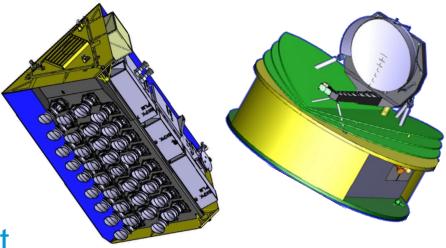
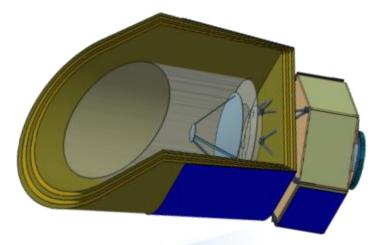
RoPACS Conference, MPE, 12-16 Nov 2012

Mission Preparation at Astrium

an ExoPlanet Flavour


Matthew Stuttard matthew.stuttard@astrium.eads.net UK Lead, Earth Observation and Science, Future Programmes



All the space you need

Contents

- Astrium & RoPACS
- Science Missions
- Technology Development
- Astrium & EPRAT
- EChO
- Euclid

Astrium & RoPACS

RoPACS

- Astrium is the RoPACS industrial partner
- Co-supervision and hosting of James Frith during his PhD with the UoH
 - James helped with EChO science proposal during his visit
- Hosted the RoPACS team for a training day
- Assessment of undergraduate projects relating to ExoPlanet missions
- Excellent relationship built up between Astrium and RoPACS partners!

RoPACS Conference, MPE, 16 Nov 2012

Science Heritage – Prime Contracts

Planetary Science Solar Science ExoMars Rover Cassini-Huygens Fundamental Physics 2018 1997 Astronomy GAIA Mars Express 2003 Lisa Pathfinder Hipparcos 1989 Rosetta XMM-Newton 2004 1999 Exosat 1983 BepiColombo Herschel Solar Telescope Orbiter Cluster Giotto 2009 1985 2000 Venus Express 2005 135 years in-orbit SOHC with 18 missions 1995 In orbit STRIUM All the space you need **Under development**

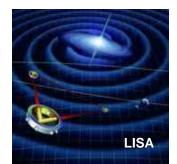
Science platforms: recurring vs bespoke

Interplanetary

Many space science missions require development of bespoke platforms

e.g. GAIA, XMM

It is faster and lower cost to adapt existing platforms if possible


e.g. Mars Express -> Venus Express

High Temperature

Fundamental Physics

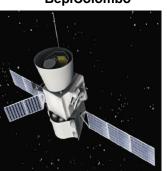
Technology for Space Science

Herschel

Cryotechnology

NIRSpec for JWST

Video chain electronics and focal planes



Silicon Carbide for structure and mirrors

GAIA

Advanced platform avionics and test bench BepiColombo

High temperature missions

Gaia Demonstrator

High resolution optical spectrometry

Building complex instruments

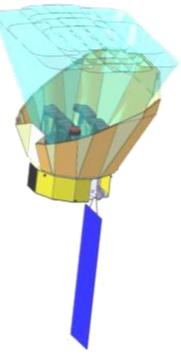
Robotics & locomotion

Sample handling & manipulation

in-depth understanding of science needs of a mission is required to develop the supporting technologies successfully

Technology Development

- All science missions require technology development
- Technology development is one of the largest risks that a space agency must take into account and manage if a mission is to be successful
 - Expensive
 - Time-consuming
 - Often unpredictable
 - Mistakes/negative outcomes can lead to mission slip
 - = ++TIME
 - = ++MONEY
 - Technology Readiness Levels are used to help us monitor the maturity of technology during the design and build process


The International X-ray Observatory

Technology Readiness Levels (TRLs)

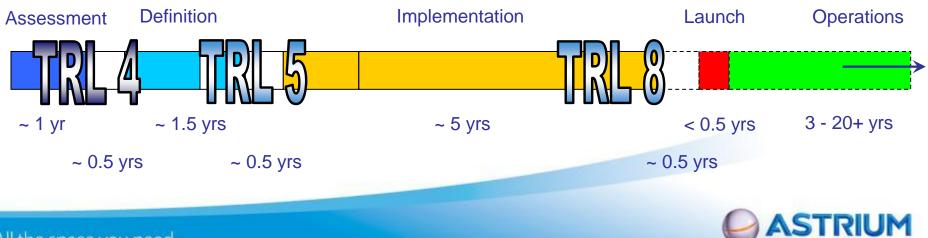
- ESA and NASA use Technology Readiness Levels (TRLs) to measure how mature a technology is
 - Helps determine the risk of including certain technologies on a mission
 - Space Agencies consider TRL when evaluating mission proposals -> so do not ignore this!
 - TRLs go from very immature technology (level 1) to well established, off-the-shelf, space-flown technology (level 9)
 - Level 1-4: Creative, innovative technologies before or during mission assessment phase
 - Level 5-9: Mission definition and implementation phase

TRL	ESA Definition
1	Basic principles observed and reported
2	Technology concept or application formulated
3	Analytical and experimental critical function proof-of- concept
4	Component or breadboard validation in lab environment
5	Component or breadboard validation in relevant environment
6	System prototype/model demo'd in relevant environment (ground or space)
7	System demonstration in a space environment
8	Actual system completed and flight qualified through test and demo (ground or space)
9	Actual system 'flight proven' through successful mission operations

Astrium's TRL Assessment Tool - Minos

and show the second	Astrium Tec	hnology Readiness Level		TRL Level	
TRL Assessment Title: de Project/Product Code: e Technology Area: Mission & Trajectory Analysis Technology Expert: Stephen Kemble Reference No: e141112114216		TRL Assessment Subtitle: Component/System Level: Component Status: In progress Author: Craig Brown		1	
Comme	nts relevant to the TRL:	R R	teadiness Level Navigator	Colour Key 75% S0% R	

ESA/Astrium	Туре	Category	Question	Level of completion %	Evidence Comment	Reference link
ESA [1.1]	Hardware	Describe Tech	What is the newly discovered scientific fact or principle that suggests some potentially useful new capabilities?	© 0 © 25 © 50 © 75 ♥ 100	-	0
ESA [1.1]	Hardware	Describe Tech	What are the suggested new capabilities?	○ 0 ○ 25 ○ 50 ○ 75 ♥ 100	Ĵ	0
E5A [1.2]	Hardware	Mission Requirements	How can the new capabilities be technically implemented?	◎ 0 ◎ 25 ◎ 50 ◎ 75 ● 100	*	٥
ESA [1.3]	Hardware	Experimental Evidence	Have conceptual studies confirmed the newly discovered scientific fact or principle?	0 0 0 25 0 50 0 75 🛡 100	- -	0
ESA [1.4]	Hardware	Future Viability	For the scientific phenomena involved, is further scientific research possible in the foreseeable future?	© 0 © 25 © 50 © 75 ¥ 100	×	0
ESA [1.4]	Hardware	Future Viability	Does it appear likely that technology R&D will be viable?	○ 0 ○ 25 ○ 50 ○ 75 ♥ 100	*	0
Astrium [1.1]	Software	Describe Tech	Is there a basic concept which could be realized in software (e.g. basic principles for an algorithm)?	◎ 0 ◎ 25 ◎ 50 ◎ 75 ♥ 100	*	0


ESA Mission Timeline – M/L Class

- Pre-phase A: Assessment Phase
 - Lasts ~ 12 months
- Phase A + Phase B1: Definition Phase
 - Lasts 12 months + 6 Months
 - ~1 month gap between end of Phase A and start of Phase B1
 - B1 is where Industry prepares the spacecraft specification and Invitations to Tender for building parts of the spacecraft
- Phase B2 + Phase C + Phase D: Implementation
 - Lasts 1 year + 4 years (+)
- Phase E: Launch
- Phase F: Operations
- TOTAL: <u>~8.5 10 (+)</u> years from Mission proposal to launch

ESA's TRL Requirements

- Medium-class missions should require little technology development in order to qualify.
- Large-class missions require significant technology development.
- All technologies baselined on a mission should reach, as a minimum, TRL
 = 4 by end of the assessment phase and TRL = 5 by end of phase B1
 - i.e. Once a mission is selected for assessment, ~1 year spent in Pre-Phase A (Assessment) so must reach TRL 4 (lab breadboard) in ~1 years
 - Phase A/B1 lasts ~ 1.5 years so just a year and a half to test the breadboard in a relevant environment (TRL 5)

Qualification Testing at TRL 6 and above

Astrium & EPRAT

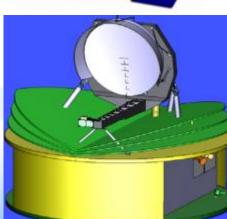
EPRAT: ExoPlanet Roadmap Advisory Team

- Astrium took part in the London EPRAT workshop
 - EPRAT produced a document for ESA making recommendations on how to implement the vision for future exoplanet missions
- Astrium made significant contribution to the output of the workshop
 - stressed the need for early technology development programme for exo-planet missions
 - ensured emphasis on missions capable of meeting M-class requirements for schedule and cost

The EPRAT roadmap led directly to the EChO mission proposal

EChO Proposal for M3

- Astrium assisted the EChO team in preparing it's proposal to ESA for the M3 call
- PhD student from UoH (James Frith) worked with us on this during his secondment for RoPACS
- Again, ensured an emphasis on a technically achievable mission within the scope of M3

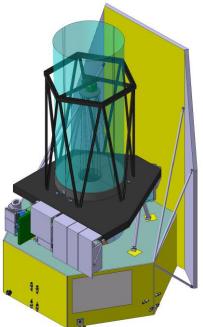

Thermal design trade-off. It
was recognised early on
that thermal stability and
sky area were two
important design drivers

 Side Sun Shield Type
 Parasol
 Side Sun Shield
 V-groove Cone

 Image: A strain of the stra

Science and Phase 0 Proposal Design

> Phase A Design


All the space you need

Studying dark energy & dark matter

- Mapping dark matter and dark energy by imaging gravitational of galaxies
- Red-shift spectroscopy of 1 billion galaxies to measure baryo oscillations
- 100% sky coverage in 6 years
- ExoPlanet legacy survey using microlensing
- Selected for implementation as M2 -> Phase B2/C/D/E1
 - Separate prime contracts for
 - Payload module
 - Spacecraft
 - 2020 launch, 6.25 years in operation

Astrium UK involvement so far:

- Hybrid attitude and orbit control analysis
- Propulsion system and mission analysis
- Payload data handling analysis

Take home message: keep in contact !

Matthew Stuttard matthew.stuttard@astrium.eads.net UK Lead, Earth Observation and Science, Future Programmes

All the space you need