Black Holes, Bulges, and the IMF (or: is the M.-L_{bulge} relation really fundamental ?)

Ronald Läsker (MPIA Heidelberg) Laura Ferrarese, Glenn van de Ven & Francesco Shankar Francesco La Barbera, Ignacio Ferreras, Alexandre Vazdekis, Jesus Falcon-Barroso

MPE Opinas Group Seminar, 23.04.14

Läsker et al.

Overview

- I. The M. L_{bul} relation revisited
 - Introduction: BH scaling relations
 - Importance of imaging quality
 - Decomposition method
 - Scaling relation results and Discussion

II. M. and IMF from dynamics and population fitting

III. Future work

IV. Summary

Introduction: BH scaling relations

 understand BH-galaxy connection

understand
 BH-galaxy
 connection

 e.g.AGN feedback, accretion ↔ merging

understand
 BH-galaxy
 connection

e.g. AGN feedback, accretion ↔ merging
BHMF

 calibrate secondary / indirect M.
 measurement methods

Why another M. - L_{bul} calibration?

Why another M. - L_{bul} calibration?

The importance of image quality when deriving L_{bul}

Why NIR (K-band) ?

- better tracer of stellar Mass (M $_{\star}/L$) than visual λ
- little dust extinction

NIR (K-band) !

Pending issues:

huge + variable background \rightarrow subtraction?

NIR (K-band) !

example: background oversubtraction in 2MASS

NIR (K-band) !

Pending issues:

huge + variable background \rightarrow subtraction?

depth resolution decomposition

Disparate Results

Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks

 WIRCam limit: µ_{K,AB} > 26 mag/arcsec² ↔ µ_{V,AB} ≈ 28 mag/arcsec²

 → outer disks, Ellipticals' "wings"

Solution: CFHT WIRCam (and some careful reduction) • seeing FWHM 0.8" (cf. 2MASS: 2" - 3") → nuclei, inner disks

- WIRCam limit: μ_{K,AB} > 26 mag/arcsec²
 ↔ μ_{V,AB} ≈ 28 mag/arcsec²
 - → outer disks, Ellipticals' "wings"
- Wide Field (20' x 20')
- Improved Dithering & Sky Modeling !!

Efforts pay off: 2MASS versus ...

... didicated WIRCam data and reduction.

(note: outer disk extends much farther than shown area)

Deriving L_{bul} : Decomposition with GALFIT3

Decompositions: GALFIT

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":
Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms, Envelope

example: NGC1300

displayed area: approx. 7' x 4' (39 x 22 kpc)

subtracted: disk

remaining: spiral, bar, bulge, inner disk and nucleus

subtracted: disk and spiral

remaining: bar, bulge, inner disk and nucleus

subtracted: disk, spiral and bar

remaining: bulge, inner disk and nucleus

subtracted: disk, spiral, bar and bulge

remaining: inner disk and nucleus

subtracted: disk, spiral, bar, bulge and inner disk

remaining: nucleus

... and all components added back in.

Nucleus Spiral inner disk Bar

"Standard" (Bulge + Disk) vs extra component(s) included

"Envelopes": necessary but ambiguous

Data

- single Sersic

- (Bulge + Disk)

- (B+D + Envelope)

Decompositions: GALFIT

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":
Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms, Envelope

 \rightarrow L_{b,min}, L_{b,max}, L_{sph} & L_{t,imp}

Decompositions: GALFIT

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":

Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms,

Envelope

total - disk (- spiral)

→ Lb,min, Lb,max, Lsph & Lt,imp ← total : sum of all components

only bulge
"spheroid": bulge (+ envelope)

Decompositions: GALFIT

first "standard model":
 Sérsic Bulge (+ exponential Disk)

 \rightarrow L_{b,std} & L_{t,std}

then "improved model":
Ellipticals: mask core
other: Nucleus, Bar, Inner Disk, Spiral Arms,
Envelope
total - disk (- spiral)
Lb,min, Lb,max, Lsph & Lt,imp
total : sum of all components
only bulge (+ envelope)

Results: improved bulge parameters

Bulge Size - Lum relation using simple bulge(+disk) model

... and using improved models (detailed decomp.).

However, Size - Lum of the total light distribution is even tighter.

Resulting Scaling Relations

Results: BH Scaling Relations

Results: BH Scaling Relations

Luminosity

Results

 The log-slope of the M•-Mbul(Lbul) relation is significantly smaller than unity (0.7±0.1)
 and it depends on modeling detail.

Results

 The log-slope of the M•-Mbul(Lbul) relation is significantly smaller than unity (0.7±0.1)
 and it depends on modeling detail.

- 3. The M_•-L_{tot} relation is robustly characterized
- 4. and its intrinsic scatter is consistent with Mo-L_{bul}.

 I. Correlation does NOT improve when bulge parameters are more reliably determined !
 → M_• - L_{bul} not "fundamental"

 Correlation does NOT improve when bulge parameters are more reliably determined !

 → M• - L_{bul} not "fundamental"

 M• - L_{tot} ought to be considered, theoretically and as M• indicator

- I. Correlation does NOT improve when bulge parameters are more reliably determined !
 - \rightarrow M_• L_{bul} not "fundamental"
- 2. Mo Ltot ought to be considered, theoretically and as Mo indicator
- 3. Log-slope << I for M_● M_{bul}
 → consequences for models (AGN feedback, gas accretion mode, mergers)

3. Log-slope << I for M. - M_{bul}
 → consequences for models (AGN feedback, gas accretion mode, mergers)

Pseudobulges ?

NGC 1300: $n = 1.3 \rightarrow 4.3$ NGC 2787: $n = 1.5 \rightarrow 2.8$ NGC 3384: $n = 2.0 \rightarrow 2.5$

Pseudobulges ?

NGC 3245: $n = 2.3 \rightarrow 1.6$ NGC 3998: $n = 2.6 \rightarrow 1.4$ NGC 4342: $n = 5.3 \rightarrow 1.9$ NGC 7457: $n = 7.7 \rightarrow 1.6$

Fitting and Scatter Treatment

Summary M. - Mbul

shallow M. - M_{bul} (log-slope << I)
 bulge properties difficult to determine
 use NIR M. - L_{tot} instead of M. - L_{bul}

II. M• and the IMF from dynamics and population fitting

15 kpc ·

R_e=1.9kpc

15 kpc `

40 kpc [.]

15 kpc `

40 kpc [.]

15 kpc `

40 kpc [.]

15 kpc `

o z 360 km/s

40 kpc [.]

15 kpc ·

- flattened (q=0.6)
- embedded disk
- R_e = 1.9 kpc
- $L_i = 4.7 \times 10^{10} L_{\odot}$

15 kpc [·]

- flattened (q=0.6)
- embedded disk
- R_e = 1.9 kpc
- $L_i = 4.7 \times 10^{10} \ L_{\odot}$

• steep profile?

• stellar M/L ?

• Übermassive Black Hole? (cf. NGC1277, vdBosch+12)

• Dark Matter?

15 kpc 、

:

MGE

• high-res imaging: HST/ACS

15 kpc 、

- high-res imaging: HST/ACS
- spectrum: SDSS + HET/LRS

- high-res imaging: HST/ACS
- spectrum: SDSS + HET/LRS

- high-res imaging: HST/ACS
- spectrum: SDSS + HET/LRS

orbit superposition

components: Stars (Y=M/L) + BH(M●) + DM (NFW)

orbit superposition

- spectrum: SDSS + HET/LRS
- high-res imaging: HST/ACS

Stelar Population Analysis: Hybrid method

Stelar Population Analysis: Hybrid method

Stelar Population Analysis: Hybrid method

Stelar Population Analysis: Hybrid method

Combined Results

Combined Results

Discussion & Outlook

- connection to z ~ 1...3 galaxies

 (e.g. vDokkum+08, vdWel+08,11) ?
 size growth (e.g. Trujillo+11) inside-out by dry minor merging (e.g. Hilz, Naab, Ostriker 2013)
- IMF reflects ISM conditions (high α/Fe and Z → fast formation ?)
 HETMGS, NGC1277 et al.,
 Letter accepted, FORS2 data arrived

III. Ongoing & future work

with: Jenny Greene, Anil Seth, Glenn van de Ven et al.

80.0 arcsec

psf, Bulge, disk

80.0 arcsec

80.0 arcsec

... & more:

hi-res data for "b19" resolved M_{star} maps for BH hosts Bayesian and extended correlation fits

Take-home:

M. - L_{bul} may not be "fundamental"
 II. still a lot t.b.d. on M. & BH scaling relations
 III. IMF is likely variable & important

Take-home:

M. - L_{bul} may not be "fundamental"
 II. still a lot t.b.d. on M. & BH scaling relations
 III. IMF is likely variable & important

Thanks for Watching !