Die Dunkle Energie

Schon seit Edwin Hubble wissen wir, dass das Universum expandiert – nicht aber, wie diese Expansion weitergeht. Dies hängt entscheidend von der Massendichte im Universum ab: Oberhalb eines kritischen Wertes, der etwa sechs Wasserstoffatomen pro Kubikmeter entspricht, würde sich die Expansion des Universums in der Zukunft verlangsamen und umkehren, bis das Universum in einem Kollaps, dem so genannten Big Crunch, endet.

Die gesamte Masse aller Sterne, Gas- und Staubwolken im Universum entspricht jedoch nur etwa 4% dieser kritischen Dichte. Aus der Dynamik von Galaxien und insbesondere aus der Beobachtung von Galaxienhaufen konnten die Astronomen aber ableiten, dass es noch sehr viel mehr unsichtbare Materie gibt, die sich nur durch ihre Schwerkraftwirkung verrät. Doch selbst diese "Dunkle Materie" reicht nicht aus, die Expansion des Universums zu stoppen.

Und nicht nur das: Im Jahr 2000 fanden die Astronomen heraus, dass diese Expansion sogar immer noch beschleunigt wird! Dieser Befund ergab sich aus detaillierten Beobachtungen der Fluktuationen in der Mikrowellen-Hintergrundstrahlung und aus der Helligkeit entfernter Supernova-Explosionen.

Als Einstein 1916 die Allgemeine Relativitätstheorie entwickelte, führte er in seine Gleichungen ein zusätzliches Glied ein, die "kosmologische Konstante", die der Gravitation der Materie entgegenwirkte. Heutige Messungen der beschleunigten Expansion lassen darauf schließen, dass diese Komponente im Universum sogar dominiert: mit rund 75% stellt die Energiedichte des Vakuums den größten Teil der Gesamtenergiedichte dar.

Die Natur dieser Energie, die das Universum auseinander treibt, ist rätselhaft – Astronomen nennen sie die "Dunkle Energie". Sie zu entschlüsseln ist eine der spannendsten Fragen der Astronomie und Physik und könnte zu einer fundamentalen Umwälzung führen.

eROSITA wird die Parameter der Dunklen Energie mit einer so hohen Genauigkeit messen, dass wir zwischen verschiedenen theoretischen Modellen unterscheiden können. eROSITA wird vom Deutschen Forschungszentrum für Luft-und Raumfahrt (DLR) und der Max-Planck-Gesellschaft finanziert. Das Max-Planck-Institut für extraterrestrische Physik (MPE) ist das federführende Institut bei der Durchführung des Projekts. Dies geschieht in enger Kooperation mit anderen deutschen Forschungsinstituten und dem IKI in Moskau.

Maßgeblich beteiligte Institute und Firmen:

Max-Planck-Institut für extraterrestrische Physik, Garching

Max-Planck-Institut für Astrophysik, Garching

Deutsches Zentrum für Luftund Raumfahrt, Bonn (DLR)

ROSCOSMOS, Moskau, Russland

Space Research Institute (IKI), Moskau, Russland

Dr.-Remeis-Sternwarte Bamberg, Universität Erlangen-Nürnberg

Hamburger Sternwarte, Universität Hamburg

Institut für Astronomie und Astrophysik der Universität Tübingen (IAAT)

Leibniz-Institut für Astrophysik Potsdam (AIP)

Universitätssternwarte München

Argelander Institut, Universität Bonn

Exzellenzcluster Universe, München RUAG Space GmbH, Wien, Österreich

Carl Zeiss AG, Oberkochen

Lavochkin Association, Moskau, Russland

Invent GmbH, Braunschweig

Kayser-Threde GmbH, München

HPS GmbH, München

Media Lario Technologies, Bosisio Parini, Italien

Tecnotron GmbH, Weißensberg

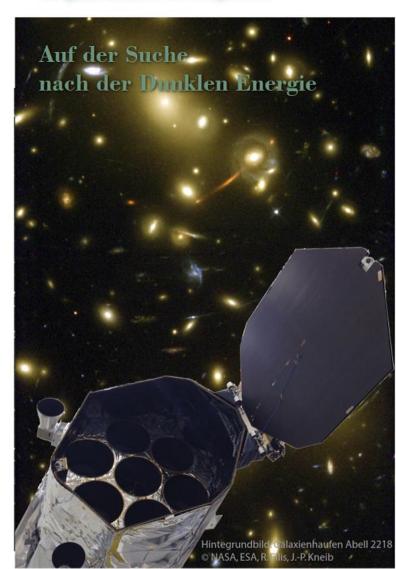
pnSensor GmbH, München IABG mbH, Ottobrunn

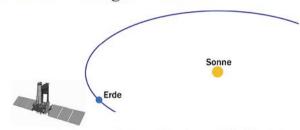
Laseriob GmbH.

Fürstenfeldbruck

IberEspacio, Madrid, Spanien

weitere Informationen: http://www.mpe.mpg.de/erosita





eROSITA

der ganze Himmel im Röntgenlicht

Spektrum-Röntgen-Gamma

Zusammen mit dem russischen Teleskop "ART-XC" wird eROSITA als Hauptinstrument auf dem russischen Satelliten Spektrum-Röntgen-Gamma im Jahr 2017 in den Weltraum gebracht werden. Vorgesehen ist der Start mit einer Zenit-2SB/Fregat-Rakete vom russischen Startplatz Baikonur in Kasachstan. Damit lässt sich eine Umlaufbahn um den so genannten L2-Punkt, 1,5 Mio. km von der Erde entfernt, erreichen.

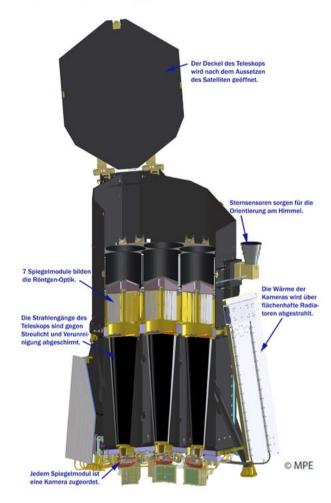
eROSITA - die Mission

"ROentgen Survey with an Imaging Telescope Array"

Vier Jahre lang wird eROSITA den kompletten Himmel im Röntgenlicht durchmustern. Dabei wird eine äußerst reichhaltige Datensammlung von mehreren Millionen kosmischen Röntgenquellen entstehen. eROSITAs Himmelsdurchmusterung wird etwa 25-mal empfindlicher sein als die in den 1990er Jahren bahnbrechende ROSAT-Mission.

Um der **Dunklen Energie** auf die Spur zu kommen, wird eROSITA die Verteilung der Galaxienhaufen im Weltraum untersuchen. Es wird erwartet, dass eROSITA etwa 100.000 Galaxienhaufen vermessen wird. Galaxienhaufen bestehen aus tausenden einzelnen Galaxien, die jeweils bis zu mehrere hundert Milliarden Sterne umfassen. Sie sind damit die größten zusammenhängenden Gebilde im Universum. Ihre Verteilung im Raum erlaubt die Messung der Struktur des Universums nicht nur zum gegenwärtigen Zeitpunkt, sondern – wegen der enormen Entfernung der Haufen – auch in der Vergangenheit. Die zeitliche Veränderung der Struktur wird durch die Dunkle Energie beeinflusst, deren Eigenschaften wir aus dem Vergleich der Messungen mit kosmologischen Modellrechnungen ermitteln können.

Die Himmelsdurchmusterung wird auch unzählige andere Röntgenquellen aufspüren, darunter schätzungsweise mehrere Millionen aktive Schwarze Löcher in Zentren von Galaxien, aber auch seltenere Objekte wie einzeln stehende Neutronensterne. Nicht zuletzt darf man auch auf die Entdeckung neuer Phänomene hoffen.



eROSITA - das Teleskop

eROSITAs Teleskop besteht aus einer siebenäugigen Optik für Röntgenstrahlung, in deren Brennpunkten sieben Röntgenkameras platziert sind.

Die Röntgenoptik besteht aus goldbeschichteten röhrenförmigen Spiegeln. Jeweils 54 konzentrisch angeordnete Spiegel bilden ein Spiegelmodul.

Die Kameras wurden am MPE entwickelt und gebaut und enthalten spezielle Röntgen-CCDs aus hochreinem Silizium. Zum optimalen Betrieb werden sie auf unter -90 °C gekühlt. Dafür besitzen die Kameras ein Kühlsystem aus Heatpipes.

