Probing the earliest galaxies and reionization with deep spectroscopy

Dan Stark (IoA, Cambridge)

Richard Ellis, Matt Schenker, Brian Siana, Brant Robertson (Caltech),
Jean Paul Kneib (LAM), Johan Richard (Lyon)

First Galaxies, Ringberg, 27/06/2011
Why do we need spectroscopy?

- Lyα emission provides knowledge of \textit{when} reionization occurred.
Why do we need spectroscopy?

• Lyα emission provides knowledge of \textit{when} reionization occurred.
• Understanding relationship between galaxy properties (kinematics, covering fraction, dust) and Lyα is crucial for reionization test.
Why do we need spectroscopy?

- Lyα emission provides knowledge of *when* reionization occurred.
- Understanding relationship between galaxy properties (kinematics, covering fraction, dust) and Lyα is crucial for reionization test.
- Understand nature of Lyα emitters, relationship to underlying star forming galaxy population.
Why do we need spectroscopy?

- Lyα emission provides knowledge of *when* reionization occurred.
- Understanding relationship between galaxy properties (kinematics, covering fraction, dust) and Lyα is crucial for reionization test.
- Understand nature of Lyα emitters, relationship to underlying star forming galaxy population.
- Galaxies in reionization era are low mass and low luminosity. The nature (feedback, star formation) of these galaxies is unknown.
Why do we need spectroscopy?

- Lyα emission provides knowledge of when reionization occurred.
- Understanding relationship between galaxy properties (kinematics, covering fraction, dust) and Lyα is crucial for reionization test.
- Understand nature of Lyα emitters, relationship to underlying star forming galaxy population.
- Galaxies in reionization era are low mass and low luminosity. The nature (feedback, star formation) of these galaxies is unknown.
- Contribution of galaxies to reionization depends on escape fraction of ionizing radiation, which may be different in lower mass systems.
Why do we need spectroscopy?

- Lyα emission provides knowledge of *when* reionization occurred.
- Understanding relationship between galaxy properties (kinematics, covering fraction, dust) and Lyα is crucial for reionization test.
- Understand nature of Lyα emitters, relationship to underlying star forming galaxy population.
- Galaxies in reionization era are low mass and low luminosity. The nature (feedback, star formation) of these galaxies is unknown.
- Contribution of galaxies to reionization depends on escape fraction of ionizing radiation, which may be different in lower mass systems.
Neutral Hydrogen in IGM Scatters Lyα Photons

- Lyα line is weakened by neutral hydrogen in the intergalactic medium
- The fraction of strong Lyα emitters within LBG population should decrease as observations probe the reionization era.

This technique can constrain reionization immediately with current facilities
Lyα Emitter Luminosity Function

- Decrease in number of Lyα emitting galaxies over just 150 Myr

- Little evolution seen in LF over 1 Gyr spanning 3.1<z<5.7 (Ouchi et al. 2008)

- Signal of increased neutral HI fraction?
Interpreting Decline in LF

- Evolution in dust?
- changing stellar populations?
- Structure and kinematics of HI?
- Number density evolution of galaxies?
Interpreting Decline in LF

- Evolution in dust?
- changing stellar populations?
- Structure and kinematics of HI?
- Number density evolution of galaxies?

Must extend to z>7 & understand galaxy evolution
Studying Lyα Emission within LBG Population

Large, robust samples to $z \sim 8-9$ with Similarly faint continuum magnitudes.
Studying Lyα Emission within LBG Population

Large, robust samples to z~8-9 with Similarly faint continuum magnitudes.

UV continuum properties (luminosity, slope) already known
Studying Ly\(\alpha\) Emission within LBG Population

Large, robust samples to \(z \sim 8-9\) with Similarly faint continuum magnitudes.

UV continuum properties (luminosity, slope) known

Spectroscopy reveals Ly\(\alpha\) (or its absence) and evolution of neutral gas kinematics.
Studying Lyα Emission within LBG Population

Large, robust samples to $z \sim 8-9$ with Similarly faint continuum magnitudes.

UV continuum properties (luminosity, slope) known

Spectroscopy reveals Lyα (or its absence) and evolution of neutral gas kinematics.

Evolution in EW distribution not affected by number density evolution
Keck+VLT spectroscopy of $3 < z < 6$ LBGs

Stark et al. 2010, Stark et al. 2011 (see also Vanella et al. 2009)

~650 spectra of $3 < z < 6$ LBGs, 6-12 hr exposures
Lyα Emission in faint galaxies

<table>
<thead>
<tr>
<th></th>
<th>HST/ACS</th>
<th>Keck/DEIMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>z=5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{850}=26.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z=3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_{775}=27.6$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z=3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_{775}=26.4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z=4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$z_{850}=27.4$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Faint galaxies frequently have high S/N Lyα!
The Lya Fraction in LBG samples

Lya fraction greater in low luminosity LBGs.

Reflects lower dust content?

Younger stellar populations?

Stark et al. 2010
Dust Governs Escape of Ly\(\alpha\) Radiation

Stark et al. 2010

- Strong Ly\(\alpha\) emitters tend to have bluer UV slopes
- Low luminosity galaxies less obscured, more Ly\(\alpha\) than luminous systems
- Galaxies less obscured at \(z \sim 6\) than at \(z \sim 3\), higher Lya fraction?

Bouwens et al 2009

![Graph showing the relationship between dust extinction and UV luminosity.](image)

Limiting Luminosity
- \(> 0.3L^*\)
- \(> 0.04L^*\)
- \(> 0\)

Systematic Error

![Graph showing the decrease in dust extinction factor with increasing redshift.](image)
Evolution of Lyα Line Profiles

- Line profile becomes more asymmetric at earlier times.
- Lower fraction of line luminosity escapes at $z \sim 6$ than $z \sim 3$
- IGM effects transmission even when fully ionized
Redshift dependence of Ly\(\alpha\) emission

\(~50\%\) of \(z\sim6\) LBGs have strong Ly\(\alpha\) emission.

Increased fraction of Ly\(\alpha\) emission at higher redshift.

Suggests Ly\(\alpha\) emission should be detectable in \(z>7\) galaxies.

Spectroscopy of WFC3 LBGs at $6<z<8$

Schenker, DPS, RSE et al. 2011

12 hours on 8 targets with Keck/LRIS

2-6 hours on 11 sources with NIRSPEC

Include 7 VLT/HAWK-I selected objects studied by Fontana et al.

Absolute magnitudes span similar range as our control sample at $z\sim6$
Difficulty in Extending Method to $z>7$

Photometric redshift distributions span larger range than covered by single NIR filters.

Object-by-object at $z>7$

OH sky lines reduce completeness.

Spectroscopic study at $z>7$ still quite inefficient!
A New Era: Redshift Confirmation at $z \sim 7$

2 Lyα detections at $z > 6.4$, 1 marginal candidate.

rest-frame $\text{EW} > 50$ Å

$z = 5.28$ source is serendipitous, corresponds to faint V-band dropout near $z \sim 7$

LBG
Galaxies with and without Lyα have blue rest-frame colors

Compact morphology

Photometry is best-fit with Lyα emission.
Evolution in Lya emission at $z \sim 7$

Schenker, DPS, RSE et al. 2011

Assume $z \sim 6$ EW distribution.

Monte Carlo simulations indicate we should have detected 7-8 objects.

Probability of detecting Lyα in 2(4) sources is 0.2-0.6% (3-9%).
Evolution in Lya emission at $z \sim 7$

Assume $z \sim 6$ EW distribution.

Monte Carlo simulations indicate we should have detected 7-8 objects.

Probability of detecting Lya in 2(4) sources is 0.2-0.6% (3-9%).

$z \sim 7$ EW distribution appears significantly different.
Why do we need spectroscopy?

- Lyα emission provides knowledge of when reionization occurred.
- Understanding of properties (kinematics, covering fraction) of gas around young stars helps break degeneracies in Lyα reionization test.
- Understand nature of Lyα emitters, relationship to underlying star forming galaxy population.
- Galaxies in reionization era are low mass and low luminosity. The nature (feedback, star formation) of these galaxies is unknown.
- Contribution of galaxies to reionization depends on escape fraction of ionizing radiation, which may be different in lower mass systems.
BX418: Unique Window on Low Mass Galaxy Formation at z=2

Strong Lya, OIII], CIII] emission lines.

Weak low ionization interstellar absorption lines. Yet lines are saturated.

Outflowing gas is primarily highly ionized.

He II emission (stellar wind and nebular component) + CIII] indicates much higher ionization parameter
BX418: Unique Window on Low Mass Galaxy Formation at $z=2$

Strong Lya, OIIIλ, CIIIλ emission lines.

Weak low ionization interstellar absorption lines. Yet lines are saturated.

Outflowing gas is primarily highly ionized.

He II emission (stellar wind and nebular component) + CIIIλ indicates much higher ionization parameter

Is BX 418 typical of Low Mass Population?
Reionization-Era ‘Analogs’ at z~2-5

(w/ J. Richard, B. Siana, J-P Kneib)

Target 10^7-10^9 M$_\odot$ galaxies at z~2-3 where they can be studied in much greater detail with VLT/Keck.

Characterize outflow properties, escape fraction of ionizing radiation, presence of He II emission, Lyα physics.
Clusters provide multiple targets in each field of view - easy to assemble sample of ~100 low mass galaxies.

Pilot program behind one cluster (Abell 1689) and deep optical spectra of low mass galaxies soon arriving for 4 more clusters.
Implications of UV spectra of Low Mass Galaxies

Siana, DPS, J. Richard

• low ionization absorption lines significantly weaker: greater escape fraction of ionizing radiation?

• Very strong CIV, CIII], OIII] emission, yet He II emission absent in yet lower mass systems.
Radiative feedback from low mass galaxies

• Ongoing HST WFC3/UVIS survey (PI: Siana) for ionizing radiation from 13 z~2.6 lensed low mass galaxies.
• Final F275W (LyC) image will be 3x deeper
• Comparison to UV spectra will help understand what governs escape of ionizing radiation
Summary

• Fraction of Lyα emitters within star-forming galaxy population is much greater for low luminosity galaxies. Likely reflects lower dust content.

• Reliable confirmation of WFC3 z>6.5 dropouts now emerging from pilot Keck and VLT programs. Expect many more redshifts to come in next few years.

• Fraction of Lya emitters decreases in ~200 Myr spanning 6<z<7. Consistent with expectations for increased neutral HI fraction.

• Early galaxies are low mass and low luminosity systems. Little is known about the detailed physics of how these galaxies form.

• Unclear whether z>6 galaxies contribute enough ionizing radiation to achieve reionization by z~6. More information required on detailed physics of early galaxies.

• Spectra of low mass gravitationally lensed galaxies at high redshift reveal very weak low ionization absorption lines and uniquely strong nebular emission lines in rest-UV. Both may reflect greater contribution to reionization.