Complementarity of Dark Energy Probes

Jiayu Tang, Filipe Abdalla and Jochen Weller University College London → USM+Excellence Cluster 'Origin & Structure of the Universe', LMU Munich

What to measure ?

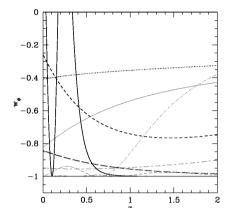
- How much dark energy today ?
- Difference from a cosmological constant ?
- Signatures of Modified Gravity ?
- Signatures of Backreaction or Inhomogeneous Universe ?
- Clumping of dark energy ?

What observations do wee need ?

- Expansion history of the Universe ('geometry')
- growth of structures
- large scale anisotropies and power spectra for clumping of dark energy

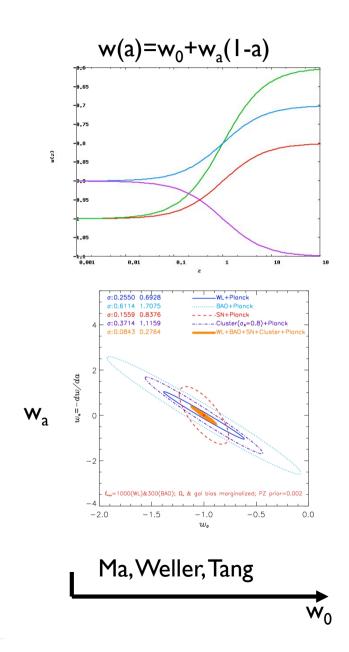
Complementarity of Future Dark Energy Probes

- Plethora of upcoming and proposed dark energy surveys
- Both NASA and ESA have put dark energy research as possible midterm missions
- Dark Energy Task Force compared different missions with a figure of merit


Ongoing, Proposed and Future 'Dark Energy' Surveys

 CFHT-SNLS, ESSENCE, SDSS-II, CfA-SP.NSF. KAIT. CSP. QUEST. HST. PanStarrs-I, PISCO, SPT, ACT, XCS, RCS2, DLS, KIDS, DEEP2, DES, HETDEX, WFMOS, PanStarrs-4, ODI, OTPLS, ALPACA, CIX, eROSITA, CCAT, LSST, DESTINY, ADEPT, SNAP, DUNE, SPACE, SKA, IOK X-ray Cluster Survey, Con-X, GSMT, JWST, ...

Parameterizations of Dark Energy


Background evolution

- w = w₀
- $\mathbf{w} = \mathbf{w}_0 + \mathbf{w}_1 \mathbf{z}$
- w = w₀+ α ln(a) (Efstathiou 1999)

- $\mathbf{w} = \mathbf{w}_0 + \mathbf{w}_a (\mathbf{I} \mathbf{a})$ (Chevalier 2001, Linder 2003)
- binned w(z) ('parameter free')
- binned $\rho(z)$, H(z)
- Perturbations: c_s²,γ, ...

Figure of Merit

- Figure of merit: inverse area of 95% contour in w₀-w_a space
- This is some indication but be careful: parameterization imposes certain redshift sensitivity, which does not necessarily reflect particular survey

Better: Binning of w(z)

$$w(z) = \left\{egin{array}{ccc} w_i & z \in \left(z_i - rac{\Delta z}{2}, z_i + rac{\Delta z}{2}
ight] \ w_h & z > z_{ ext{max}} \end{array}
ight.$$

- typically use $\Delta z = 0.05$
- z_{max} given by particular survey
- effectively parameter free and model independent
- DISADVANTAGE: TOO MANY FREE PARAMETERS
- Hence large errorbars; however ...

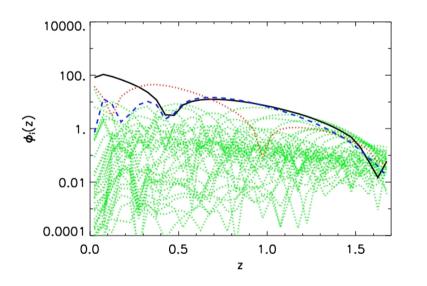
Principal Component Analysis

Calculate Fisher matrix for leading order approximation of Likelihood (Gaussian approximation)

$$F_{ij} = \left\langle rac{\partial^2 \mathcal{L}}{\partial w_i \partial w_j}
ight
angle$$

Diagonalize Fisher matrix do establish independent modes

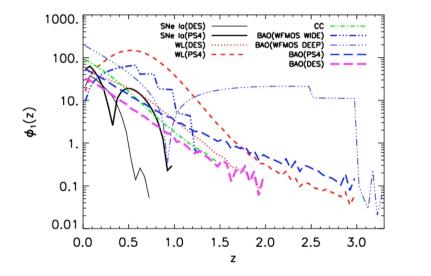
1

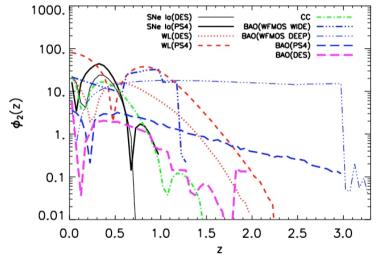

 Decompose w(z) in Eigenmodes (decorrelated)
 $\Lambda = WFW^T$

$$w(z) = w_{fid}(z) + \sum_{j=1} lpha_j e_j(z)$$

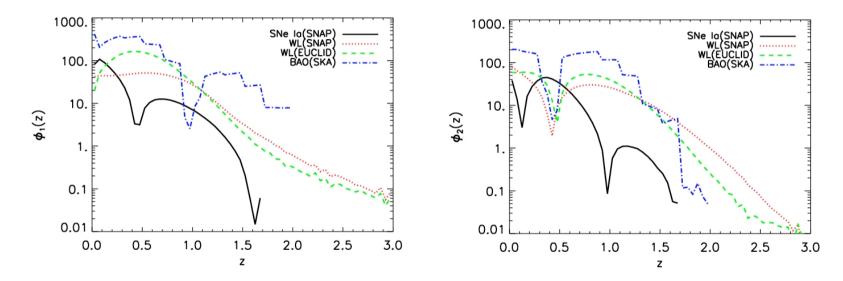
- Inverse of eigenvalue is measure of uncertainty in Eigenmode ($\Delta \alpha_j = \lambda_j^{-1/2}$), leading Eigenmodes reflect redshift sensitivity of survey/probe (Huterer and Starkman 2003; Crittenden & Pogosian 2005)
- Going beyond DETF figure of merit and pivot redshift (now proposed ?)

Example: Supernovae Probes

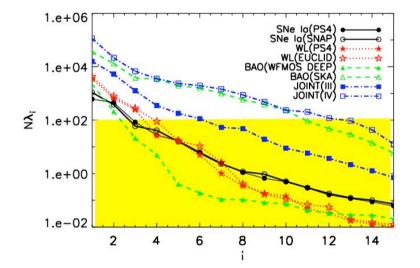




- Measure redshift distance relation
- SNAP: 2000 SNe
- Use Planck prior and marginalize over other cosmological parameters
- Most weight at z<0.2 (DE domination)
- Modes above third are weakly constraint


Selected Stage III probes

Selected Stage IV probes


Using Evidence to count significant number of modes

- evidence measures three effects in fitting
 - goodness of fit
 - degradation of errorbars due to increased number of parameters
 - bias between true underlying model and fiducial model

$$\begin{split} \mathcal{E} &= P(D|H) \approx P(D|\theta_L,H) \exp(-C) \left(\frac{|F+P|}{|P|}\right)^{-1/2} \\ & \text{bias: prior-true} \end{split} \\ \begin{aligned} & \text{Occam's razor} \end{aligned}$$

Significance of Eigenmodes

- Rough guide for significant Eigenmodes is N λ_i > 100
 - under simplifying
 Gaussian assumptions
 - neglect bias
- However, taking only low number of Eigenmodes creates bias wrt to true model

Complete Evidence Calculation for Number of Significant Modes

Expt.	SNe la	WL	СС	BAO
DES	2-3	1-3	1-2	1-2
PSI	-	2-3	-	1-2
WFMOS- Wide	-	-	-	3
WFMOS- Deep	-	-	-	2-4
PS4	2-5	3		1-2
EUCLID	-	3-4	-	*
SNAP	2-5	2-3	-	-
SKA	-	-	-	9-10

strong Jeffrey's evidence (ratio: 1)

Conclusions

- Binned approach far more versatile and less biased then standard FoM
- Two possibilities to compare surveys:
 - how well are same number of parameters constrained
 - how many parameters can be constrained to a certain level
- Redshift range in binned approach credited
 - high redshift surveys do not get negative bias compared to std. FoM
- Apply for density $\rho(z)$ and growth g(z)
- smoothness prior ?
- however measure depends on bias to true underlying model, because parameterization is generated with a priori fiducial model (w=-1 ?)