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DE Science and Astrophysics

a = 0.4 

a = 1 

Astrophysics = DE “nuisance” parameters 
    – first-principles priors (simulation, theory)
    – empirical priors (observation)

`halo’ of mass M 
       at redshift z  

`halo’ = local Minkowski
patch in expanding 

FRW metric 

LSS tests (WL, GC, BAO) require knowledge of
     – how DM clusters on small scales, 
     – how galaxies & gas evolve within DM halos

baryon phenomenology                 

 ...=
optical/IR/lensing   sub-mm         X-ray           other...      



mass function sensitivity to baryon physics 

z=0

z=1

o  MGS-gravity only 
•   MGS-preheat
∆  ART-gravity only
     ART-cool/star/feedback

z=0

z=1

Stanek et al, 0809.2805  

(For state-of-the-art sims,  
see E. Puchwein’s poster) 

– complex baryon 
physics shifts halo total 
mass (M500)

– mass function shifts 
>5% statistical error of  
Tinker et al (2008)

2 pairs of simulations



clusters as scaled “standard candles”

“Astrophysics for Dummies”

1) To first order, all relations are power-law

              e.g., virial theorem    T ~ H(z)2/3 M2/3  

2) Central limit Thm => deviations are log-normal    

halo of mass M 
       at redshift z  

 ...=
optical/IR/lensing   sub-mm         X-ray           other...      



bedrock: dark matter virial scaling 
Evrard et al 2008  

10 Grossi & Springel

Figure 11. The virial scaling relation at the present epoch for primaryhalos with mass larger than 1012 M! for the four models considered (from left to right

and top to bottom: ΛCDM, DECDM, EDE1, EDE2). The red solid line in each plot represents the Evrard et al. (2008) relation, while the blue dashed line is
our best fit. The triangles are the simulation results: we employ a fixed critical threshold of∆ = 200 to identify the dark matter halos. The insets show the
distributions of deviations in lnσDM around the Evrard et al. (2008) fit.

strated that there exists a quite tight power-law relation between the

mass of a halo and its one-dimensional velocity dispersion σDM,

where

σ2
DM =

1
3Np

Np
∑

i=1

3
∑

j=1

|vi,j − v̄j |
2 , (15)

with vi,j being the jth component of the physical velocity of par-
ticle i in the halo, Np is total number of halo particles within a

radius that encloses a mean overdensity of∆ = 200 with respect
to the critical density, and v̄ is the mean halo velocity. When virial
equilibrium is satisfied, we expect that the specific thermal energy

in a halo of mass M and of radius R will scale with its potential

energy, GM/R, while the kinetic energy is proportional toM2/3.

Since σDM expresses the specific thermal energy in dark matter, we

can express the mean expected velocity dispersion as a function of

mass as

σDM (M, z) = σDM,15

(

h(z)M200

1015M!

)α

. (16)

Here the fit parameters are the slope α of the relation, and the nor-
malization σDM,15 at a mass scale of 10

15h−1M!. While the slope

α just follows from the virial theorem if halos form a roughly self-
similar family of objects (which they do to good approximation),

the amplitude σDM,15 of the relationship is a non-trivial outcome

of numerical simulations and reflects properties of the virialization

process of the halos as well as their internal structure. Evrard et al.

(2008) showed that a single fit is consistent with the numerical data

of a large set of N-body simulations of theΛCDM cosmology, cov-

ering a substantial dynamic range.

However it is conceivable that the amplitude of the relation-

ship will be slightly different in early dark energy cosmologies, as

a result of the different virial overdensity that is predicted by the

top hat collapse in these cosmologies. If true, this would then also

hint at a different normalization of the relationship between total

Sunyaev-Zeldovich decrement and mass, which would hence di-

rectly affect observationally accessible probes of the cluster mass

function at high redshift.

We here test whether we can find any difference in this re-

lationship for our different dark energy cosmologies. In Figure 11,

we plot the velocity dispersion of halos as a function of mass, in the

four different cosmologies we simulated. The halos were identified

using a spherical overdensity definition, where the virial radius r200

was determined as the radius that encloses a fixed multiple of 200
times the critical density at the redshift z, andM200 being the cor-

responding enclosed mass. We then determined the best-fit relation

obtained from our numerical data (red solid lines). This fit is in very

good agreement with the results obtained by Evrard et al. (2008)

(dotted blue lines), given by σDM,15 = 1082 ± 4.0 km s−1 and

α = 0.3361±0.0026, a value consistent with the viral expectation
of α = 1/3. The insets show the residuals about the fit at redshift

•  log-mean specific thermal energy (velocity dispersion) in dark matter 

•  deviations approximately log-normal with 4-5% scatter 

•  confirmed in Early Dark Energy models Grossi & Springel 2008 
€ 

σDM(M,z) = (1082.9 ± 4.0)(E(z)M200 /1015h−1Mo)0.3361±0.0026  km s−1



power-law + log-normal scatter model for signals !

•  assume a log-normal joint likelihood about the mean

where Ψ is the covariance in signals at fixed mass and epoch

€ 

s (µ,z) = m(z)µ + b(z)

•  For ith signal, mean behavior of si=ln(Si) is linear in lnM w/ slope mi.  
  For N such signals

€ 

µ = lnM

€ 

p(s | µ,z) =
1

(2π )N / 2 Ψ
1/ 2 exp[− 1

2 (s− s ′ ) Ψ−1(s− s )]

€ 

Ψij = si − s i(µ,z)( ) s j − s j (µ,z)( )



support for power-law + Gaussian covariance 

Millennium 
Simulation: 
 Gadget2 with
 gas under two
 physical 
 treatments 
  – preheating
  – gravity only

with Lorena Gazzola,  
F. Pearce (Nottingham) 

Covariance in ~3000
 halos at z=0 with 
M200 > 3x1013 Msun/h

Stanek et al, in prep 



local model for signal counts (signal function)

•  convolve with log-normal likelihood for s to find the 
      signal space density

where Σ2 is the mass variance, and µ is the log-mean mass  

€ 

n(µ) = Aexp(−αµ)  ;  α =α(µ,z)
•  locally power-law mass function     dp = n(µ) dV

€ 

n(s) =
AΣ

(2π )(N−1)/ 2 Ψ1/ 2 exp −
1
2

′ s Ψ−1s− µ 2(s)
Σ2

 

 
 

 

 
 

 

 
 

 

 
 

€ 

Σ2 = ′ m Ψ−1m( )
−1

€ 

µ (s) =
′ m Ψ−1s
′ m Ψ−1m

−αΣ2

Note: b(z)=0 assumed.

cosmology



signal selection effects

•  select on s1, {mass, s2} likelihood is Gaussian with covariance  

€ 

˜ r =
(σ µ1 /σ µ 2 − r)

1− r2 + (σ µ1 /σ µ2 − r)2
€ 

˜ Ψ =
σ 21

2 ˜ r σ 21σ µ1

˜ r σ 21σ µ1 σ µ1
2

 

 
 

 

 
 

€ 

σ 21
2 = m2

2 σ µ1
2 +σ µ2

2 − 2rσ µ1σ µ2( )

€ 

σ µi =σ i /mi mass scatter

•  mean s2 – mass scaling for s1-binned samples will be biased if  r ≠ 0    

s2-µ correlation coefficient

€ 

s 2(s1) = m2 µ (s1) +α(µ ,z)rσ µ1σ µ2( )

€ 

ds 2 /dµ = m2 1+ (rσ µ1σ µ2)∂α(µ ,z) /∂µ( )



SDSS maxBCG cluster sample

based on excess counts of g–r 
red-sequence galaxies, 
~13,000 clusters, richness N200 ≥10

Koester et al 2007a,b 
(T. McKay) follow-up studies: 

•  stacked weak lensing masses

•  velocity dispersion–richness

•  X-ray luminosity–richness

•  X-ray luminosity–lensing mass

•  improved richness estimator

•  scatter in mass–richness

Sheldon et al  2007; Johnston et al 2007 

Becker et al 2007 

Rykoff et al 2008a 

Rykoff et al 2008b 

Rozo et al 2008a 

Rozo et al 2008b 



LX–Ngal scatter measurement

~3,000 SDSS maxBCG clusters
with RASS detections/upper limits

Rykoff et al 2008a 

€ 

σ ln LX |  Ngal
= 0.83± 0.03



mean LX–M of Ngal–selected sample
Johston et al 2007 
Rykoff et al 2008b  17000 clusters, Ngal ≥ 9

M200 from weak lensing,  LX from RASS (stacked Ngal bins)
Good agreement
 between X-ray
 and optically
 selected samples
  slope = 1.6 ± 0.1

potential tilt due to
 optical–X-ray
 correlation and
 running of MF slope
 α(M).
(no formal constraint)

X-ray



mass–Ngal variance and LM covariance
Rozo et al 2008b 

Vikhlinin et al (2008)  

From SDSS-RASS: 
 •  dn(N200)/dN200 
 •  LX–N200 scaling 
      slope, norm, scatter
 •  M200–N200 scaling 
      slope, norm
missing: 
  M200–N200 scatter
  M200, LX | N200 correlation 

Extra information: 
 400d survey 
 LX –M500 scaling 
    slope, norm, scatter

solid: current LX –M500 errors (~10%)
dashed: 5% errors on LX –M500  

scatter, σM|N 
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mass–Ngal variance constraint
Rozo et al 2008b 

 Error in variance is
 critical for survey 
 self-calibration 
    Lima and Hu 2005  

solid: current LX –M500 constraints
dashed: 5% errors on LX –M500  

€ 

σ lnM |  N200
= 0.45−0.18

+0.20  (95% cl)

NOTE: scatter is 
 uncorrected for
 projection and 
 mis-centering



N200 is a  better
 mass proxy and
 N200 and LX are

 anti-correlated at
 fixed halo mass

implications for LX–Ngal correlation at fixed M? 

N200 is a 
 poorer mass
 proxy than LX 



Prospects for Cluster Cosmology 

Ann Arbor, MI 
8-10 June 2009 



summary

•  understanding signal covariance is an important 
 ingredient in precision cosmology with clusters

•  large, multi-wavelength cluster surveys invite studies of
 covariance of multiple halo signals (mass proxies) 

•  SDSS + RASS + 400d = first measurements of N–M
 variance and L,M | N correlation 

•  areas for further study
   – survey selection and projection effects  
   – redshift / mass dependences of signal-mass relation
   – hot gas/galaxy covarince from simulations

looking forward to DES + SPT + eRosita! (+ many others)

=


