

# Signal Covariance for Clusters of Galaxies: Theory and Observation

August (Gus) Evrard Michigan Center for Theoretical Physics Departments of Physics and Astronomy University of Michigan

#### with:

B. Nord, R. Stanek, E. Rasia,
T. McKay, J. Hao (Michigan)
E. Rykoff (UCSB), E. Rozo (OSU),
B. Koester, M. Becker (Chicago),
D. Johnston (JPL), E. Sheldon (BNL),
R. Wechsler (Stanford), D. Rudd (IAS),
F. Pearce (Nottingham)

# **DE Science and Astrophysics**

#### **Astrophysics = DE "nuisance" parameters**

- first-principles priors (simulation, theory)
- empirical priors (observation)

at redshift z

#### LSS tests (WL, GC, BAO) require knowledge of

- how DM clusters on small scales,
- how galaxies & gas evolve within DM halos

# baryon phenomenology

optical/IR/lensing sub-mm X-ray





other.

a = 0.4

#### mass function sensitivity to baryon physics



Stanek et al, 0809.2805

complex baryon
 physics shifts halo total
 mass (M<sub>500</sub>)

mass function shifts5% statistical error ofTinker et al (2008)

- 2 pairs of simulations
- o MGS-gravity only
- MGS-preheat

 $\Delta$  ART-gravity only

ART-cool/star/feedback

(For state-of-the-art sims, see E. Puchwein's poster)

#### clusters as scaled "standard candles"



# "Astrophysics for Dummies" 1) To first order, all relations are power-law e.g., virial theorem T ~ H(z)<sup>2/3</sup> M<sup>2/3</sup> 2) Central limit Th<sup>m</sup> => deviations are log-normal

#### bedrock: dark matter virial scaling

Evrard et al 2008

• log-mean specific thermal energy (velocity dispersion) in dark matter

 $\sigma_{\rm DM}(M,z) = (1082.9 \pm 4.0) (E(z)M_{200}/10^{15} h^{-1}M_{\rm o})^{0.3361 \pm 0.0026} \text{ km s}^{-1}$ 

- deviations approximately log-normal with 4-5% scatter
- confirmed in Early Dark Energy models Grossi & Sp







#### power-law + log-normal scatter model for signals

• For  $i^{\text{th}}$  signal, mean behavior of  $s_i = \ln(S_i)$  is linear in  $\ln M$  w/ slope  $m_i$ . For N such signals

$$\overline{\mathbf{s}}(\mu, z) = \mathbf{m}(z)\mu + \mathbf{b}(z)$$
  $\mu = \Pi$ 

• assume a log-normal joint likelihood about the mean

$$p(\mathbf{s} \mid \boldsymbol{\mu}, \boldsymbol{z}) = \frac{1}{(2\pi)^{N/2} |\Psi|^{1/2}} \exp[-\frac{1}{2}(\mathbf{s} - \overline{\mathbf{s}})' \Psi^{-1}(\mathbf{s} - \overline{\mathbf{s}})]$$

where  $\Psi$  is the *covariance in signals* at fixed mass and epoch

$$\Psi_{ij} = \left\langle \left( s_i - \overline{s}_i(\mu, z) \right) \left( s_j - \overline{s}_j(\mu, z) \right) \right\rangle$$

## support for power-law + Gaussian covariance

with Lorena Gazzola, F. Pearce (Nottingham)

Millennium Simulation: Gadget2 with gas under two physical treatments

- preheating
- gravity only

Covariance in ~3000 halos at z=0 with  $M_{200} > 3x10^{13}$  Msun/h

Stanek et al, in prep



#### local model for signal counts (*signal function*)

• locally power-law mass function  $dp = n(\mu) dV$ 

$$n(\mu) = A \exp(-\alpha \mu)$$
;  $\alpha = \alpha(\mu, z) \iff cosmology$ 

• convolve with log-normal likelihood for **s** to find the *signal space density* 

$$n(\mathbf{s}) = \frac{A\Sigma}{(2\pi)^{(N-1)/2} |\Psi|^{1/2}} \exp\left[-\frac{1}{2}\left(\mathbf{s}'\Psi^{-1}\mathbf{s} - \frac{\overline{\mu}^2(\mathbf{s})}{\Sigma^2}\right)\right]$$

where  $\Sigma^2$  is the mass variance, and  $\overline{\mu}$  is the log-mean mass

$$\Sigma^2 = \left(\mathbf{m}'\Psi^{-1}\mathbf{m}\right)^{-1}$$

$$\overline{\mu}(\mathbf{s}) = \frac{\mathbf{m}' \Psi^{-1} \mathbf{s}}{\mathbf{m}' \Psi^{-1} \mathbf{m}} - \alpha \Sigma^2$$

Note:  $\mathbf{b}(\mathbf{z})=0$  assumed.

#### signal selection effects

• select on  $s_1$ , {mass,  $s_2$ } likelihood is Gaussian with covariance

$$\tilde{\Psi} = \begin{bmatrix} \sigma_{21}^2 & \tilde{r}\sigma_{21}\sigma_{\mu 1} \\ \tilde{r}\sigma_{21}\sigma_{\mu 1} & \sigma_{\mu 1}^2 \end{bmatrix} \qquad \sigma_{21}^2 = m_2^2 \left(\sigma_{\mu 1}^2 + \sigma_{\mu 2}^2 - 2r\sigma_{\mu 1}\sigma_{\mu 2}\right) \\ \sigma_{\mu i} = \sigma_i / m_i \quad \text{mass scatter}$$

$$\tilde{r} = \frac{(\sigma_{\mu 1} / \sigma_{\mu 2} - r)}{\sqrt{1 - r^2 + (\sigma_{\mu 1} / \sigma_{\mu 2} - r)^2}} \quad s_2$$

-µ correlation coefficient

• mean  $s_2$  – mass scaling for  $s_1$ -binned samples will be biased if  $r \neq 0$ 

$$\overline{s}_2(s_1) = m_2 \Big( \overline{\mu}(s_1) + \alpha(\overline{\mu}, z) r \sigma_{\mu 1} \sigma_{\mu 2} \Big)$$

$$d\overline{s}_2 / d\overline{\mu} = m_2 (1 + (r\sigma_{\mu 1}\sigma_{\mu 2})\partial\alpha(\overline{\mu}, z) / \partial\mu)$$

### SDSS maxBCG cluster sample



based on excess counts of g-rred-sequence galaxies, ~13,000 clusters, richness  $N_{200} \ge 10$ Koester et al 2007a,b (T. McKay)

- stacked weak lensing masses Sheldon et al 2007; Johnston et al 2007
- velocity dispersion—richness Becker et al 2007
- X-ray luminosity—richness Rykoff et al 2008a
- X-ray luminosity—lensing mass Rykoff et al 2008b
- improved richness estimator Rozo et al 2008a
- scatter in mass-richness Rozo et al 2008b





# mean L<sub>X</sub>–M of N<sub>gal</sub>–selected sample

Johston et al 2007

Rykoff et al 2008b

17000 clusters,  $N_{gal} \ge 9$  $M_{200}$  from weak lensing,  $L_X$  from RASS (stacked  $N_{gal}$  bins)



# mass–N<sub>gal</sub> variance and LM covariance



slope, norm, scatter

Vikhlinin et al (2008)



solid: current  $L_X - M_{500}$  errors (~10%) dashed: 5% errors on  $L_X - M_{500}$ 



dashed: 5% errors on  $L_X - M_{500}$ 

# implications for $L_X - N_{gal}$ correlation at fixed M?



 $N_{200}$  is a better mass proxy <u>and</u>  $N_{200}$  and  $L_X$  are anti-correlated at fixed halo mass





#### summary

- understanding signal covariance is an important ingredient in precision cosmology with clusters
- large, multi-wavelength cluster surveys invite studies of covariance of multiple halo signals (mass proxies)
- SDSS + RASS + 400d = <u>first measurements</u> of N–M variance and L,M | N correlation
- areas for further study
  - survey selection and projection effects
  - redshift / mass dependences of signal-mass relation
  - hot gas/galaxy covarince from simulations

looking forward to DES + SPT + eRosita! (+ many others)