Short Gamma-Ray Burst Afterglows

Wen-fai Fong Harvard University

Adviser: Edo Berger

Munich, Germany, 05.08.2012

special thanks to: Raffaella Margutti **B.** Ashley Zauderer lan Czekala Ryan Chornock Eleonora Troja Takanori Sakamoto Neil Gehrels Derek Fox Philipp Podsiadlowski

Physics of GRBs: The big picture		External forward shock	X-ray Optical NIR Badio
rogenitor	Internal shocks	γ-rays	
Central ngine			-
	5		-
			-

Unanswered, but reachable questions: Geometry of outflow? Sub-parsec environment? Nature of the progenitor?

Adapted from Gehrels et al. 2007

Prompt emission

Afterglow

Geometry of outflow? Jet Breaks

Implications: Energy Scale

© isotropic-equivalent energy E_{iso} ~ 10⁵¹ erg

• beaming-corrected true energies ~ 10⁴⁹ erg

• mechanism of energy extraction predictions:

- neutrino-antineutrino annihilation ~ 10⁴⁸-10⁴⁹ erg
- MHD processes, magnetically-dom. jet ~ >10⁴⁹ erg Rosswog et al. 2003, Rosswog 2005, Birkl et al. 2007, Lee & Ramirez-Ruiz 2007

Implications: Rates

observed short GRB rate of 10 Gpc⁻³ yr¹ \rightarrow 100-1000 Gpc⁻³ yr¹

Kalogera et al. 2004, Belczynski et al. 2007, Nakar 2007

Sub-pc environment: Radio afterglows

Sub-pc environment: Radio afterglows

Sub-pc environment: Optical afterglows

Sub-pc environment: Optical afterglows

Nature of the progenitor? Galactic-scale environments

See posters: D. Perley, T.Sakamoto

Nature of the progenitor? Galactic-scale environments

See posters: D. Perley, T.Sakamoto

Evidence for kicks? Six "host-less" bursts

GRB 070809

GRB 06 20 Berger 2010; Stratta et al. 2006; Fong et al. 2010

I. large offsets?2. high redshift faint hosts?3. coincident dwarf galaxy?

What is the probability of chance coincidence? (What is the likelihood of finding an unrelated galaxy?)

Evidence for kicks? Six "host-less" bursts

What is the probability of chance coincidence? (What is the likelihood of finding an unrelated galaxy?)

Evidence for kicks? Six "host-less" bursts

Strong evidence for a highly-kicked progenitor system?

Short GRB offsets

The story so far...Geometry of outflow?

- Fraction are highly collimated
- Rates may be comparable with NS-NS predictions

Sub-parsec environment?

- LOW densities, ~10⁻²-10⁻³cm⁻³
- Median energy scale of 10⁵¹ erg

Nature of the progenitor?

 Offsets provide best agreement with DNS models to date