Outflows and Disks of Brown Dwarfs with SMA, CARMA and ALMA

Ngoc Phan-Bao

HCMIU-Vietnam National University

Collaborators:

Paul Ho (CFA, ASIAA), Chin-Fei Lee (ASIAA), Eduardo Martín (CAB)

Hot Planets and Cool Stars Max Planck Institute for Extraterrestrial Physics, Garching 🕅 November 12-16, 2012

Image credit: CfA/Harvard

Outline

The origin of brown dwarfs

 Observations of brown dwarf outflows and disks with SMA, CARMA and ALMA

✓ Summary

Brown Dwarf Gliese 229B

The origin of brown dwarfs

- Major issue in making a brown dwarf: Balance between requirement of very low mass core formation and prevention of subsequent accretion of gas
- > Two major models:
 - Star-like models: very low-mass cores formed by turbulent/gravitational fragmentation (Padoan & Nordlund 2002, Bonnell et al. 2008) are dense enough to collapse

Turbulent fragmentation (Padoan et al.)

Collapse & fragmentation (Bonnell et al.)

 Ejection model: very low-mass embryos are ejected from multiple systems (Reipurth & Clarke 2001, Bate et al. 2004)

Observations: Statistical properties of BDs such as IMF, binarity, velocity dispersion, disks, accretion, jets...show a continuum with those of stars.

> A typical picture of star formation:

Source: Spitzer Science Center

Key to understand early stages of BD formation: Molecular outflows (velocity, size, outflow mass, mass-loss rate) offer a very useful tool to identify and study BD classes 0, I, II.

Observations of brown dwarf outflows and disks with SMA, CARMA and ALMA

A. Molecular Outflows

> Overview:

- 3 detections of molecular outflow from Very-Low Luminosity Objects (VELLOs): IRAM 04191+1522; L1014-IRS and L1521F-IRS
- only one L1014-IRS (class 0/I, Bourke et al. 2005) whose the outflow process is characterized
- the sources are embedded in dust and gas, so it is very difficult to determine the mass of the central objects and their final mass
- > We search for molecular outflows from class II young BDs that are reaching their final mass

Sample: 2 BDs in Ophiuchi and 6 (1 VLM star + 5 BDs) in Taurus (mass range: 35 M_J - 90 M_J). <u>All are in class II</u>.

> Observations:

- 2008-2010 with SMA and
 CARMA
- We search for CO 2-1
 (230 GHz, 1.2 mm)
- SMA: compact, 3.6"x2.5",
 0.25 km/s
- CARMA: D, 2.8"×2.5 ",
 0.18 km/s

NASA / JPL-Caltech / L. Allen (Harvard-Smithsonian CfA)

ssc2008-03b

Lee et al. 2000

MHO 5, 90 M_J , Taurus

CO J=21 MAP (230 GHz)

Observations of brown dwarf outflows and disks with SMA, CARMA and ALMA

Target	Array	Mass (M _J)	Log ḋ _{acc} (M _⊙ /yr)	LogM _{outflow} (M _☉)	Logḋ _{mass-loss} (M _☉ /yr)	Reference papers
ISO-Oph 102	SMA	60	-9.0	-3.8	-8.9	PB2008, ApJL
2M 0441	CARMA	35	-11.3	-	-	PB2011, ApJ
ISO-Oph 32	SMA	40	-10.5	-	-	
2M 0439	CARMA	50	-11.3	-	-	
мно 5	SMA	90	-10.8	-4.2	-9.1	
2M 0414	CARMA	75	-10.0	-	-	PB2012, in
2M 0438	CARMA	70	-10.8	-	-	prep.
GM Tau	SMA	73	-8.6	-4.9	-10.3	

- > BD Outflow Properties:
 - Compact: 500-1000 AU
 - Low velocity: 1-2 km/s
 - \checkmark Outflow mass: 10⁻⁴-10⁻⁵ M_{\odot} (low-mass stars: 10⁻¹ M_{\odot})
 - Mass-loss rate: $10^{-9}-10^{-10} M_{\odot}/yr$ (low-mass stars: $10^{-7} M_{\odot}/yr$)
- > What we can learn from our observations:
 - BD outflow is a scaled down version (a factor of 100-1000) of the outflow process in stars
 - Supporting the scenario that BDs form like stars
 - BD outflow properties are used to identify/study BD formation at earlier stages (class 0, I)

presented in Constellation10, Tenerife, 2010

Core

Class 0 (?)

Class I (?)

Class II BD

Resolution

6

8

ັນ — 0 3.6

4.2

Angular

-2

2 Δ Velocity (km/s) Phan-Bao et al. Bourke et al. 2005 Andre et al. 2012 Kauffmann et al. 2011 Palau et al. 2012

Phan-Bao et al. 2008 Phan-Bao et al. 2011 Phan-Bao et al. in prep.

5.4

Velocity (km/s)

6.6

7.2

4.8

B. BD Disks

i) Detections of grain growth, crystallization, and dust settling occurring in brown dwarf disks have been reported (e.g., Apai et al. 2005, Riaz 2009):

These detections demonstrate that planets can form around BDs

Apai et al. 2005

ii) BD disk properties from SEDs:

- 20 M6-M9 in Taurus (Scholz et al. 2006):
 - Disk masses: 0.4 1.2 M_J
 - Disk radii: >20% with >10 AU (10-100 AU)
- It is unlikely that Jupiter-mass planets are frequent around BDs
- iii) So far, no direct imaging of any BD disks has been done:
- Therefore it is important to map a BD disk to obtain disk parameters, hence to understand how planets form around BDs

ISO-Oph 102: 7 3 mJy, an excellent target for ALMA

How does the disk of ISO-Oph 102 look like with ALMA?

 \triangleright

Simulation from Wolf & D'Angelo 2005

Image: ESO

Summary

✓ BDs can form like low-mass stars in a scaled down version with a factor of 100-1000

- ✓ Some giant planets close to the brown dwarf-planet boundary can form like BDs
- ALMA is able to resolve VLM star/BD disks, helping us understand planet formation around VLM stars and BDs.

Thank you for your attention! Many thanks to the organizers of the conference!