Galaxy Cluster Cosmology

Sebastian Bocquet

PhD candidate Physics department of LMU Munich

With Joe Mohr, Alex Saro, Jörg Dietrich, SPT collaboration

Galaxy Cluster Cosmology

- Expected cluster abundance (as function of mass and redshift) is linked to the linear matter power spectrum
- through the mass function, calibrated against numerical simulations
- Challenge: Estimate cluster masses
- Mass proxies: X-ray, SZ, velocity dispersion, weak lensing, richness

The South Pole Telescope

(Sub) millimeter wavelength telescope

- 10 meter aperture
- 1' FWHM beam at 150 GHz
- 5 arcsec astrometry
- mm-wave receiver
 - 1 deg² FOV
 - 3 bands: 95 GHz, 150 GHz, 220 GHz
 - Depth ~ 15-60 μK-arcmin

Image credit: Nicholas Huang & Robert Citron

Sunyaev-Zel'dovich (SZ) Effect

- About 1% of CMB photons scatter
- SZ flux proportional to total thermal energy in the electron population
- SZ surface brightness is independent of redshift

Zoom in on an SPT map 50 deg² from 2500 deg² survey

SPT 0538-50

z=2.782

ALMA

CMB Anisotropy -Primordial and secondary anisotropy in the CMB

Point Sources - High-redshift

dusty star forming galaxies and Active Galactic Nuclei Clusters - High signal to noise SZ galaxy cluster detections as "shadows" against the CMB! Cluster of Galaxies

From B. Benson

Optical / NIR follow-up

Most massive cluster known at z > 1, Foley et al. 2013

SPT-SZ sample from 2500 deg² survey

Cluster Cosmology and Mass Calibration with the SPT

Bocquet et al., 2015, ApJ, 799, 214, arXiv: 1407.2942

- Starting point:
 - Cluster survey selected in SZ observable
 - (Incomplete) follow-up in further observables
- Data:
 - SPT 720deg² sample: 96 clusters selected with SZ effect
 - 16 X-ray Y_x measurements (Andersson et al. 2011, Foley et al. 2011)
 - 63 velocity dispersions (Barrena et al. 2002, Buckley-Geer et al. 2011, Sifón et al. 2013, Ruel et al. 2014)
- Mass-observable relations
 - Each observable is linked to the true cluster mass
 - There is some intrinsic scatter associated to this relation!

- Calibrate the survey observable-mass relation through follow-up measurements
- Account for the selection!
- Compare the observables with their predicted values 23.02.15 Sebastian Bocquet – LMU Munich physics

Cluster Cosmology with SPT

0.90 SPT_{CL}+*Planck*+WP SPT_{CL}+WMAP9 0.85 Planck+WP 0.80 WMAP9 SPTCL 0.75 38 0.70 0.65 0.60 0.2 0.5 0.3 0.4 0.6 0.7 Ω_{m}

From simulation prior to $Y_{\rm X} + \sigma_{\rm v}$: Improve constraints on $\sigma_8 (\Omega_{\rm m}/0.27)^{0.3}$ by 44% Adding SPT_{CL} to *Planck*+WP: Improve constraints on Ω_m , σ_8 , and σ_8 (Ω_m /0.27)^{0.3} by ~15%

Impact of Mass Calibration

- When combining with CMB data, the latter dominates the constraints
- The mass calibration from Y_x+σ_v helps in further tightening constraints by
 - Ω_m: 36%
 - σ₈: 37%
 - $\sigma_8 (\Omega_m / 0.27)^{0.3}$: 47%
- In this case, X-ray Y_X has more impact than velocity dispersions

SPT Mass Scale

 Cluster mass estimates depend on SZ normalization A_{sz}

$$\zeta = A_{SZ} \left(\frac{M_{500}}{3 \times 10^{14} h^{-1} M_{\odot}} \right)^{B_{SZ}} \left(\frac{E(z)}{E(0.6)} \right)^{C_{SZ}}$$

- Cluster masses increase by
 - 16% from X-ray calibration (purple) to dispersion calibration (blue)
 - 44% from X-ray calibration to combined analysis including *Planck* +WP (cyan)

Compare with Planck 2015 XXIV

Growth of Structure

- Parametrized structure growth
- $dln\delta / dlna = \Omega_m(a)^{\gamma}$
- $\gamma = 0.55$ predicted by GR
- Simultaneously probe:
 - Growth and sum of neutrino masses
 - Σm_v < 0.277 eV (95% CL)
 - $\gamma = 0.63 \pm 0.25$
 - Growth and expansion histories
 - $w = -1.007 \pm 0.065$
 - $\gamma = 0.73 \pm 0.28$

Summary / Outlook

- Use multi-wavelength mass calibration for accuracy and precision
- Velocity dispersions are closer to the CMB preferred mass scale than Y_x

Work in progress:

- Cluster cosmology from full SPT survey with Y_x calibration from ~80 clusters
- Extended velocity dispersion sample with ~100 clusters
- WL shear profiles are measured for 32 clusters (MegaCam and HST)
- Calibration of Y_x scaling relations from WL for SPT selected clusters
- Comparison of SZ signal and optical richness (with DES)

Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology

Sebastian Bocquet^{1,2*}, Alex Saro^{1,2}, Klaus Dolag^{1,2,3} and Joseph J. Mohr^{1,2,4}

¹Department of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, 81679 München, Germany

²Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching, Germany

³Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany

⁴Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, 85748 Garching, Germany

Using hydrodynamical *Magneticum* simulations (Dolag, in preparation) see e.g. Hirschmann et al. 2014, McDonald et al. 2014, Saro et al. 2014

LSS Simulations

Mass functions

The fitting function

The comoving number density of clusters of mass *M* is

$$\frac{dn}{dM} = f(\sigma)\frac{\bar{\rho}_{\rm m}}{M}\frac{d\ln\sigma^{-1}}{dM}$$

and depends on:

• variance of the matter density field

$$\sigma^2(M,z) \equiv \frac{1}{2\pi^2} \int P(k,z) \hat{W}^2(kR) k^2 dk$$

• mean matter density

$\bar{ ho}_{ m m}$

• Fitting function (8 fit parameters)

$$f(\sigma) = A\left[\left(\frac{\sigma}{b}\right)^{-a} + 1\right] \exp\left(-\frac{c}{\sigma^2}\right)$$

$$A(z) = A_0 (1+z)^{A_z}$$

$$a(z) = a_0 (1+z)^{a_z}$$

$$b(z) = b_0 (1+z)^{b_z}$$

$$c(z) = c_0 (1+z)^{c_z}$$

Cosmological impact

Simulated Planck-like survey

- High-mass sample
- Baryonic impact is negligible
- Systematic difference with Tinker et al. 2008
- Our mass function fully resolves any tension between clusters and CMB anisotropies

Cosmological impact

Simulated Planck-like survey

- High-mass sample
- Baryonic impact is negligible
- Systematic difference with Tinker et al. 2008
- Our mass function fully resolves any tension between clusters and CMB anisotropies

Cosmological impact

Simulated eROSITA-like survey

- Low-mass sample
- Baryonic impact is visible
- Neglecting baryonic effects leads to underestimate $\Delta \Omega_m = -0.01$
- This is the expected level of uncertainties from eROSITA (Pillepich et al. 2012)

Conclusions

- Baryonic effects on the mass function will be important for surveys like eROSITA
- There are systematic differences between different mass function fits that shift cosmological results
- The corresponding level of systematic uncertainty is already comparable to current constraints!
- Using our mass function instead of Tinker et al. would fully resolve the "tension" between *Planck* clusters and CMB
- Stay tuned!