A New Secular Instability in Eccentric Stellar Disks around Massive Black Holes

Madigan et al. 2009 (ApJL)

Ann-Marie Madigan
Yuri Levin & Clovis Hopman
Outline

- Introduction to Galactic Centre
 - Motivation
- Physics of Instability
 - Simulations
- Applications
Galactic Centre

Credit: ESO/S. Gillessen et al. 2009
1. SgrA* Black Hole
 $M_\bullet = 4 \times 10^6 M_\odot$

2. Disk:
 0/WR stars
 $M_{\text{disk}} = 10^4 M_\odot$
 $0.05 < a < 0.5 \text{ pc}$

3. S-stars:
 B stars
 $0.003 < a < 0.03 \text{ pc}$
2 Puzzles...

(1) Bimodal eccentricity distribution of disk stars

- Age of disk ~ 6 Myr
- Relaxation time ~ 1 Gyr

(2) Origin of S-stars

- In-situ formation \times
- Youth: Did not travel far from place of birth
Setup

Assumptions:
1) $M_{\text{disk}} \ll M_{\text{cusp}}$
2) Eccentricity vectors (\bar{e}) aligned, similar in magnitude
 ← vector which points to periapse
Retrograde Precession due to cusp:

\[t_{\text{prec}}(a,e) \sim \left[\frac{M}{M_{\text{cusp}}(a)} \right] t_{\text{orb}}(a) f(e) \]

\[\rho_{\text{cusp}} \propto a^{-\gamma}, M_{\text{cusp}}(<a) \propto a^{3-\gamma} \]

\[t_{\text{orb}}(a) \propto a^{3/2} \]

\[t_{\text{prec}} \sim a^{\gamma-3/2} f(e) \]

Fastest for low e orbits
Slowest for high e orbits
Instability (3)

1. Higher e orbit precesses slower than other orbits.
2. Feels strong, coherent torque from other stars in disk in opposite direction of angular momentum L.
3. L is decreased, e is increased.

$L \propto (1 - e^2)^{1/2}$

$L = r \times v$

$T = r \times F$
Instability (4)

1. Lower e orbit precesses faster than other orbits
2. Feels strong, coherent torque from other stars in disk in direction of angular momentum L
3. L is increased, e is decreased

$L \propto (1 - e^2)^{1/2}$

$L = r \times v$

$\mathbf{T} = r \times \mathbf{F}$

e orbit precesses faster than other orbits

in direction of angular momentum L

L is increased, e is decreased
Simulations

Relaxation time ~ 1 Gyr
Evolution of \vec{e}
Evolution of \bar{e}
Observed vs Simulated Eccentricity Distribution

Bartko et al. (2009)

Madigan et al. (2009)

Bimodal distribution: direct consequence of instability
Origin of S-stars

Instability in disk pushes binary system to high eccentricity orbit.

Binary system is disrupted (Hills’ [1988] Mechanism) forming:

1) hyper-velocity star
2) bound high-eccentricity star = S-star?
Summary

1) New Instability in Eccentric Stellar Discs
 > Time-scale: Myr
 > Robust

2) Application to Galactic Centre:
 > Bimodal eccentricity distribution
 > Origin of S-star population?
$\gamma = 1.25$

Evolution of \bar{e}
$\gamma = 1.5$

Evolution of \bar{e}

![Graphs showing evolution of \bar{e} at 0, 200, 400, 600, 800, and 1000 orbits.](image)
Evolution of \bar{e}

$\gamma = 1.75$