



# Energy injection in short GRBs and the role of magnetars



# **Paul O'Brien** University of Leicester

# Antonia Rowlinson University of Amsterdam





## **Example GRB X-ray "features"**





See many examples of features thought to be due to adding energy, but where does that energy from?

Many options (e.g. accretion), but here we look at one: a magnetar





Some GRBs may be powered by an unstable, millisecond pulsar (a magnetar) (e.g., Usov 1992; Duncan & Thompson 1992; Dai et al. 2006; Metzger 2009; Ozel et al. 2010; Metzger et al. 2011; Dessart et al. 2012)

Fast rotation plus very strong magnetic field may power a jet (and hypernova)

Extraction of rotational energy  $\Rightarrow$  inject energy into the light curve  $\Rightarrow$  possible rapid decline if the magnetar collapses to a BH (Zhang & Mészáros 2001)





# **GRB 070110: a magnetar l.c.?**

(Troja et al. 2007)



Time since trigger (s)



4



## **GRB 090515** – a short magnetar?

(Rowlinson, O'Brien et al. 2010)





T90 = 0.036s Fluence =  $2x10^{-8}$  erg s<sup>-1</sup> (15-150 keV) Brightest short GRB in X-rays at 100s Very unusual given low  $\gamma$ -ray fluence Very faint optical transient seen (r=26.4 at ~2hr)









# $L \propto B_p^2 / P_0^4$ and $T_{em} \propto P_0^2 / B_p^2$

Expected relation between the pulsar initial spin period (P<sub>0</sub>), dipole field strength (B<sub>p</sub>), luminosity (L) and the characteristic timescale (T<sub>em</sub>) for spin-down





- 43 SGRBs up to March 2012, 37 of which were detected with the XRT
- Significant fraction of SGRBs are not well fitted by a single PL decay in the XRT data (see also Margutti et al. 2012)
- 28/37 have sufficient data to try a magnetar model fit to BAT+XRT





### Example magnetar model fits (fit magnetar+underlying PL)







### **Derived magnetar parameters**









| Phase                 | Amplitude<br>(h)                                    | A-LIGO limit<br>(Mpc) | ET limit<br>(Mpc) |
|-----------------------|-----------------------------------------------------|-----------------------|-------------------|
| NS-NS Inspiral        | 4 x 10 <sup>-24</sup><br>(Abadie et al 2010)        | 445                   | 5900              |
| Magnetar spin<br>down | <1.7 x 10 <sup>-23</sup><br>(Corsi & Mezsaros 2009) | <85                   | <570              |
| Collapse to BH        | 4 x 10 <sup>-23</sup><br>(Novak 1998)               | 100                   | 1300              |









- SGRBs show many features in their X-ray light curves similar to those seen in LGRBs, but SGRBs do it earlier.
- For the SGRBs with good X-ray data available, up to 75% can be fitted by a magnetar model.
- Around a third or more of these magnetars eventually collapse to a BH while the rest may survive.
- Could see 2 or 3 GW signals for these models rate very low for A-LIGO but good for ET

To test any progenitor model we need a functioning GRB trigger satellite in the era of A-LIGO, IceCube, CTA, LOFAR, E-ELT, ET, SKA etc., etc. (e.g. SVOM, Lobster, Janus, UFFO, LOFT...)



### **Compare with magnetar model**





Observed LGRB internal plateaus are broadly consistent with the magnetar model wind power as presented by Metzger et al. (2011)



Magnetar candidates tend to show an X-ray excess relative to optical where we have deep early optical data