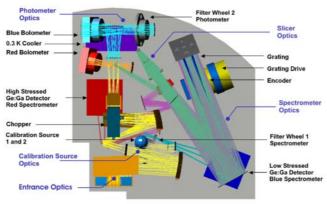


PACS – A Photodetector Array Camera & Spectrometer for Herschel

Instrument Design

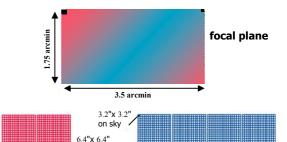
Projection of focal plane onto spectrometer arrays

Integral Field Spectrometer


Simultaneous 57-105 & 105-210 μm spectroscopy.

47"x47" (5x5 pixels) FOV rearranged via an image slicer on two 16x25 Ge:Ga detector arrays.

 $\lambda/\Delta\lambda \sim 1500$


Sensitivity: $\sim 5 \times 10^{-18}$ W/m² (5 σ , 1h)

PACS is one of three science instruments for ESA's Herschel mission. It operates either as an imaging photometer or an integral field spectrometer over the spectral band from 57 to 210 μ m.

Optical layout of the PACS instrument

Projection of focal plane onto bolometer arrays

Blue photometer 64x32 pixels (4x2x16x16)

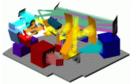
Imaging Photometer

Simultaneous two-band (same FOV) 60-85 μ m or 85-130 μ m and 130-210 μ m imaging.

Two filled bolometer arrays: 32x16 and 64x32 pixels

Red photometer 32x16 pixels (2x16x16)

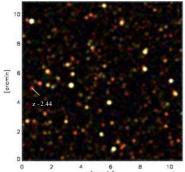
Point source detection limit: ~ 3 mJy (5 σ , 1h)


PACS is being designed and built by a consortium of institutes and university departments from across Europe under the leadership of Principal Investigator Albrecht Poglitsch located at Max-Planck-Institute for Extraterrestrial Physics, Garching, Germany. Consortium members are: Austria: UVIE; Belgium: IMEC, KUL, CSL; France: CEA, OAMP; Germany: MPE, MPIA; Italy: IFSI, OAP/OAT, OAA/CAISMI, LENS, SISSA; Spain: IAC.

PACS — A Photodetector Array Camera & Spectrometer for Herschel

Scientific Motivations

The opening of the 60-210 µm window by PACS to sensitive photometry and spectroscopy at high spatial resolution will address a wide range of key questions of current astrophysics concerning the *origins of stars, planetary systems, galaxies, and the evolution of the Universe.*


-Most of the energy released e.g. in starbursts or AGNs is absorbed by interstellar dust (which prevents observation at shorter wavelengths) and re-emitted in the far infrared and sub-mm domain.

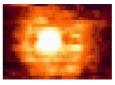
-Cool, dusty and/or distant objects have their emission peak in the far-IR.

Some examples:

-The far-IR also contains many spectral lines from atoms, ions and molecules. Largely unaffected by extinction they provide detailed information on UV radiation, density, temperature, velocities and abundances of ionised and neutral components of interstellar and circumstellar gas.

What is the cosmic history of star formation and AGN activity?

surveys and spectroscopy at


the peak of cosmic star

formation (z=1...3)

Simulated deep PACS survey of 10-5 sr at 75, 110 and 175 μm (false colors) to a 1σ limit of ~0.5 mJy (50h). Deepest sources are at $z\sim3$.

How does stellar mass loss influence the ISM chemistry?

The carbon star Y CVn. ISOPHOT 90 µm map (Izumiura et al. 1996)

Photometric mapping and spectroscopy (e.g. CO, H₂O, OI) of the circumstellar matter in evolved objects

How do stars form out of the interstellar medium?

M82 (Subaru/FOCAS) with the PACS spectroscopy FOV overlayed

- Local galaxies: photometric and spectral line mapping for detailed, spatially resolved studies of star formation on ρ Oph, SCUBA 850 µm (Johnstone et al. 2000)

- Photometric surveys of nearby molecular clouds: search for protostars

galactic scales

PACS is also intended to be an important driver for other projects which will explore adjacent spectral regions, such as JWST in the near/mid IR and ALMA in the mm domain.

Version: 2004-1