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The Bayes’ rule

π(θ|m) =
l(m|θ)π(θ)

P (m)
, P (m) > 0 (1)

• π(θ|m) is the posterior density of the parameter given the measurements.

• π(θ) is the prior density, the information on θ before the measurement m
was made.

• l(m|θ) is the likelihood function of the measurement – the statistical
model.

• P (m) is constant, usually called the marginal integral, that makes sure
that the posterior is a proper probability density.

P (m) =

∫

θ∈Θ

l(m|θ)π(θ)dθ. (2)
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The Bayes’ rule

The Bayes’ rule works the same way regardless of the number of measure-
ments (or sets of measurements) available. For independent measurements
mi, i = 1, ..., N ,

π(θ|m1, ..., mN) =
l(m1, ..., mN |θ)π(θ)

P (m1, ..., mN)
=

π(θ)
∏N

i=1 li(mi|θ)

P (m1, ..., mN)
(3)

The best part about the above equation is that:

• The likelihood model(s) can be anything that can be expressed mathe-
matically.

• The measurements can be anything (from different sources: RV, transit,
astrometry, etc.).

• No assumptions are required about the nature of the probability densities
of model parameters θ.

• Also, if N is large (etc.), the prior π(θ) can also be pretty much anything.
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Priors

Priors are the only subjective part of Bayesian analyses – the rest consists of
mindless repetitive tasks (i.e. computing).

• Prior probability densities (prior models): something has to be assumed
always, a flat prior is still a prior (one that all frequentists’ using likeli-
hoods assume).

• Fixing parameters (e.g. fixing e = 0) corresponds to a delta-function
prior.

• Flat priors on different parameterisations, e.g. using parameters (e, ω)
vs. (e sinω, e cosω), result in different results.

• Prior probabilities for models do not have to be equal.

• The collection of candidate models is also selected a priori – comparison
of these models might be indistinguishable from comparison of different
prior models.
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Priors
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Bayes’ rule and dynamical information

In case of detections of exoplanet systems, there is a very useful additional
source of information – the Newtonian (or post-Newtonian if necessary) me-
chanics.

Because we cannot expect to detect an unstable planetary system, we can
say that the prior probability of detecting something unstable is zero (at least
negligible). Hence:

π(θ|m,S) =
l(m,S|θ)π(θ)

P (m,S)
=

l(m|S, θ)l(S|θ)π(θ)

P (m,S)
(4)

Because Newton’s laws do not depend on what we measured but what we
can measure depends on them. We call S the “dynamical information”.

But what is the likelihood function of dynamical information, l(S|θ)?

Dynamical information (Tuomi et al. 2012, in preparation) M. Tuomi
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Bayes’ rule and dynamical information

The approximated Lagrange stability criterion for two subsequent planets
(Barnes & Greenberg, 2006) is defined as

α−3

(

µ1 −
µ2

δ2

)

(

µ1γ1 + µ2γ2δ
)2

> 1 + µ1µ2

(

3

α

)4/3

, (5)

where µi = miM−1, α = µ1+µ2, γi =
√

1 − e2
i , δ =

√

a2/a1, M = m⋆+m1+m2,
ei is the eccentricity, ai is the semimajor axis, mi is the planetary mass, and
m⋆ is stellar mass.

We simply set l(S|θ) = c if the criterion is satisfied and l(S|θ) = 0 otherwise
(we call the set of stable orbits in the parameter space B ⊂ Θ).

Alternatively, we could use a simpler form that only prevents orbital crossings
of the planets. Note that the stellar mass is one of the parameters.

The above does not take e.g. resonances into account, and is only a rough
approximation. Can we do better?

Dynamical information (Tuomi et al. 2012, in preparation) M. Tuomi
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Posterior sampling with dynamics

A posterior sample from a MCMC analysis: ∃θi ∼ π(θ|m), i = 1, ..., K.

Each θi as an initial state of orbital integration: K chains of N vectors with
θj

i , j = 1, ..., N , and θj
i = θi(tj) and tj is some moment between t0 = 0 and the

duration of the integrations tN = T .

Hence, we can approximate the posterior probability of finding θ ∈ Il ⊂ Θ of
dynamical information and data for each n-interval Il as

P (θ ∈ Il|S, d) ≈
1

K

K
∑

i=1

P (θ ∈ Il|S, θi)

≈
1

KN

K
∑

i=1

N
∑

j=1

1l(θ
j
i )1(θ

j
1), (6)

where

1l(θ) =

{

1 if θ ∈ Il

0 otherwise
and 1(θ) =

{

1 if θ ∈ B
0 otherwise

Dynamical information (Tuomi et al. 2012, in preparation) M. Tuomi
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How to detect a signal from RVs?

There are k periodic signals in the radial velocities if

• P (Mk|m) > αP (Mk−1|m) for a selected threshold α > 1.

• If the radial velocity amplitudes of all signals are statistically distinguish-
able from zero, i.e. their BCSs (*) do not overlap with zero for a selected
threshold δ ∈ [0,1].

• All periodicities get well constrained from above and below.

• The planetary system corresponding to the solution (parameters k and
θ) is stable.

(*) Set Dδ =

{

Dδ ⊂ Θ :

∫

θ∈Dδ

π(θ|m) = δ, π(θ|m)|θ∈∂Dδ
= c

}

. (7)

Detection criteria (Tuomi 2012). M. Tuomi
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Modelling radial velocity noise

• Usually RV data is binned (somehow) by calculating the average of few
velocities within an hour or so.

• Binning will always result in loss of information (because the transforma-
tion called “binning” is not a bijective mapping).

• Instead, model the noise as realistically as possible.

• Possibility to have the “binning” procedure as a part of the statistical
model, which enables comparisons of different procedures.

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi



10

Modelling radial velocity noise

An effective analogue of “binning” is e.g. a noise model with moving average
(MA) component. This statistical model can be written as

mi = fk(ti) + ǫi +

p
∑

j=1

φj

[

mi−j − fk(ti−j)
]

, (8)

where measurement mi at epoch ti is modelled using the function fk and some
convenient white noise component ǫi.

The analyses of HARPS radial velocities indicate, that this noise model is
much better than pure white noise – and information is not lost if the MA
coefficients φi are selected conveniently (or even better, free parameters).

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi
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τ Ceti velocities

Example: τ Ceti, whose radial velocity curve is considered “flat” despite ∼
4400 HARPS high-precision velocities, ∼ 800 AAPS radial velocities, and ∼
1000 HIRES precision velocities from the 10m Keck telescope (though, the
star is likely too bright for Keck anyway).

No planets reported from AAPS (left; Wittenmyer et al., 2006) or HARPS
(right; Pepe et al., 2011).

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi



12

τ Ceti velocities

The HARPS velocities before (left) and after (right) removing correlations.

Extremely significant (!) improvement in the statistical model.

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi



13

τ Ceti velocities

The Lomb-Scargle periodograms of “raw” CCF velocities of τ Ceti (left) and
after removing intra-night correlations (right).

The correlation time-scale is 1.19 [0.98, 1.40] h−1 and adding the MA com-
ponents in the model decreases the excess white noise component (the stellar
“jitter”) from 1.60 [1.51, 1.69] to 1.06 [1.02, 1.11] ms−1.

What are the periodogram powers (exceeding 10% FAP) at 14, 35, 300, and
600 days?

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi
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τ Ceti velocities

The Lomb-Scargle periodograms of τ Ceti after removing correlations for
AAPS (left) and HIRES (right) data.

Very “flat” spectra but the results of Baluev (2012, submitted) and Tuomi
& Jenkins (2012, submitted) indicate that models taking into account noise
correlations in a time-scale of ∼ 10 days can adapt to the signals and decrease
their significances in residual periodograms (at least they did for HARPS data
of GJ 581).

RV noise (Tuomi et al. 2012, in preparation) M. Tuomi
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The peculiar case of HD 40307

HD 40307 is known to be a system of three super-Earths with orbital periods
of 4.31, 9.62, and 20.44 days and minimum masses of 4.3, 7.0, and 10.5 M⊕,
respectively (Mayor et al. 2009).

But this is a result received by binning the HARPS radial velocities...

Tuomi & Anglada-Escudé et al. 2012, A&A accepted M. Tuomi
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The peculiar case of HD 40307

The residual periodograms of three-Keplerian model.

The L-S periodograms of HD 40307 velocities for nightly binned data (left)
and all data after removing correlations (right).

The latter is actually obtained by also throwing some data away, i.e. the
velocities from the HARPS bluest echelle orders. The 51-day candidate is
the dominant power but the activity-induced 300-day periodicity is also visible
together with aliases.

Tuomi & Anglada-Escudé et al. 2012, A&A accepted M. Tuomi
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The peculiar case of HD 40307

Three new candidate planets satisfying the detection criteria.

Tuomi & Anglada-Escudé et al. 2012, A&A accepted M. Tuomi
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The peculiar case of HD 40307

Comparison of posterior (histogram and solid curve) and prior (dotted curve).

Tuomi & Anglada-Escudé et al. 2012, A&A accepted M. Tuomi
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The peculiar case of HD 40307

Additional constraints for eccentricities from dynamical analyses.

Tuomi & Anglada-Escudé et al. 2012, A&A accepted M. Tuomi
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False positives

How can one distinguish between false positives and “genuine“ signals?

Reguirements for a ”genuine“ signal:

• Signal present in at least two independent data sets.

• Signal significance increases as a function of amount of data (at least,
it does not fall below the detection threshold).

• That the independent data sets are consistent w.r.t. the statistical model
(and especially signals within): the Bayesian model inadequacy criterion

of Tuomi et al. (2011).

• That the noise models of each data set are as ”correct“ as possible.

Tuomi & Jenkins 2012, submitted M. Tuomi
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False positives

Is this a false positive in the HARPS velocities of GJ 581:

Satisfies all the detection criteria for the Forveille et al. (2011) HARPS data.
But not for the combined HARPS and HIRES data set.

What is going on? Poor noise modelling of HARPS, HIRES, or both? A
source of noise mimicking periodic behaviour in the HARPS data? Or perhaps
biases in the HIRES data hiding the signal?

Tuomi & Jenkins 2012, submitted M. Tuomi
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False positives

Is this a false positive in the combined HARPS and HIRES velocities of GJ
581?

Satisfies the detection criteria for the combined data but only if the noise
model consists of pure white noise. Taking into account noise correlations
(that does improve the statistical model) makes it impossible to constrain
this signal.

A spurious signal caused by insufficient noise modelling? Or a genuine signal
that falls below detection thresholds because the noise model is still not
”correct“?

Tuomi & Jenkins 2012, submitted M. Tuomi
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