Spectral energy distributions of fragmenting protostellar disks

Olga Zakhozhay

Main Astronomical Observatory National Academy of Sciences of Ukraine

zkholga@mail.ru

in collaboration with Eduard Vorobyov

Institute for Astrophysics, University Vienna

Motivation

Main stages of protostellar disk evolution

Motivation

Global models that self-consistently follow Cloud => Disk transition

Disk formation and evolution, and planet formation, are integral parts of the star formation process

- § 1+1D models (Hueso & Guillot 2005; Visser et al. 2009; Rice at al. 2010),
- **§** 2D models (Yorke & Bodenheimer 1999; Boss & Hartmann 2001;

Vorobyov & Basu 2006, 2010, Zhu et al. 2009),

§ 3D models (Krumholz et al. 2007; Kratter et al. 2010; Machida et al. 2009, 2010).

Motivation

Numerical scheme of Vorobyov & Basu model

Accretion rates onto the star

Hydro code

Photospheric & accretion luminosities

b gravitational collapse

i gravita

- Collapse of pre-stellar cloud,
- Formation of the central star (approximated by a point object inside a central sink cell),
- Disk formation and long-term evolution (up to 1 Myr),
- Finite-difference Eulerian code on polar coordinates,
- Third-order accurate advection (PPA),
- Log-spaced grid in radial direction (Vorobyov & Basu 2006, 2010).

Stellar evolution code

- Stellar mass, radius, temperature, etc.,
- Stellar chemical abundances,

Baraffe et al. 1998, 2002, 2003; Chabrier et al. 2000; Chabrier & Baraffe 2000.

The aims:

- Comparative study of spectral energy distributions (SEDs) of fragmenting versus non-fragmenting protostellar disks;
- Search for observational signatures that can unambiguously point to the presence of massive fragments in protostellar disks, which can be precursors of giant planets and brown dwarfs.

Research tasks:

- To develop a method for SED calculations of young stellar objects (YSOs) using the physical parameters of YSOs from numerical hydrodynamics models (Vorobyov & Basu 2006, 2010);
- To perform numerical simulations for a number of protostellar disk realizations, paying specific attention to systems that show disk fragmentation;
- To determine if massive fragments can leave unambiguous signatures in the SEDs and if these signatures can be seen at different viewing angles;
- To establish the possibility to detect massive fragments in protoplanetary disks with biggest modern telescopes.

Calculation algorithm

Integral SED from systems

 L_{acr} – accretion luminosity, L_{ph} – photospheric luminosity.

Calculation algorithm

Flux from every specific grid cell of the disk

$$F_d = \frac{S \cos W}{d^2} B_v(T_{eff}) (1 - e^{-\Sigma k_n \sec g}),$$

S – physical area of a grid cell (*i*,*j*),

 Ω – normal angle between a grid cell (*i*,*j*) of the disk surface and the line of sight,

 γ – inclination angle of the disk with respect to the observer,

d – distance to YSO, set to 100 pc,

 Σ – surface density of each grid cell (*i*,*j*),

 K_v – opacity (Ossenkopf & Henning 1994, case for the thin ice mantles after 10⁵ yr of coagulation (OH5 dust)).

Effective temperature

 $T_{eff} = \max \{T_{irr}, T_{surf}\},$ T_{irr} - stellar/background irradiation of the disk surface, T_{surf} - temperature of active viscous/shock heating of the disk interiors.

Calculation algorithm

Flux from the sink cell

$$F_{sc} = \frac{4p \cdot \cos g \cdot hn^3}{d^2 c^2} \int_{R_{in}}^{R_{out}} \frac{1 - e^{-\Sigma(r)k_n \sec g}}{e^{\frac{hn}{kT(r)}} - 1} r dr,$$

 R_{in} – inner edge of the disk, R_{out} – the boundary between disk and sink cell, T(r) – effective temperature distribution, $\Sigma(r)$ – surface density distribution:

$$\Sigma(r) = \Sigma_0 \left(\frac{r}{r_0}\right)^{-p},$$

p = 1.0-1.5, as typical value for irradiated and viscous disks (Beckwith et al. 1990).

Spectral energy distribution

For systems with initial core mass $1.23M_{\rm e}$, located face on

(0.29 Myr and 0.32 Myr)

Surface densities and SEDs

For systems with initial core mass $1.23M_e$, located face on

(0.2-1.4 Myr)

Surface densities and SEDs

For systems with initial core mass $1M_e$, located face on

Summary

- a method for SEDs construction for fragmenting protostellar disks is developed;
- calculations for systems located face on have been performed;
- preliminary results show that SED shape is sensitive to the presence of hot fragments in protostellar disk.

Future work

- Improvement of existing algorithm for SEDs simulations by taking into account non-zero inclination angles of systems;
- constructing of ALMA synthetic images for prototype models that would show unambiguous signatures of disk fragmentation in the SEDs.