Planet Flow, Not Weak Tidal Evolution, Produces Excess of Short-Period Planets

Stuart F. Taylor Job Seeking 2012 November 12-16 Garching, Germany

> Simulation courtesy of Instituto de Astrofisica de Canarias (IAC

Planet occurrence of giant and medium planets show an inner fall off that has a power index close to that produced by tidal migration for eccentricity of zero.

("Planets" includes "planet candidates", throughout)

Above: Distribution of Kepler candidates with fit by Howard et al. (2011; H12). The slope gives the power law index (PLI).

Largest planets (Jupiters: 8-32 R_{earth}): Inner PLI matches expected distribution for planets undergoing tidal migration, 13/3.

Medium planets (Neptunes: 4-8 R_{earth}): Inner PLI matches expected distribution for planets in range, 13/3. However, the turnover point is further out.

Small(er) planets (Super earths: 2-4 R_{earth}): Inner PLI lower than 13/3. Fall off is likely too far out, so distribution may be primordial.

The values: Tidal migration

Tidal migration rate from Jackson et al. (2009) gives a *P* dependence on *t* to the power of of *P*^{-13/3}, after converting to period $P \propto a^{3/2}$

$$\frac{1}{a}\frac{\mathrm{d}a}{\mathrm{d}t} = -\left(\frac{63}{2}(GM_*^3)^{1/2}\frac{R_p^5}{Q'_pM_p}e^2 + \frac{9}{2}(G/M_*)^{1/2}\frac{R_*^5M_p}{Q'_*}\left(1 + \frac{57}{4}e^2\right)\right)a^{-13/2}$$

Plotting the planet distribution d log $f(P)/d \log P$ gives a power law index of 13/3 due to its dependence on dt/da.

Power index of 13/3: Tidal migration due to tides on the star ("stellar TM") for circular orbits.

Lower power index would result for eccentricity increasing as a function of semi-major axis.

The values: Kepler planet distribution

H12 find values of a little over 4 for the PLI (the slope of the log-log distribution) of the closest Kepler candidates, where they fit to

$$\frac{\mathrm{d}f(P)}{\mathrm{l}\log P} = k_P P^\beta \left(1 - e^{-(P/P_0)^\gamma}\right)$$

and obtain these best fits:

$egin{array}{c} R_{\mathbf{p}} \ (R_{\oplus}) \end{array}$	k_P	β	P_0 (days)	γ
2–4 R_{\oplus}	0.064 ± 0.040	0.27 ± 0.27	7.0 ± 1.9	2.6 ± 0.3
4–8 R_\oplus	0.0020 ± 0.0012	0.79 ± 0.50	2.2 ± 1.0	4.0 ± 1.2
8–32 R_{\oplus}	0.0025 ± 0.0015	0.37 ± 0.35	1.7 ± 0.7	4.1 ± 2.5
2–32 R_{\oplus}	0.035 ± 0.023	0.52 ± 0.25	4.8 ± 1.6	2.4 ± 0.3

As $P \rightarrow 0$, this equation goes towards *P* having a power law of $\beta + \gamma$: d log $f(P)/d \log P \rightarrow k_P P^{\beta + \gamma}$

The power law values $\beta_{+\gamma}$ for the three planet radii ranges (in R_{earth}) are: 8-32 R_{earth} $\beta_{+\gamma} = 4.5 \pm 2.5$ 4-8 R_{earth} $\beta_{+\gamma} = 4.8 \pm 1.3$ 2-4 R_{earth} $\beta_{+\gamma} = 2.9 \pm 0.4$

Pileup can be produced by flow

Taking an initial distribution without a pileup (bottom curve) backwards in time gives a pileup. Modeling backwards for three tidal dissipation strengths gives limit on Q'_{star}.

Top (crosses) shows Q'_{star} =10^{6.5} would be too strong. Middle two curves (triangles and diamonds) show that Q'_{star} =10^{7.0} and Q'_{star} =10^{7.5} would be reasonable.

Future infall: Modeling Fit Distribution

Rate of calculated future infall for giant, medium, and (relatively) small planets. Rate given for Q'_{star} values of $10^{6.5}$ (top line, dotted) to $10^{8.5}$ in increments of $10^{0.5}$.

Planet infall should remain constant, other than the stars in this population will age, so reject for Q'_{star} values that make "now" different from future.

- Not consistent with same tidal dissipation strength
- The difference could be made up by an increasing flow new giant planets

Consistent with results from fit, but noisier.

Rate of infall

Rate as function of tidal dissipation strength Q'_{star}., shown for giant, medium, small planets

 Does not require too many planets: order of 1/1000 stars or less per gigayear

Correlation of higher Fe/H with higher eccentricity

- Few hot Jupiters in multiplanet systems, more hot Neptunes in multiplanet systems (Fabrycky et al. 2012; Latham et al. 2012)
- Others rule out pollution looking at other element ratios of short period planets

Future work:

- Watch for period decreases However, for Q'_{star} of 10^{7.0}, the period of WASP-18b will decrease by only 1.3 milliseconds per year.
- Compare the numbers of planets required for infall with eccentric planets and the rates of inward scattering.
- Migration of non-zero eccentricity, including higher order terms.
- Model whether moderate eccentricity could create pileup, and extreme eccentricity could send planets right through pileup.
- Better statistics needed: Follow whether these results hold.
- Fit pile up of giant planets
- Model pollution in stars, first to estimate time of convection to mix away from stellar surface.

Conclusions

- Excess of shortest period giant planets would require a different tidal dissipation strength than medium planets if no new planet supply.
- Flow of planets could also explain pile up of giant planets:
 - Possible that more giant planets migrate in
 - Possible that smaller planets migrate more quickly
- Is migration of one planet correlated with planet/star mergers of other planets?
- Posting on astro-ph appeared today.