
APACHE

"While living I want to live well."

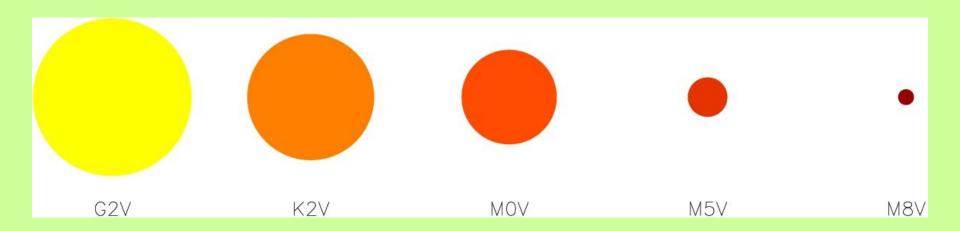


Transiting Planets:A Treasure Trove

- Learn about the history of planet migration through Rossiter-McLaughlin effect measurements
- Learn about the architecture of multiple systems
- Learn about the physical structure and composition of exoplanets
- Learn about the structure, chemistry, and dynamics of atmospheres

Ground-based Searches for Transiting Exoplanets

Survey	Location	Apert.(mm)	CCD	FOV (deg^2)	Range(mag)	Scale(")	Since	Nr. stars	Filters
$-$ OGLE a	Las Campanas	1300	$8K \times 8K$	0.34		0.26	1992	$> 10^{6}$	UBVRI
APT^b	Australia	500	$2K{ imes}2K$	6	9.4	10-15	1995		$_{ m B,V,R,I}$
Vulcan^c	Lick Obs.	120	$4\mathrm{K}{ imes}4\mathrm{K}$	49	< 13		1999	6000	V, R
$STARE^d$ (TrES)	${ m Tenerife}$	99	$2K{ imes}2K$	32		10.8	1999	> 24000	$_{ m B,V,R}$
$ASAS-3^e$	Las Campanas	$2 \times 71, 250, 50$	$2{\times}2K \times 2K$	64, 4.8, 936			2002		$_{ m V,I}$
$SuperWasp^f$	S. Africa, La Palma	$2 \times 8 \times 111$	$2K{ imes}2K$	$16{ imes}61$	<13	13.7	2002	> 100K	
BEST^g	OHP	195	$2K \times 2K$	9.6	10-14	5.5	2002	100K	$_{ m clear}$
XO^h	Haleakla	2×110	$1\mathrm{K}{ imes}1\mathrm{K}$	51.84	12	25.4	2003	> 100 K/year	400-700 nm
WHAT^i	Wise Obs.	110	$2K \times 2K$	67.24	10-14	14	2004	15000	I
HATNet^{j}	Hawaii, FLWO	6×110	$2K \times 2K$	67	I<14	14	2003	96K	I
$VulcanSouth^k$	Antarctic	200	$4\mathrm{K}{ imes}4\mathrm{K}$				2004-2005		600-700 nm
$SLEUTH^{l}(TrES)$	Palomar	100	$2K \times 2K$	36	< 14		2003	10000	r',g,i,z
$\mathrm{PSST}^m(\mathrm{TrES})$	Arizona	100	$2K \times 2K$	36	10-13	10	2004	4000-12000	B,V,R,VR
BEST II^n	Armazones	250	$4K \times 4K$	2.8^{o}	10-16	1.5	2007	100K	$_{ m clear}$
TEST^p	Tautenburg	300	$4K \times 4K$	4.8	10-15	2	2007	50000	(UBVI)R
$ASTEP$ - $South^q$	Antarctic	100	$4K \times 4K$				2008		
$MEarth^r$	FLWO	2×400	$2K \times 2K$	0.18	< 9	0.75	2008	4131	
$PANSTARRS^{s}$	Haleakla	4×1800	1.4bil pix.	49	< 24	0.3	ongoing	6000/night	$_{\mathrm{g,r,i,y}}$
$VISTA$ - $ROPACS^t$	Paranal	4000	$8K \times 8K$			0.339	ongoing		Z,Y,J,H,K_s
ASTEP	Antarctic	400					2010		
$PASS^u$	Antarctic	all sky		5.5 - 10.5				250K	
$\mathrm{ICE}\text{-}\mathrm{T}^v$	Antarctic	2×600		65			2012	1.3M	yes
$\mathrm{OmegaTrans}^w$	Paranal	2600	$16\mathrm{K}{ imes}16\mathrm{K}$	1	13.5 - 17.5	0.26		200K	${ m R}$


Sozzetti et al. 2010

- A) Deep, small-field surveys of faint (F-G-K) stars
- B) Shallow, large-field surveys of bright (F-G-K) stars
- C) New strategies for M dwarf transit searches

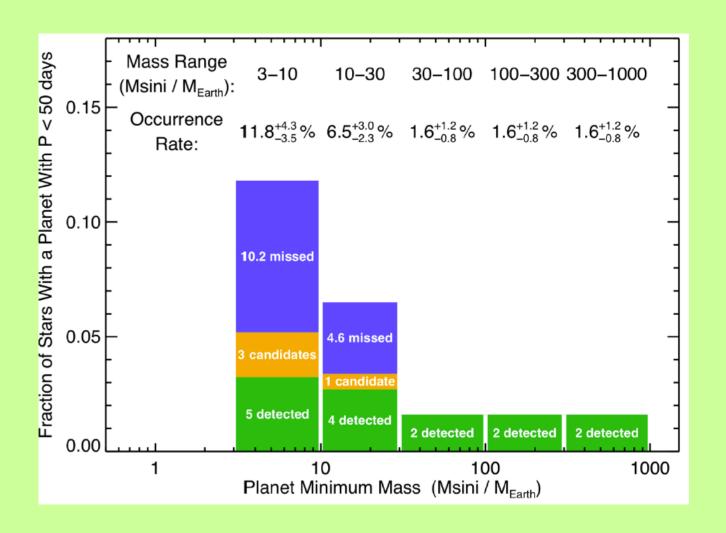
Consider a 7-M_{Earth} 2-R_{Earth} habitable zone planet:

- ✓ Transits are deeper
- ✓ Transits are more frequent
- ✓ Transits are more likely
- ✓ Greater Doppler Wobble
- ✓ Better contrast ratio

Sun: 0.03% M5V: 0.5%

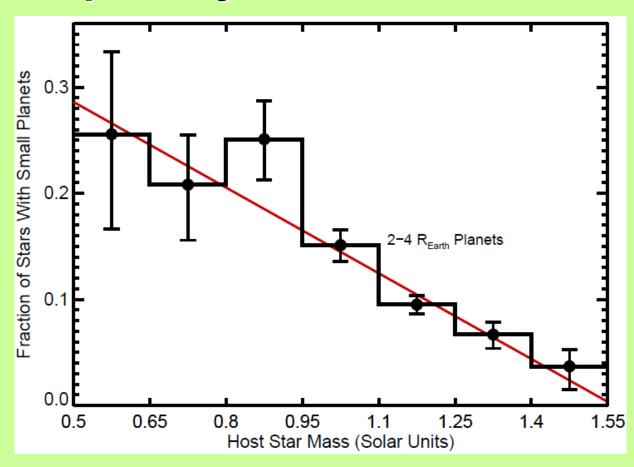
Sun: 365 days M5V: 15 days

Sun: 0.5% M5V: 1.6%


Sun: 1.3 m/s M5V: 10 m/s

Sun: 0.0004 M5V: 0.05

Low-Mass, Short-Period Planets Are Common...



... Especially Around M Dwarfs!

Occurrence rate of Neptunes and Super Earths: 34% (Bonfils et al. 2011)

However, the Star Must Cooperate...

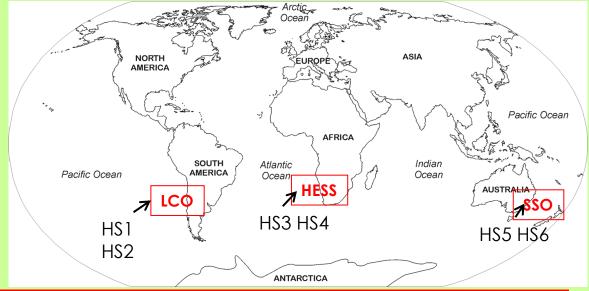
- M dwarfs are intrinsically faint
- Low-mass stars can be fast rotators
- M dwarfs can be very active

Significant impact on a variety of techniques in terms of:

- A) sample sizes
- B) detectability thresholds
- C) prospects for follow-up, confirmation and characterization

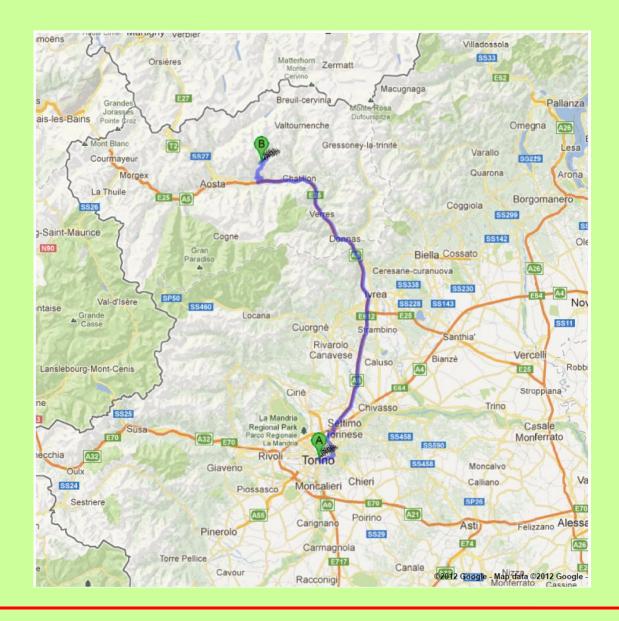
We've already heard about many well-designed experiments...

...So Why APACHE?


Isn't this just the 27th Transit Survey on the market?

GASPAR Travels a lot...

Our UK and Geneva Friends Not Much Less!



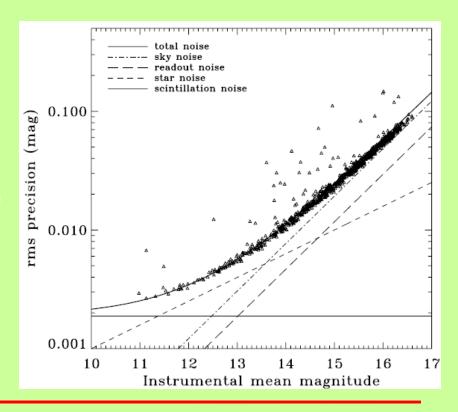
APACHE: The (Quasi) Zero-km Transit Survey!

The OAVdA Site

The Astronomical Observatory of the Autonomous Region of the Aosta Valley

- INAF-OATo: L. Lanteri, M. Lattanzi (Project Manager), R. Smart, A. Sozzetti (Project Scientist)
- OAVdA: A. Bernagozzi, E. Bertolini (Project Manager), P. Calcidese, A. Carbognani, D. Cenadelli, J.M. Christille, M. Damasso, P. Giacobbe

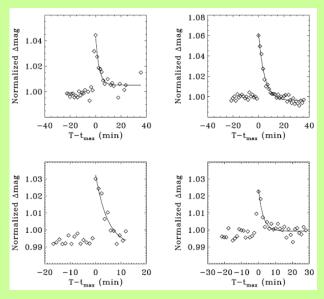
Site Characterization

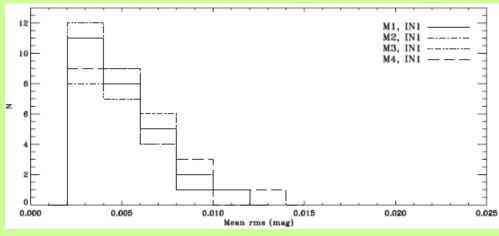


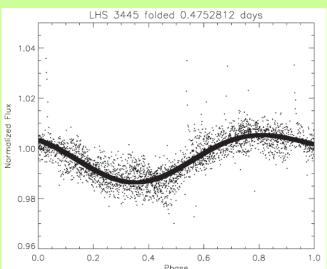
Damasso et al. 2010

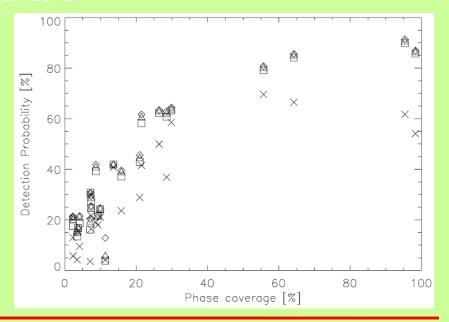
Median precision at $R=13: \sim 6$ mmag

Median seeing: 1.7"

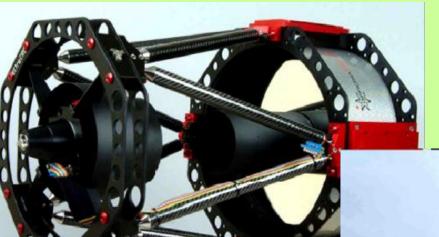

Fraction of usable nights: 57%




Pilot Study



Giacobbe et al. 2012



The APACHES

Telescope:

RC Pro 400 LT f/8.4

Weight: 42 kg

Optical set glass: LK7 for LT model

Mount:

GM 2000 - QCI, 10 Micron

CCD:

Fli PROLINE KAF-1001°

Array Size: 1024 x 1024

Pixel size: 24 µm

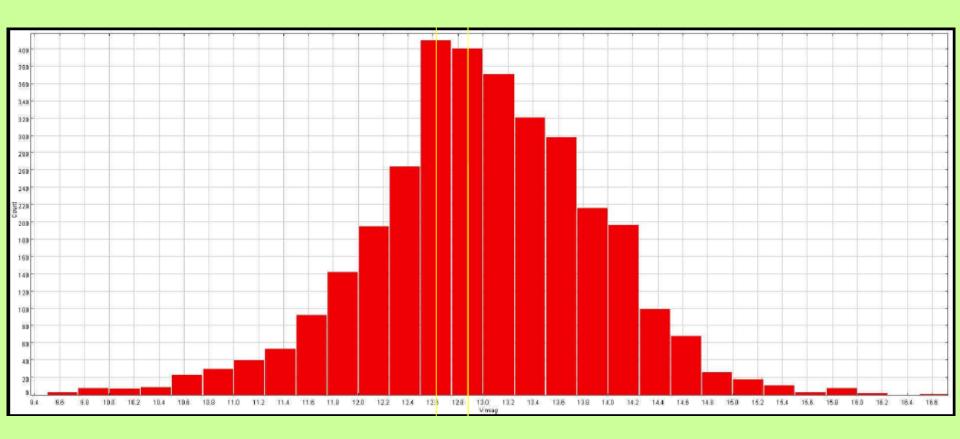
Pixel scale 1.5 arcsec/pixel

Field: 26.3' X 26.3'

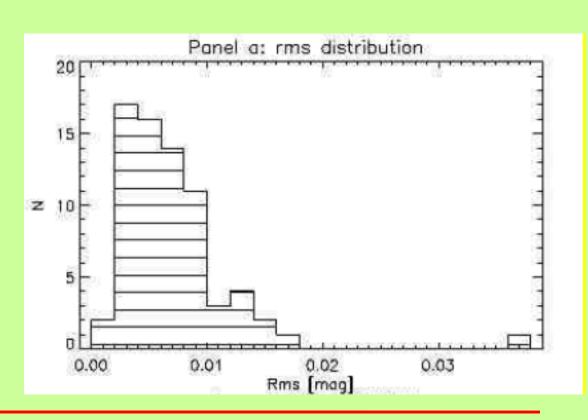
Survey Operations

- RTS2 is the choice for the operations control software architecture, including scheduler, pre-processing and database
- Well-tested <u>TEEPEE</u> pipeline on site. Independent reduction with <u>Robin</u> (Lanteri 1999). Real-time differential photometry pipeline <u>TSE</u> under development

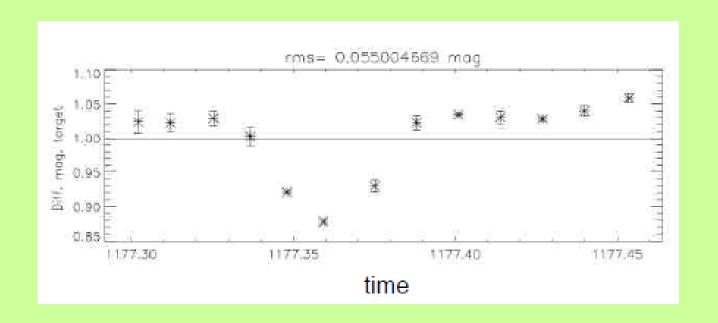
See J-M Christille's poster!

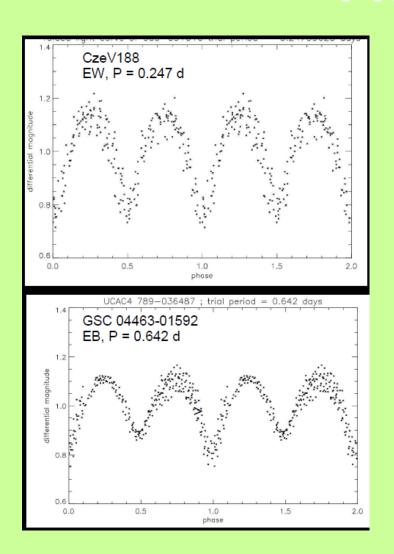

APACHE Input Catalogue

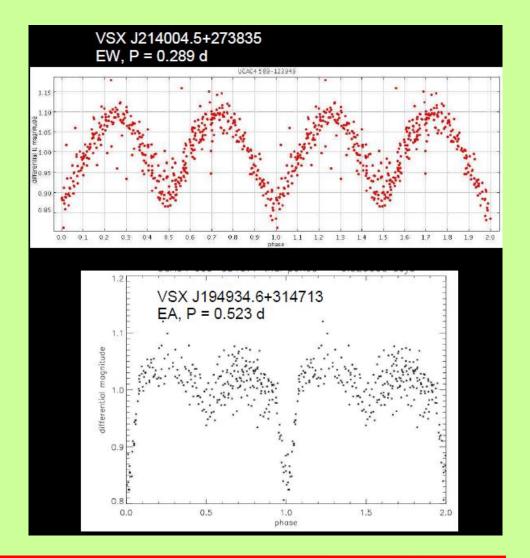
- ~3000 Northern MO-M5 dwarfs from Lepine & Gaidos (2011)
- Good visibility, no bright stars in the FoV, not too sparse fields
- Cross-checks with some 20 catalogues to weed out binaries, active stars, fast rotators
- Support reconnaissance spectroscopy ongoing (Asiago Red Dwarf Survey)
- Number of Gaia transits helps to set priorities
- Highest priority targets are observed in conjunction with HARPS-N as part of the GAPS Large Program (PI A. Sozzetti)


Targets are typically bright (mean V~14), potentially good for follow-up

First Results


- Survey ongoing since 4 months
- To-date, ~100 fields monitored
- Typically, a dozen fields per telescope each night
- We achieve routinely5-6 mmag precision




Well, simply our first eclipsing M dwarf binary...

The Usual Bunch of Field Variables

