P (B(1) |B5−5)

As well, we might easily agree that

P (W (2) |B?) = P (W (2) |B5−5) = P (B(2) |B?) = P (B(2) |B5−5)

Nevertheless, the eigth entries are not equally probable!

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 5



Deep difference between B? and B5−5
1. In the case of known composition (B5−5), we learn

nothing during the experiment:

→ W (1) and W (2) are stochastically independent:

the infomation about the occurring of one of them
does not change our expectation about the
occurrence of the other:
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Deep difference between B? and B5−5
1. In the case of known composition (B5−5), we learn

nothing during the experiment:
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the infomation about the occurring of one of them
does not change our expectation about the
occurrence of the other:
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1
2 × 1
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4
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Deep difference between B? and B5−5
1. In the case of known composition (B5−5), we learn

nothing during the experiment:

→ W (1) and W (2) are stochastically independent:

the infomation about the occurring of one of them
does not change our expectation about the
occurrence of the other:

P (W (2) |W (1),B5−5) = P (W (2) |B5−5)

→ P (W (1),W (2) |B5−5) =
1
2 × 1

2 = 1
4

2. Instead, in the case of unknown composition (B?),
during the experiment we update our opinion about the
box composition:

→ W (1) and W (2) are stochastically dependent
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Deep difference between B? and B5−5
1. In the case of known composition (B5−5), we learn

nothing during the experiment:

→ W (1) and W (2) are stochastically independent:

the infomation about the occurring of one of them
does not change our expectation about the
occurrence of the other:

P (W (2) |W (1),B5−5) = P (W (2) |B5−5)

→ P (W (1),W (2) |B5−5) =
1
2 × 1

2 = 1
4

2. Instead, in the case of unknown composition (B?),
during the experiment we update our opinion about the
box composition:

→ P (W (2) |W (1),B?) 6= P (W (2) |B?)
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Deep difference between B? and B5−5
1. In the case of known composition (B5−5), we learn

nothing during the experiment:

→ W (1) and W (2) are stochastically independent:

the infomation about the occurring of one of them
does not change our expectation about the
occurrence of the other:

P (W (2) |W (1),B5−5) = P (W (2) |B5−5)

→ P (W (1),W (2) |B5−5) =
1
2 × 1

2 = 1
4

2. Instead, in the case of unknown composition (B?),
during the experiment we update our opinion about the
box composition:

→ P (W (2) |W (1),B?) > P (W (2) |B?) !!

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 6



Learning from observations

H0 H1 H2 H3 H4 H5

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation
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Learning from observations

H0 H1 H2 H3 H4 H5

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?
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Learning from observations

H0 H1 H2 H3 H4 H5

What happens after we have extracted one ball and
looked its color?

Intuitively feel how to roughly change our opinion
about

the possible cause
a future observation

Can we do it quantitatively, in an ‘objective way’?

And after a sequence of extractions?

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 7



The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
recording its color and reintroducing in the box
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The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
recording its color and reintroducing in the box

This toy experiment is conceptually very close to what we
do in Physics

⇒ try to guess what we cannot see (the electron mass, a
branching ratio, etc)

. . . from what we can see (somehow) with our senses.
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The toy inferential experiment

The aim of the experiment will be to guess the content of
the box without looking inside it, only extracting a ball,
recording its color and reintroducing in the box

This toy experiment is conceptually very close to what we
do in Physics

⇒ try to guess what we cannot see (the electron mass, a
branching ratio, etc)

. . . from what we can see (somehow) with our senses.

The rule of the game is that we are not allowed to watch
inside the box! (As we cannot open and electron and read
its properties, unlike we read the MAC address of a PC
interface.)
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Our tool
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Playing with Hugin Expert

Interactive game −→
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Playing with Hugin Expert

Interactive game −→

(

0.3667 → 11
30

)
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of future outcomes,
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).
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Where is probability?

We all agree that the experimental results change

the probabilities of the box compositions;

the probabilities of future outcomes,

although the box composition remains unchanged
(‘extractions followed by reintroduction’).

Where is the probability?

Certainly not in the box!

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 11



Subjective nature of probability

“Since the knowledge may be different with
different persons
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
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same event with more or less confidence,
and thus different numerical probabilities
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Subjective nature of probability

“Since the knowledge may be different with
different persons or with the same person
at different times, they may anticipate the
same event with more or less confidence,
and thus different numerical probabilities
may be attached to the same event”

(Schrödinger, 1947)

Probability depends on the status of
information of the subject who evaluates it.

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 12



Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

(Schrödinger, 1947)

P (E) −→ P (E | Is)
where Is is the information available to subject s.
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Probability is always conditional probability

“Thus whenever we speak loosely of ‘the
probability of an event’, it is always to be
understood: probability with regard to a
certain given state of knowledge”

(Schrödinger, 1947)

P (E) −→ P (E | Is)
where Is is the information available to subject s.

⇒ Three box game

(Box with white ball wins)

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 13



What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . .
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

(Schrödinger, 1947)
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

⇒ How much we believe something
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What are we talking about?

“Given the state of our knowledge about
everything that could possible have any
bearing on the coming true. . . the
numerical probability P of this event is to
be a real number by the indication of which
we try in some cases to setup a
quantitative measure of the strength of our
conjecture or anticipation, founded on the
said knowledge, that the event comes true”

→ ‘Degree of belief’←
G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 14



Playing with R

1. Analysis of real data

2. Simulations of 100 extractions

→ Probability of future observations
Bayesian Vs frequentistic comparison
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Impossible! since in the frequentistic approach

statements concerning the probabilities of the
causes are simply not allowed!
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Playing with R

1. Analysis of real data

2. Simulations of 100 extractions

→ Probability of future observations
Bayesian Vs frequentistic comparison

Probability of box composition
Bayesian Vs frequentistic comparison

Impossible! since in the frequentistic approach

statements concerning the probabilities of the
causes are simply not allowed!
But – and what is the WORST – frequentists do not
simply refuse to make statements about causes
⇒ they do it, using terms that do not mean
probabilities, but sound and are interpreted as such
(‘significance’, ‘CL’, ‘confidence intervale’, ’p-values’)

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 15



Playing with R

1. Analysis of real data

2. Simulations of 100 extractions

3. Complicating the model:

Estraction mediated by a Reporter (machine/human)
which might err or lie

Doubt concerning the box preparation

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 15



Bayes’ billiard

This is the original problem in the theory of chances solved
by Thomas Bayes in late ’700:

imagine you roll a ball at random on a billiard;

you mark the relative position of the ball along the
billiard’s length (l/L) and remove the ball

then you roll at random other balls

write down if it stopped left or right of the first ball;

remove it and go on with n balls.

Somebody has to guess the position of the first ball
knowing only how mane balls stopped left and how
many stoppe right

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 16



Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)
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Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:
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f(p |S, S) ∝ f(S | p) · f(p |S) = p2
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It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)
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Bayes’ billiard and Bernoulli trials

It is easy to recongnize the analogy:

Left/Right→ Success/Failure

if Left↔ Success:

l/L↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S, S, F, S, . . .} [f0 is uniform]:

f(p |S) ∝ f(S | p) = p

f(p |S, S) ∝ f(S | p) · f(p |S) = p2

f(p |S, S, F ) ∝ f(F | p) · f(p |S, S) = p2(1− p)

. . . . . .

f(p |#S,#F ) ∝ p#S(1− p)#F = p#S(1− p)(1−#s)

f(p |x, n) ∝ px(1− p)(n−x) [x = #S]

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 17



Belief Vs ‘propension’

The main difficulty physicists haave with probability is that
since ‘ever’ probability has embedded two different
meanings:
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How much we belief something (‘degree of belief’ –

original meaning of probability from its Latin root(∗)).

A property of a physical system to behave in a certain
way (‘chance’→ ‘propensity’).

The six box model can help to make the question clear.
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Belief Vs ‘propension’

The main difficulty physicists haave with probability is that
since ‘ever’ probability has embedded two different
meanings:

How much we belief something (‘degree of belief’ –

original meaning of probability from its Latin root(∗)).

A property of a physical system to behave in a certain
way (‘chance’→ ‘propensity’).

The six box model can help to make the question clear.

H0 H1 H2 H3 H4 H5

(∗) For the record, a “grep -i probabil” in all files of

www.thelatinlibrary.com reports 540 entries (97 by Cicero)
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Degree of belief Vs ‘propension’

There is no problem to interpret the proportion p of
whate balls as a propensity of a box to yield white balls.
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If we know p, this will be our belief to get a white ball
(just because of equiprobability to pick up one ball at
random):

P (W | p) = p

If, under this assumption, we imagine a great number of
trials, we expect a relative frequency of white equal to
P (W | p) [Bernoulli’s Theorem]:

′′ lim
n→∞

fn(W | p)′′ = P (W | p) = p

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 19



Degree of belief Vs ‘propension’

There is no problem to interpret the proportion p of
whate balls as a propensity of a box to yield white balls.

If we know p, this will be our belief to get a white ball
(just because of equiprobability to pick up one ball at
random):

P (W | p) = p

If, under this assumption, we imagine a great number of
trials, we expect a relative frequency of white equal to
P (W | p) [Bernoulli’s Theorem]:

′′ lim
n→∞

fn(W | p)′′ = P (W | p) = p

There is no need to adhere to the frequentistic ideology
to say this

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 19



Degree of belief Vs ‘propension’

There is no problem to interpret the proportion p of
whate balls as a propensity of a box to yield white balls.

If we know p, this will be our belief to get a white ball
(just because of equiprobability to pick up one ball at
random):

P (W | p) = p

If, under this assumption, we imagine a great number of
trials, we expect a relative frequency of white equal to
P (W | p) [Bernoulli’s Theorem]:

′′ lim
n→∞

fn(W | p)′′ = P (W | p) = p

Instead, “probability is the limit of frequency for n→∞”
is not more than an empty statement.

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 19



Beliefs about propensions

But the Laplacean (“Bayesian”) approach is much more
general and allows more possibilities, those which we
naturally seek:
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general and allows more possibilities, those which we
naturally seek:

Talking about P (Hj) is the same as probability of

propensity pj = j/5.

But I remind that none had objection that initially the
probability of white was 1/2, although there was no box
with propensity 50%!
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naturally seek:

Talking about P (Hj) is the same as probability of

propensity pj = j/5.

But I remind that none had objection that initially the
probability of white was 1/2, although there was no box
with propensity 50%!

⇒ Simple result of probability theory:

P (W | I) =
∑

j

P (W | pj , I) · P (pj | I)
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Beliefs about propensions

But the Laplacean (“Bayesian”) approach is much more
general and allows more possibilities, those which we
naturally seek:

Talking about P (Hj) is the same as probability of

propensity pj = j/5.

But I remind that none had objection that initially the
probability of white was 1/2, although there was no box
with propensity 50%!

⇒ Simple result of probability theory:

P (W | I) =
∑

j

P (W | pj , I) · P (pj | I)

Probability theory (in Laplage’s sense) allows to attach
probabilities to whatever we feel uncertain about!
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Uncertainty about parameters

In other terms, in general, in physics (and in all sciences) p
is a parameter of a model, like m in classical mechanics or
MH in the Standard Model.
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Uncertainty about parameters

In other terms, in general, in physics (and in all sciences) p
is a parameter of a model, like m in classical mechanics or
MH in the Standard Model.

Defining p as the limit of the relative frequency is more

or less the same as defining MH as the value got by a

great number of independent experiments . . .

something is the definition of a parameter in a
mathematical model

something else is how to evaluate the parameter
from real data
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Uncertainty about parameters

In other terms, in general, in physics (and in all sciences) p
is a parameter of a model, like m in classical mechanics or
MH in the Standard Model.

Defining p as the limit of the relative frequency is more

or less the same as defining MH as the value got by a

great number of independent experiments . . .

The logically consistent way to estimate p comes from a
theorem of probability theory, which in its simplest case
leads to Laplace’s rule of succession

E[p] =
x+ 1

n+ 2
−→ x

n
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Uncertainty about parameters

In other terms, in general, in physics (and in all sciences) p
is a parameter of a model, like m in classical mechanics or
MH in the Standard Model.

Defining p as the limit of the relative frequency is more

or less the same as defining MH as the value got by a

great number of independent experiments . . .

The logically consistent way to estimate p comes from a
theorem of probability theory, which in its simplest case
leads to Laplace’s rule of succession

E[p] =
x+ 1

n+ 2
−→ x

n

Other important parameters are related to background,
systematics, ‘etc.’ [arguments not covere here]
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
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inference without passing through priors

. . . although they can be often so vague to be
ignored.
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information. And we all have much prior information in
our job!
Only the perfect idiot has no priors!
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. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot has no priors!

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident on something.
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OK, . . . but the priors?

Priors are an important ingredient of the framework:
They are crucial in the Bayes theorem:

there is no other way to perform a probabilistic
inference without passing through priors

. . . although they can be often so vague to be
ignored.

They allow us to use consistently all pieces of prior
information. And we all have much prior information in
our job!
Only the perfect idiot has no priors!

Mistrust all prior-free methods that pretend to provide
numbers that should mean how you have to be
confident on something.
(Diffidate chi vi promette di far germogliar zecchini nel
Campo dei Miracoli!)
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Conclusions

The fact that we physicists usually talk about probability,
meaning two different thinks, has to be acknowledged.
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beginning’
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Conclusions

The fact that we physicists usually talk about probability,
meaning two different thinks, has to be acknowledged.

Trying to use different nouns for the two meanings
would avoid confusion and misunderstanding, although
I am perfectly aware that it is a ‘battle lost since the very
beginning’

. . . but at least being aware of the two meanings (NOT
‘interpretations’ – this is something I really dislike!)
would already be usefull, since we are used, in all
languages, that the same word can have a meaning
depending on the context.

G. D’Agostini, Probability Vs propensity (Garching, 6 February 2013) – p. 23



Conclusions

Besides the names, on which I have no strong
preference (and I have been using ‘propensity’ although
I do not like it much), it is important to understand the
problems we meet if we only stick to a single meaning
and refuse the other.
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Besides the names, on which I have no strong
preference (and I have been using ‘propensity’ although
I do not like it much), it is important to understand the
problems we meet if we only stick to a single meaning
and refuse the other.

Frequentism

Operative subjective probability (strict de Finetti
Theory)

But I find misleading the Bayesian approaches in which
it is not clear what probability is
⇒ GdA, “Role and meaning of subjective probability:
some comments on common misconceptions”
http://arxiv.org/abs/physics/0010064
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