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Motivation

Figure 1: Distribution of Dark Matter at z = 0 according to
the Millennium Run simulation (source: V. Springel et al. ’05)

Short History of Structure Formation in the Universe:

• initially small and smooth primordial density perturbations are am-
plified through gravitational instability and form Large Scale Struc-
ture (LSS)

• primordial fluctuations were distributed according to homogeneous
Gaussian random processes

• for Gaussian random fields all statistical information is encoded in
the power spectrum!

• during most of the evolution inhomogeneities can be treated as linear
perturbations (as for the CMB analysis)

• but: as perturbations grow and become non-linear, different modes
of the density field become coupled

• this leads to non-Gaussian signatures in the matter density field

• since weak lensing probes low redshift regime and intermediate scales
non-Gaussianities must be taken into account!

Why do we consider the Covariance?

Covariance of statistical quantity x is defined as:

C(xi, xj) ≡ 〈〈xi〉 − xi〉〈〈xj〉 − xj〉 , (1)

where 〈.〉 denotes the ensemble average of x.

• gives error on the quantity x (diagonal elements) and amount of
correlation between the different xi (off-diagonal elements)

• generates in case of the convergence power spectrum estimator P̂κ(l)
non-linear, higher-order correlations

• is essential for the likelihood and Fisher matrix analysis of cosmo-
logical parameter estimation

Covariance Matrix for Weak Lensing

C(P̂κ(li), P̂κ(lj)) =
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where A is the survey volume, Ar(li) the shell area and P̂κ(l) an un-
biased power spectrum estimator. The covariance is decomposed into
a Gaussian and a non-Gaussian part. Pκ(l) is the convergence power
spectrum and T̄κ(li, lj) is the bin-averaged convergence trispectrum
which are defined as

Pκ(l) ≡
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)

, (3)

T̄κ(li, lj) ≡

∫

r,li

d2l1
Ar(li)

∫

r,lj
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Ar(lj)

Tκ(l1,−l1, l2,−l2) , (4)

where the weight function G(w) sets the geometry of the background
sources (see [1, 2, 5] for more details).

The Halo Model (HM)

Motivation:

• need to model non-linear, higher-order correlation functions

• Perturbation Theory description of gravitational clustering breaks
down around l ≃ 100

•N-Body simulations of LSS are computationally very costly

•HM provides simple description for semi-analytic computation of the
power- and trispectrum (see Cooray & Sheth [3] for more details)
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Figure 2: Dimensionless convergence power spectrum ∆κ(l) as
predicted by the HM. Perturbation theory breaks down around
l ≃ 100. Typical splitting into two regimes: the 1-halo term is
dominant on small scales and the 2-halo term on large scales.

Ingredients:

• idea: Dark Matter is distributed in spherically symmetric halos

• physics is split into two regimes:

– small scales: spherical collapse model → halo profile

– large scales: Perturbation Theory → spatial distribution of halos

• halo abundance (Sheth and Tormen mass function)

• halo clustering (Peak-Background-Split → halo bias)

• density profile of the halo according to universal profile (NFW)

Comparison with Simulations

For our work we use the N-body simulations of the VIRGO-
collaboration published by Jenkins et al. (see [4]). The set of cos-
mological parameters used for the comparison with the halo model and
the most important parameters for the setup of the simulation are:

Ωm ΩΛ h Γ σ8 zs Lbox/h
−1 Mpc Npar mpar/M⊙

0.30 0.70 0.7 0.21 0.9 1.0 141.3 2563 1.4 ×1010

From the simulations we use 200 convergence maps with a field view
of 0.5◦ × 0.5◦ and consider 20 bins of width ∆l ≃ 720 starting at
l ≃ 720.

Figure 3: Relative deviation of halo model to simulation power
spectrum covariance.

Fitting formula for the Covariance

A suitable quantity for a fitting formula is

β̄(li, lj) ≡
T̄κ(li, lj)

[Pκ(li)Pκ(lj)]
3/2

(5)

since it is well behaved on scales smaller than l < 1000 and is indepen-
dent of the binning scheme chosen. The Gaussian contribution can be
easily added on top in order to obtain the full covariance.

Figure 4: Fitting quantity β̄ against wave-numbers (li, lj).

As fitting function we choose a second order polynom in the dimen-
sionless convergence power spectrum, such that

β̄(li, lj)

2π2
= a0 +a1∆min +a2∆max +a3∆

2
min +a4∆min∆max +a5∆

2
max ,

(6)
where ∆max ≡ max(∆(li), ∆(lj)) and ∆min ≡ min(∆(li), ∆(lj)) de-
note dimensionless convergence power spectra. In order to apply the
fitting formula to different cosmologies, we treat the parameters ak as
dependent on Ωm and σ8. In this way we introduce 12 more parameters
which we obtain by fitting different cosmological models to one fiducial.

Figure 5: Relative deviation of fitting formula to HM.

Results

• on scales l . 5000 the HM differs around 20% from the simulations;
on smaller scales the deviation can amount 50% or more

• on scales between 1000 < l < 5000 the fitting formula deviates 10%
or less from the HM; along the diagonal the accuracy is 15% or better
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