The physical state of radio-mode, lowluminosity AGN

Andrea Merloni

Max-Planck Institut für Extraterrestrische Physik

5GHz, VLA image of Cyg A by R. Perley

PhiGN start-up workshop, 14/12/2007

AGN downsizing: clues from X-rays

Ueda et al. 2003; Fiore et al. 2003; Barger et al. 2005; Hasinger et al. 2005

AGN downsizing

AGN downsizing: changing accretion modes

- SMBH must accrete at lower (average) rates at later times
- Accretion theory (and observations of X-ray Binaries) indicate that
 - The energy output of an accreting BH depends crucially on its accretion rate
 - Low-accretion rate systems tend to be "jet dominated"
- Quasar mode vs. Radio mode (explosive vs. gentle)

Radio cores scaling with M and mdot

A "fundamental plane" of active BHs [Merloni et al. 2003; Falcke et al. 2004]

Very little scatter if only flatspectrum lowhard state sources are considered (Körding et al. 2006)

AGN feedback: evidence on cluster scale

- 1 Msec observation of the core of the Perseus Cluster with the Chandra Xray Observatory
- True color image made from 0.3-1.2 (red), 1.2-2 (green), 2-7 (blue) keV photons
- First direct evidence of ripples, sound waves and shocks in the hot, X-ray emitting intracluster gas
- Radio maps reveal close spatial coincidence between X-ray morphology and AGN-driven radio jets

Low Power AGN are jet dominated!

Accretion diagram for LMXB & AGN

<u>Core Radio/L_{Kin} relation: effects of beaming</u>

Slope=0.81

Observed L_R (beaming) Derived from FP relation

Monte Carlo simulation: Statistical estimates of mean Lorentz Factor Γ ~8

Merloni and Heinz (2007)

Flat Spectrum radio LF: de-beaming

SMBH population synthesis model: accretion and jets

- Derive the intrinsic, un-beamed core radio luminosity function of AGN from the observed flat spectrum radio sources LF (Dunlop & Peacock 1990; De Zotti et al. 2005).
 - Assumes radio jets have all the same Gamma factor (or a distribution peaked around a single value)
 - Use the L_R/L_{Kin} relation to estimate kinetic power (CAVEAT: extension to high power sources uncalibrated)
 - Use the fundamental plane of active black holes to "couple" the evolving X-ray (accretion) and radio (kinetic power output) AGNLF (Merloni 2004)

SMBH growth

SMBH growth in efficient mode

Accretion rate density by BH mass

Kinetic Energy output and SMBH growth

SN II K.E. output rate from SFR (Hopkins & Beacom 2006)

In the local universe, kinetic feedback is dominated by low luminosity objects ("radio mode" AGN)

Koerding, Jester and Fender 2007, Merloni, in prep.

Kinetic Energy output by SMBH mass

Merloni (2008)

Kinetic efficiency of growing black holes

Merloni (2008)

Conclusions

- Most of SMBH growth occurred in radiatively efficient episodes of accretion.
- The anti-hierarchical trend is clearly seen in the low-z evolution of SMBH mass function. Reversal at higher z?
- Constraints on the physics of accretion/jet production are crucial for our understanding of AGN feedback
- Feedback from "Low-luminosity AGN" are most likely dominated by kinetic energy
- The efficiency with which growing black holes convert mass into mechanical energy is 0.1-3%, depending on mass and redshift

Open questions

- Contribution of heavily absorbed sources (Compton Thick): What redshift distribution? What typical luminosity?
 - Understand relationship between fuelling and absorption
- High redshift (z>5) evolution unknown (XEUS, SKA)
 - Need firm theoretical prediction of early mass function and seed bh
- Relative contribution to kinetic feedback of (high Mdot) radio loud QSOs and (low Mdot) `radio mode' AGN
- Physics of radio mode feedback: increase statistics of radio cavities and relics
- What trigger? Mergers, secular evolution, both, others?

The M87 jet Hubble Heritage Project http://heritage.stsci.edu/2000/20/index.html