MPE Pressemeldung

Ein Zündfunke für eine Supernova-Explosion

31. Juli 2014

Beobachtungen bei sehr hohen Energien mit dem Weltraumobservatorium INTEGRAL zeigen ein überraschendes Signal in der Gammastrahlung einer Supernova-Explosion: Das Signal stammt von der Oberfläche des Materials, das durch die Explosion herausgeschleudert wurde; und stellt das gängige Explosionsmodell für Supernovae vom Typ Ia infrage. Die Daten deuten darauf hin, dass ein derart energiereiches Ereignis auch von außen gezündet werden kann - und nicht nur im Zentrum des explodierenden Zwergsterns. Die Wissenschaftler von den Max-Planck-Instituten für extraterrestrische Physik und für Astrophysik präsentieren ihre Ergebnisse in der aktuellen Ausgabe des Magazins Science.
<p>K&uuml;nstlerische Darstellung eines Bin&auml;rsystems, in dem Masse von einem Begleiter auf einen wei&szlig;en Stern Zwerg &uuml;bertragen wird. Sobald sich gen&uuml;gend Materie auf der Oberfl&auml;che des Zwergsterns angesammelt hat, kann dies eine Kernexplosion auszul&ouml;sen, die wiederum das katastrophale Kernbrennen und die Zerst&ouml;rung des wei&szlig;en Zwergsterns entz&uuml;ndet: eine Supernova vom Typ Ia.</p> Bild vergrößern

Künstlerische Darstellung eines Binärsystems, in dem Masse von einem Begleiter auf einen weißen Stern Zwerg übertragen wird. Sobald sich genügend Materie auf der Oberfläche des Zwergsterns angesammelt hat, kann dies eine Kernexplosion auszulösen, die wiederum das katastrophale Kernbrennen und die Zerstörung des weißen Zwergsterns entzündet: eine Supernova vom Typ Ia.

[weniger]

Im Januar leuchtete in der nahe gelegenen Starburst-Galaxie M82 eine Supernova-Explosion auf, die den Namen SN2014J erhielt. Nur zwei Wochen später konnten Astronomen Daten dieses Objekts mit dem Weltraumteleskop INTEGRAL aufnehmen, und sie entdeckten dort zwei charakteristische Gammalinien eines radioaktiven Isotops von Nickel (56Ni).

Supernovae sind riesige Kernfusionsöfen, und die Wissenschaftler gehen allgemein davon aus, dass die Atomkerne das Hauptprodukt der Kernfusion im Inneren des Supernova sind. Das radioaktive Nickel wird vor allem im Zentrum des explodierenden weißen Zwergsterns erzeugt und entzieht sich daher einer direkten Beobachtung. Im Laufe der Explosion verdünnt sich die gesamte Sternmaterie, die äußeren Schichten werden immer transparenter und nach einigen Wochen bis Monaten sollte auch Gammastrahlen aus der Nickel-Zerfallskette beobachtbar sein.

Als die Astronomen die aktuellen Daten überprüften, fanden sie jedoch bereits 15 Tage nach der Explosion Spuren des Zerfalls von radioaktivem Nickel. Damit muss sich das beobachtete Material in der Nähe der Oberfläche der Explosion befunden haben – ein überraschender Befund.

<p>Detektion einer Nickel-Linie bei der Supernova SN2014J, etwa zwei Wochen nach der Explosion. Im Rahmen der Messungenauigkeit stimmt die Position des Signals mit dem Ort der Supernova (Kreuz) &uuml;berein.</p> Bild vergrößern

Detektion einer Nickel-Linie bei der Supernova SN2014J, etwa zwei Wochen nach der Explosion. Im Rahmen der Messungenauigkeit stimmt die Position des Signals mit dem Ort der Supernova (Kreuz) überein.

[weniger]

"Dieses überraschende Signal stellte uns vor ein Rätsel", beschreibt Roland Diehl vom Max-Planck-Institut für extraterrestrische Physik, Hauptautor der Studie und Principal Investigator des INTEGRAL-Spektrometer Instruments. "Aber wir konnten keine Fehler finden; die Gammalinien von 56Ni wurden wie vom radioaktiven Zerfall erwartet innerhalb weniger Tage schwächer und kamen eindeutig aus der Richtung der Supernova", erklärt er das Ergebnis ihrer Analyse der Beobachtungsdaten. Das Expertenteam am MPE zur Analyse von Gammalinien entwickelt seit vielen Jahren spezielle Methoden für die hochauflösende Spektroskopie. Diese wurde bereits erfolgreich bei der Untersuchung der Nukleosynthese in der gesamten Milchstraße sowie beim Supernovaüberrest Cassiopeia A angewendet - und nun bei den jüngsten Supernova-Beobachtungen.

"Wir wissen, dass eine Supernova den weißen Zwergstern innerhalb einer Sekunde verbrennt; aber wir sind uns nicht sicher, wie die Explosion gezündet wird", erklärt Wolfgang Hillebrandt, Mitautor der Studie am Max-Planck-Institut für Astrophysik. "Das Eingreifen des Begleitsterns scheint zwingend erforderlich zu sein", fährt er fort. „Eine Weile glaubten wir, dass nur diejenigen weißen Zwerge explodieren, die mit Material vom Begleitstern über eine kritische Grenzmasse hinaus überladen werden." Dann allerdings würde die Explosion im Kern des weißen Zwergs gezündet werden; auf der Außenseite sollten keine Kernfusionsprodukte zu sehen sein.

Das INTEGRAL-Weltraum-Observatorium f&uuml;r Gammastrahlen von kosmischen Quellen. Bild vergrößern
Das INTEGRAL-Weltraum-Observatorium für Gammastrahlen von kosmischen Quellen.

Diehl, Hillebrandt und ihre Kollegen erörterten das Ergebnis ausführlich und stellten sowohl die Methoden der Datenanalyse als auch diverse Szenarien für Supernova-Explosionen zur Diskussion. Sie berichten nun über ihre Ergebnisse, die durch statistische Argumente untermauert werden, und beschreiben ihre Methoden so, dass andere Wissenschaftler diese wichtige Entdeckung selbst beurteilen können. Zusammenfassend schließen sie, dass diese Gammastrahlen neue Informationen darüber liefern, wie der Materialfluss von einem Begleitstern eine solche Supernova von außen entzünden kann – ohne die Notwendigkeit, zuerst eine kritische Massengrenze für weiße Zwergsterne zu überschreiten.

Aufgrund des frühen Erscheinens der Nickel-Gammastrahlen scheint es, dass sich ein geringer Teil der äußeren Materie, die von dem Begleitstern akkretiert wurde, entzündete und zu Fusionsasche verbrannte, einschließlich des beobachteten Nickel. Diese primäre Explosion löste dann die eigentliche Supernova aus, die auch mit vielen Teleskopen in anderen Wellenlängenbereichen beobachtet wurde; in jenen Daten erscheint hingegen die  Supernova „ganz normal“.

Mit Gamma-Strahlen des radioaktiven Zerfalls kann man jedoch direkt die Asche der Kernfusion beobachten; sie liefern damit einzigartige Informationen über solche Explosionen. Das Szenario, das die Astrophysiker hier beschreiben, passt gut zu neueren Überlegungen, dass die ziemlich schnellen Materialflüsse, die bei verschmelzenden weißen Zwergen auftreten können, häufig der Ursprung von Supernovae dieses Typs sein könnten.

 

<p>Das Spektrometer-Instrument SPI (rechts) ist f&uuml;r die Spektroskopie von Gammalinien optimiert.</p> Bild vergrößern

Das Spektrometer-Instrument SPI (rechts) ist für die Spektroskopie von Gammalinien optimiert.

Über INTEGRAL

Das INTEGRAL Gamma-Weltraumobservatorium wurde im Jahr 2002 für eine nominelle 3-Jahres-Mission gestartet, und jetzt, nach fast 12 Jahren, ist immer noch kein Ende der Beobachtungen in Sicht. Das MPE lieferte gemeinsam mit dem IRAP/CESR Partnerinstitut in Toulouse eines der beiden Haupt-Teleskope, das Spektrometer „SPI“. INTEGRAL hat viele neue Quellen des hochenergetischen Universums entdeckt, darunter aktive Galaxien, neue Klassen von akkretierenden Binärsystemen und Pulsaren, Gamma-Ray Burster, Nukleosynthese-Gammastrahlen aus verschiedenen Quellen, sowie ein rätselhaftes Signal aus der Annihilation von Antimaterie.

INTEGRAL ist eine Mission der Europäischen Raumfahrtagentur ESA in Zusammenarbeit mit Russland und den Vereinigten Staaten.

Website: http://sci.esa.int/integral/