

M dwarf Metallicities and Temperatures from K-band

And longer wavelengths

Bárbara Rojas-Ayala

RoPACS Conference, MPE, Nov 15th 2012

dMs: Not your standard Blackbody

K-band Na I, Ca I and water can reveal the metal abundance of M dwarfs

Rojas-Ayala et al. 2010

Na I doublet (2.206 μm & 2.209 μm)

Ca I triplet (2.261 μm, 2.263 μm & 2.265 μm) -

H₂O-K Index Bands (Covey et al. 2010)

Temperature & Metallicity

Temperature

Spectral Types and Temperature of M dwarfs can be obtained from K-band water absorption

Rojas-Ayala et al. 2012

BT-Settl 2010 (Allard et al 2010)

K-band Na I, Ca I and water differentiate super-solar and sub-solar [M/H] M dwarfs

Rojas-Ayala et al. 2012 in ApJ

The 2012 K-band [M/H] Scale

 $[M/H] = -0.724+0.066*(Nal_{EW}/H_2O-K2) +0.095*(Cal_{EW}/H_2O-K2)$

RMSE[M/H] = 0.09, $R^2_a([M/H]) = 0.66$

FGK + dM systems

Alternative NIR techniques

Önehag et al. 2011

R~50,000

J-band Fe I, Ca I, Ti I, Mn I,
Mg I, Si I, Cr I, Co I

Terrien et al. 2012

R~2000 H band Na I, Ca I and Water

Neptunes do not discriminate, Jupiters like rich stars ...

RV surveys

Kepler

Mayor et al. 2012 Septe de la control de la

Fig. 16. Histograms of host star metallicities ([Fe/H]) for giant gaseous planets (black), for planets less massive than $30\,\mathrm{M}\oplus$ (red), and for the global combined sample stars (blue). The latter histogram has been multiplied by 0.1 for visual comparison reason.

 $Red \ge 4R \oplus \ge Blue$

chance they are drawn from the same parent distribution with the CPS stars

Jupiter $\geq 5.5R \oplus \geq \text{Neptune} \geq 1.9R \oplus \geq \text{Earth}$

Cool KOIs

New* Radii estimates for M dwarfs KOIs from: K-band [M/H], Teff

+

Rojas-Ayala et al. 12

Dartmouth Models

Dotter et al. 08

Smaller! "Rocky" Planet Candidates! KOI 463.01, KOI 812.03, and KOI 854.01

New Photometric Metallicities for M stars

New Photometric Metallicities for M stars

Rojas-Ayala et al. (almost ready!)

~38,000 M stars from SUPERBLINK (Lépine & Shara. 2005)

M dwarfs within ~100pc

Works with V and gri magnitudes!

Alternative to M_k vs V-K techniques

BT-Settl

- M/H] = +0.5 dex
- M/H] = +0.3 dex
- [M/H] = 0.0 dex
- [M/H] = -0.5 dex
- [M/H] = -1.0 dex
- [M/H] = -3.0 dex

Summary

- The EWs of the Ca I triplet and the Na I doublet, and water absorption in the K-band differentiate metal-rich and metal-poor M-dwarfs (including other features in J and H bands)
- This method does not depend on parallaxes or accurate V magnitudes, allowing us to cover a larger sample of cooler and distant M-dwarfs.
- No need of high-resolution spectra. It simply requires K-band modest resolution spectra (efficiently obtained with current NIR-spectrographs)

Needs improvement but ... it seems to work well!

Jovian M-dwarf planet hosts are more metal-rich than Neptune/Super Earth M-dwarf planet hosts, which is in agreement with the metallicity distribution of their FGK counterparts...

NIR [Fe/H] and Teff are useful information that can help us constrain the masses and radii of M dwarfs

New Color-Color diagram can provide metallicity information for ~39000 M dwarfs