

Ground-based secondary eclipse observations

Ernst de Mooij Department of Astronomy and Astrophysics, University of Toronto

Ray Jayawardhana, Ignas Snellen, Matteo Brogi, Remko de Kok, Jayne Birkby, Yutong Shan, Raine Karjalainen, Emanuele Di Gloria, Matthew Kenworthy

What do we learn from secondary eclipses

- Light coming from the planet
- For hot Jupiters: Typically thermal emission
- Can determine
 composition
 - temperature structure

Structure of the atmosphere: inversion layers

Madhusudhan and Seager (2010), ApJ 725, 261

Incident radiation?

Fortney et al. 2008

Stellar activity?

Knutson et al. 2010

Ground-based observations

- Near-infrared secondary eclipse observations probe the spectral energy distribution of a hot-Jupiter near its peak
- Optical observations ($\lambda < 1 \ \mu m$) probe the emission in the Wien Limit
- Provide important constraints on the energy budgets

The GROUSE project

- Near-infrared observations of the secondary eclipses of hot-Jupiters
- Goal: Determine the planet's SEDs
- Currently 10 targets observed

The GROUSE project

- Near-infrared observations of the secondary eclipses of hot-Jupiters
- Goal: Determine the planet's SEDs
- Currently 10 targets observed

Dust on dewar window glows in K-band!

 Glow from dust/optical elements visible

Dust on dewar window glows in K-band!

 Glow from dust/optical elements visible

Solution to some of the problems

Solution to some of the problems

	Caturday 22 January	2011 2.28		
Isaac Newton Group of Telescopes	Saturday, 22 January	2011 3.20	-	Telescope : WHT
Temperature (*1): Mirror: 3.8 Internal: 4.4 Cocat: 1.0	10	Internal	Local Mast	HT Mast
	10	Air Temp	Air Temp	Air Temp
		2.5 °C	-0.7 °C	-2.1 °C
-m		Humidity	Private dity	Humidity
		73 %	99 %	97 %
		Dewpoint		
(emperature (C) matter intertial		-1.7 °C	WET	WET
and a second and a s	an the Andrew Southand	Mirror Temp	WindSpeed	Wind Speed
perfection of reasons and	1 <u>. 33. 4 </u>	3.4 °C	0 km/h	4 km/h
Relative Humadity (%): Internal Local	100	Mirror-Internal	Wind Direction	Wind Gust
	80	0.9 °C	From : SW	5 km/h
Cat a alibra	tional		E /2)	Wind Direction
Get calibra	lions		C	220 °
Final Second Area Care Land 197				
wan Merry Statuth, 19494 184		England		ERRORS

The GROUSE project

- Near-infrared observations of the secondary eclipses of hot-Jupiters
- Goal: Determine the planet's SEDs
- Currently 10 targets observed

The GROUSE project III: The secondary eclipse of WASP-33b

- Host-star:
 - A-type star
 - T_{eff}=7430K
 - Star shows pulsations
 (δ Scuti)
- Very hot Jupiter
 - Incident radiation:
 - $1.2 \cdot 10^{10} \text{ erg/sec/cm}^2$
 - Equilibrium temperature: 3300K

De Mooij, Brogi, De Kok, Snellen, Kenworthy & Karjalainen A&A submitted

More results coming up

Differential spectrophotometry

Towards shorter wavelengths: Optical spectrophotometry of WASP-12b

- Optical photometry probes planetary emission in the Wien limits
 → Sensitive to the temperature of emitting region
- Photometry only allows one band at a time → use differential spectrophotometry

Preliminary lightcurves of WASP-12b

Seeing variations...

Preliminary optical measurements of WASP-12b

A new instrument for high-precision photometry of bright stars

Why we need a fast read-out

 Typical instruments have very large overheads

Why we need a fast read-out

- Typical instruments have very large overheads
- To reduce impact of overheads: increase the exposure time → requires larger defocus

Why we need a fast read-out

- Typical instruments have very large overheads
- To reduce impact of overheads:
 increase the exposure time → requires larger defocus

A wide-field, dual-beam, fast-read-out imager for characterising exoplanet atmospheres

- Proposed instrument:
 - FOV: ~0.4'
 - Detectors: 2kx2k EEV CCD230-42
 - Read-out time: < 2sec</p>
 - Dual beam: ug & riz
 - To be mounted on the 1.6 meter telescope at the Obsevatoire du Mont-Mégantic

PI: Ray Jayawardhana

Advice for observers

- Get as much baseline as possible, this is extremely important both for robustly correcting systematics and analysing the rednoise
- Take as many good calibrations as possible.
- In case of bad weather characterise the instrument (e.g. Non-linearity).
- Keep everything as stable as possible

