STELLAR POPULATIONS IN THE CENTRAL KPC OF SEYFERT GALAXIES

G. Dumas, MPIA
E. Emsellem (ESO), C. Mundell (ARI, Liverpool)
LOW LUMINOSITY AGN
AGN FUELING

- Low accretion rates: $\sim 10^{-2} \, M_\odot/yr$
 - Need small amount of gas
 - Small-scale accretion events (King & Pringle 07)

- Angular momentum problem
 - Presence of gas in the inner 100pc in Seyfert galaxies
 - Transport down to few 0.1pc = remove totally the angular momentum!

- Fuelling mechanisms:
 - Galaxy interaction, mergers
 - Stellar bars, bar within bar scenario
LOW LUMINOSITY AGN
AGN FUELING

- No statistically-significant difference between Seyfert and non-active galaxies on spatial scales that encompass galaxy interaction, large-scale and nuclear bars and spirals

- Presence of dust and isophotal disturbance in Seyferts (Hunt & Malkan 04, Simões Lopes et al. 07)

- Kinematic study needed along with imaging
 - Kinematic differences between Seyferts and non-active galaxies?
 - Signature of fuelling mechanisms
 - Role of the host on nuclear activity?
LOW LUMINOSITY AGN
SF & NUCLEAR ACTIVITY

- Connection between nuclear activity and SF

- Role of the SF in the nuclear activity:
 - SF and AGN require fuel
 - SF consume the gas for the AGN
 - Stellar mass loss as fuel of the central engine

- Stellar population properties/nuclear activity
 - Differences Seyfert/non-active galaxies?
 - Context AGN fuelling/galaxy formation
LOW LUMINOSITY AGN
AGN FUELING

- Morphology & dynamics, stars & gas
 - 28 pairs Seyfert/non-active galaxies
 - matching large scales properties

- Two complementary surveys
 - **VHIKINGS** (Mundell et al. 07)
 - VLA: HI (21cm)
 - Galactic disk + nearby environment
 - **Sauron/Seyfert** (Dumas et al. 07)
 - Sauron: 3D spectroscopy
 - Ionized gas + stars
 - Central regions (< kpc)
LOW LUMINOSITY AGN
AGN FUELING

- Morphology & dynamics, stars & gas
 28 pairs Seyfert/non-active galaxies
 matching large scales properties

- Two complementary surveys
 - **VHIKINGS** (Mundell et al. 07)
 - VLA: HI (21cm)
 - Galactic disk + nearby environment
 - **Sauron/Seyfert** (Dumas et al. 07)
 - Sauron: 3D spectroscopy
 - Ionized gas + stars
 - Central regions (< kpc)
V_{sys} < 1600\text{km/s}
Fe stellar absorption lines

15 galaxies:
7 pairs + 2 Seyferts

FOV = 41\text{"} \times 33\text{"}
2kpc to 20pc
SAURON DATA

 STELLAR KINEMATICS

- Spatial binning S/N>60

- Mask of emission lines
 - Broad lines
 - Multi-components

- Deconvolution: pPXF method
 (Cappellari & Emsellem 2004)
 - LOSVD distribution: V, σ, h_3, h_4
 - Optimal template
SAURON MAPS

STELLAR KINEMATICS

- Regular rotation patterns
- Kinematic and photometric PA aligned

Dominated by disc-like rotation for both Seyfert and control galaxies
Presence of σ-drops:

- Star formations, recent accretion event (Wozniak et al. 2003)
- Common in nearby spiral galaxies (Ganda et al. 2006, Peletier et al. 2007)
- Nuclear stellar disk
Sauron Maps

Stellar Kinematics

- Presence of σ-drops:
 - 6 Seyferts (75%), 1 non-active galaxy 17%

![Graphs of stellar kinematics for various galaxies](image)
SAURON MAPS

STEellAR KINEMATICS

- Presence of σ -drops:
 - 6 Seyferts (75%), 1 non-active galaxy 17%
 - Seyferts 1: BLR emission line contaminate the central regions
 - \Rightarrow Remain 50% of Seyfert and 17% of Control

 - σ -drops frequency \sim40% in early type galaxies (e.g. Peletier et al. 07)
 - Seyferts consistent
 - Control galaxies significantly lower
SAURON MAPS

ABSORPTION-LINE STRENGTH

- Line strength indices
 - Lick/IDS system
 - Stellar population properties:
 Age, metallicity, abundances

- Sauron wavelength range
 - All FOV 4825-5275Å
 - \(\text{H}\beta, \text{Fe}5015, \text{Mg}\ b\)
 - \(\sim\)FOV/2 4825-5380Å
 - \(\text{H}\beta, \text{Fe}5015, \text{Mg}\ b + \text{Fe}5270\)
SAURON MAPS
ABSORPTION-LINE STRENGTH

NGC2655 NGC4459 NGC4579 NGC3351 NGC5194 NGC5055

Hb

Mg b

Fe 5015
SAURON MAPS
ABSORPTION-LINE STRENGTH

○ Smooth distribution
 ⇒ NGC4579
 ⇒ 50% Seyfert, 33% non-active

○ Structures with high H\(\beta\), low Mg\(b\) & Fe 5015: young stars
 • Compact central regions
 ⇒ NGC2655
 ⇒ 37% Seyfert, 17% non-active
 • rings
 ⇒ NGC3351
 ⇒ 13% Seyfert, 50% non-active
INDEX-σ RELATIONS

- Central values $R < \frac{R_e}{10}$

- Mg b-σ & H β - σ relations
 - Early type (Morelli et al. 08)
 - This work: Seyferts

- No significative difference Seyfert/control
 \[⇒\] Consistent with early type galaxies relations
AGE, METALLICITY, ABUNDANCE
SSP ANALYSIS

- Central values $R < R_e/10$

- Single-burst population models of Thomas et al. 2003
 - age
 - Metallicity
 - Abundance ratios
AGE, METALLICITY, ABUNDANCE
SSP ANALYSIS

- Central values $R < Re/10$

- Single-burst population models of Thomas et al. 2003
 - age
 - Metallicity
 - Abundance ratios

- Age
 - Seyfert slightly younger than control
 - Non statistically difference: ages between 8 and 10 Gyr
 - Seyferts 1: problems
AGE, METALLICITY, ABUNDANCE
SSP ANALYSIS

Central values $R < Re/10$

α/Fe enhancement
- Between -0.2 and 0.2
- Control galaxies: median = 0.04
- Seyferts: median = 0.12

Metallicity
- Between 0.4 and 0.7
- Median at 0.6 for both Seyfert and control galaxies
CONCLUSIONS

- σ -drops 50% Seyfert / 17% Control

 BUT Control frequency too low

- Line strength indice – σ relation

 - Seyfert & Control galaxies consistent with early type spirals

- Seyfert systematically younger and super-solar α/Fe enhancement

 BUT differences small!

Non significant difference between Seyfert and Control galaxies
CONCLUSIONS

- Maps of age, z and α/Fe
 - Structures
 - gradients

- SSP analysis
 - Over simplification
 - If 2 population: SSP => old low Z population (Allard et al 06)

- NEED Two-population analysis
 - Link with sigma-drops: nuclear stellar disk
 - SF history in the nuclear region
RADIAL PROFILES

NGC2655
NGC4459
NGC4579
NGC3351
Kinematics Study

Pyring

\[
V_{\text{LOS}} = V_{\text{sys}} + V_{\phi}(R,\phi) \cdot \cos(\phi) \cdot \sin(i) + V_{R}(R,\phi) \cdot \sin(\phi) \cdot \sin(i)
\]

\[
\begin{align*}
\cos(\phi) &= \frac{-(x - X_c) \cdot \sin(PA) + (y - Y_c) \cdot \cos(PA)}{R} \\
\sin(\phi) &= \frac{-(x - X_c) \cdot \cos(PA) - (y - Y_c) \cdot \sin(PA)}{R \cos(i)}
\end{align*}
\]

- 2D infinitesimally thin disk
- Tilted-ring method
- Fit of kinematics parameters: \(V_{\text{sys}}, \text{PA}, i, \text{center}, V_R, V_{\phi}\)

NGC2655, stellar velocity fields
Radial Profiles

- Elliptical rings: center, PA, I from fit of the stellar velocity field
- Radial profiles computed by averaging σ and line strength maps over these rings