

Blue Planets Orbiting Red Dwarfs

Andreas Quirrenbach and the CARMENES Consortium

CARMENES – the Acronym

- Calar Alto
- High-Resolution Search for
- M Dwarfs with
- Exo-Earths
- With Near-Infrared and Optical
- Echelle Spectrographs

The 3.5m Telescope on Calar Alto (Southern Spain)

Why M Dwarfs?

- M dwarfs are very abundant (almost 2/3 of all stars) and thus nearby
 Excellent targets for follow up
- M dwarfs are small (< 0.5 M_☉) and faint

 ``habitable zone'' is close to star ``m
 relatively large signal ``m
 good
 chance to find Earth-like planets
- Currently no instrument optimized for M stars exists

Goals and Plan for CARMENES

- Search for Earth-like "habitable" planets around low-mass stars (M-stars)
 - Number and formation mechanisms
 - Properties and "habitability"
- Survey of 300 M stars
 - Simultaneously in visible light and nearinfrared
- 10 data points per star and year
 - 600 to 750 nights needed
 - Guaranteed in contract with CSIC and MPG

Key Questions

- ~50–100 low-mass planets could be detected; perhaps a few transiting
- Sufficient statistics to assess the overall distribution of planets around M dwarfs

 Frequency, masses, orbital parameters
- Frequency of ice and terrestrial planets

 Separations, eccentricities, multiplicities, dynamics
- Very important constraints for models of planet formation and evolution
- "Unique" systems for further characterization

A "Shortcut": M-Type Dwarfs

A New Niche

PHOENIX models

Rotation of M Stars and Brown Dwarfs

Reiners & Basri, 2008

Precision Achievable for Different Rotational Velocities

Relative Precision Achievable for M4 Star in Visible and Near-IR

Observing Strategy

- Start with a larger sample of ~600 stars
- Pre-cleaning (echelle spectra, active stars, fast rotators, binaries) ⇒ 400-450 stars
- Measurements:
 - 3500 for sample clean-up (5-10 per star)
 - 15000 additional for 300 stars (60 each)
 - 4000 additional for 100 stars (100 each)
 ⇒ 22500 measurements
- Time: 15 min + overhead ⇒ 3.5 measurements/hour
 ⇒ 30 measurements/night ⇒ 750 nights

Stellar Sample

Stellar sample

- S1: 100 stars with M < 0.25 M_{\odot} (SpType M4 and later)
- S2: 100 stars with 0.30 > M > 0.25 M $_{\odot}$ (SpType M3-M4)
- S3: 100 stars with 0.60 > M > 0.30 M_{\odot} (SpType M0-M2; bright)

Sample	Spectral type	Mass (M_{\odot})	J	#
S1	$\geq M6$	≤ 0.15	≤ 10.5	12
S1	$\mathrm{M5}\ \&\ \mathrm{M5.5}$	0.15 – 0.20	≤ 10	35
S1	M4 & M4.5 $$	0.20 – 0.25	≤ 9.5	143
S2	M3 & M3.5	0.25 - 0.30	≤ 9	198
S3	M2 & M2.5	0.30 - 0.40	≤ 8.5	121
S3	M1 & M1.5 $$	0.40 - 0.50	≤ 8	78
S3	M0 & M0.5 $$	0.50 - 0.60	≤ 7.5	55

$$< d_{S1+S2+S3} > = 13 \text{ pc}$$

Detectability Simulations

Guiding Principles for Instrument

- Single-purpose instrument
 Design driven by survey requirements
- High stability for terrestrial planet detection
 - Thermal and mechanical stability
 - Stable input
 - No moving parts in spectrographs
- High resolution for slow rotators
- Large wavelength coverage for discrimination against intrinsic variability
- High efficiency for faint stars

NIR Spectrograph

VIS Spectrograph

Instrument Location

Properties of Spectrographs

- Optical spectrograph
 - $-0.53 \dots 1.05 \ \mu$ m, R = 82,000
 - Precision ~1 m/s
 - Vacuum tank, temperature stabilized
 - 4k x 4k deep depletion CCD detector
- Near-Infrared spectrograph
 - $-0.95 \dots 1.7 \ \mu$ m, R = 82,000
 - Vacuum tank, cooled to 140K, stabilized
 - Precision goal 1 m/s
 - Two 2k x 2k Hawaii 2.5 µm detectors

The NIR Requirements Dilemma

- We want:
 - High resolution
 - Good sampling (Nyquist)
 - Large wavelength coverage (0.95...1.7 μ m)
 - No gaps between orders
 - Large inter-order spacing (cross-talk!)
 - High SNR
- We have:
 - 2 x 2048 x 2048 pixels
 - Non-uniform sampling
 - Non-uniform order spacing
 - Non-uniform efficiency (blaze function!)
- We need to compromise!

Spectrograph Layout

White pupil fiberfed echelle spectrograph

FiberExit-FNoptics-Slicer

Single-piece Collimator (3passes)

R4 Echelle grating

Grism crossdisperser

Dioptric camera

Spectrograph and Vacuum Tank Layout

Figure 2. General view of the CARMENES NIR Optical Bench fully assembled.

Calibration: Wavelength Reference

• Hollow cathode lamps: Thorium-Argon-Neon for daily and master calibrations.

Comparison of Th/Ar, U/Ar and U/Ne Lamps

Redman et al. 2011

Calibration Unit

Requirements for RV Precision

Stable slit illumination and instrument are required for high RV precision.

-Highly stable injection of light in the fibre (guiding ~0.1")

–Image scrambler or octagonal fiber

Point Spread Function shift

Avila & Singh (2008)

Near Field and Far Field Scrambling

Figure 3. Near field scrambling patterns in a 600 μ m, 3 m FVP fibre. From left: a 250 μ m spot is centred on the fibre. The spot is shifted by 175 μ m. The spot is in the centre but the fibre is squeezed with Δ FRD = 20%. The spot is shifted by 175 μ m and fibre squeezed.

Figure 13. Far field patterns from a WF 200x200/420 N CeramOptec 3 m fibre. Spot size: 150 μ m, input aperture beam: F/2.3. Three pictures left: the fibre is free and the spot is at the centre, +50 μ m and -50 μ m. The three on the right, the fibre is squeezed (Δ FRD=5%) and the spot is at the centre, +50 μ m and -50 μ m

Exposure Meters

Off-axis system to pick-up 0th order from échelle

Fiber link to Hamamatsu PMTs located outside the instrument vessel

Data Processing

Data Pipeline

- Deliverables:
 - Fully reduced, wavelength-calibrated 1D spectra
 - High precision (differential) radial velocities
 - Activity indicators
- Objectives:
 - Automatic pipeline installed:
 On site (on-the-fly reduction for quality control)
 Off site (daily reduction for science quality; re-processing of archive data with new pipeline versions)
 - Two separate pipelines for the VIS and NIR arm with similar structure and shared software packages
 - Minimal interaction with the user

RV Error Sources

Error source	Contribution	Comment
Drift measurement with	< 0.2 m/s	~ 300 arc lines typically > 60 s
sim. arcs		
Wavelength calibration	< 0.1 m/s	> 1000 arc lines during daytime
		calibration
Instrument SRF	< 0.3 m/s	> 1000 arc lines during daytime
measurement		calibration
Photon-weighted centre	< 0.1 m/s	Median sky conditions (1m/s
of integration time		corresponds to 30s)
Opto-mechanical	< 0.3 m/s	< 0.1 pixel drift during an
stability		observation
Centring and guiding	< 0.3 m/s	Spatial scrambling of fibre and
		CCD guiding
Background subtraction	< 0.1 m/s	Stability of background, dark
		current, bias etc.
Total non-source	< 0.6 m/s	RMS
noise		
Source photon noise	0.8 m/s	m _y =10.5 M6 V (<i>v</i> sin <i>i</i> =5 km/s) at
		10 pc S/N=150 in 14 min
Source radial velocity	(0-20 m/s)	Sources will be selected for
jitter		minimum radial velocity jitter
Atmospheric noise	~0.5 m/s	
Total noise (1 σ)	1.1 m/s	For typical M6 V star at 10 pc (no
		radial velocity jitter)

Wavelength calibration

Exposure meter

Current approach: do the best

Scrambling

Reduction strategy

Scrambling

RV error sources from Barnes & Jones, UKIRT planet finder.

Agreement with MPG and CSIC

- MPG and CSIC will operate the 3.5m telescope from 2014 through 2018
- CARMENES will receive at least 600 useable nights
- An additional 150 nights will be allocated if all goes well

The CARMENES Consortium

- Landessternwarte Königstuhl, U Heidelberg, Germany
- Insitut für Astrophysik, U Göttingen, Germany
- MPI für Astronomie, Heidelberg, Germany
- Thüringer Landessternwarte, Tautenburg, Germany
- Hamburger Sternwarte, U Hamburg, Germany
- Instituto de Astrofísica de Andalucía, Granada, Spain
- Universidad Complutense de Madrid, Madrid, Spain
- Institut de Ciències de l'Espai, Barcelona, Spain
- Instituto de Astrofísica de Canarias, Tenerife, Spain
- Centro de Astrobiología, Madrid, Spain
- Centro Astronómico Hispano-Alemán

Time Line

Official Start 11/2010 Preliminary Design to 07/2011 07/2011 - 12/2012Final Design 01/2012 - 06/2014 Construction Commissioning 07/2014 - 12/201401/2015 - 12/2018 Data Taking