The Bayesian Analysis Toolkit

a C++ tool for Bayesian inference

Kevin Kröninger – University of Göttingen / University of Siegen

The BAT (wo)men: Frederik Beaujean, Allen Caldwell, Daniel Greenwald, Daniel Kollar, Kevin Kröninger, Shabnaz Pashapour, Arnulf Quadt
Questions in data analysis:

- What does the data tell us about our model?
 Parameter estimation

- Which model is favored by the data?
 Model comparison

- Is the model compatible with the data?
 Goodness-of-fit test

Need methods and tools to extract information
Outline:

• Requirements / Implementation / Tools
• Markov Chain Monte Carlo
• MCMC implementation in BAT
• A working example
• Some propaganda
• Summary
Requirements:

- Allow to phrase arbitrary models and data sets
- Interface to (HEP) software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:

- C++ library based on ROOT*.
- Models are implemented as (base) classes and need to be defined by the user, or
 - A set of pre-defined models can be used.
 - A set of algorithms can be used to perform the actual analysis

*Framework for handling large data sets, graphical representation and analysis tools
Requirements:

- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:

- Minimization can be done via a Minuit interface or via Simulated Annealing.
- Marginalization and uncertainty estimation can be done via Markov Chain Monte Carlo (MCMC).
- Propagation of uncertainties (without Gaussian assumptions) can also be done via MCMC
Requirements:
- Allow to phrase arbitrary models and data sets
- Interface to HEP software
- Estimate parameters (point estimates)
- Find probability densities (interval estimates)
- Propagate uncertainties
- Compare models
- Test validity of model against the data

Solutions:
- Direct comparison of model probabilities (Bayes factors)
- Integration methods from Cuba* library linked
- Perform p-value tests

*A collection of numerical integration methods e.g., VEGAS

The Bayesian Analysis toolkit

Implementation

Define MODEL
- define parameters $\tilde{\lambda}$
- define likelihood $p(D | \tilde{\lambda})$
- define priors $p_0(\tilde{\lambda})$

Read DATA
- from text file, ROOT tree, user-defined (anything)
- interface to user-defined software

USER DEFINED
- create model
- read-in data

COMMON METHODS
- normalize
- find mode / fit
- test the fit
- marginalize wrt. one or two parameters
- compare models
- provide nice output

$$p(\tilde{\lambda} | D) = \frac{p(D | \tilde{\lambda}) p_0(\tilde{\lambda})}{\int p(D | \tilde{\lambda}) p_0(\tilde{\lambda}) d\tilde{\lambda}}$$
Tools:

- **Point estimates:**
 - Minuit
 - Simulated Annealing
 - MCMC
 - simple Monte Carlo

- **Marginalization:**
 - MCMC
 - simple Monte Carlo

- **Integration:**
 - sampled mean
 - importance sampling
 - CUBA (Vega, Suave, Divonne, Cuhre)

- **Sampling:**
 - simple Monte Carlo
 - MCMC

- **Error propagation**
 - MCMC
How does MCMC work?

- Output of Bayesian analyses are posterior probability densities, i.e., functions of an arbitrary number of parameters (dimensions).
- Sampling large dimensional functions is difficult.
- Idea: use random walk heading towards region of larger values (probabilities)
- **Metropolis algorithm**

- Start at some randomly chosen x_i
- Randomly generate y around x_i
- If $f(y) > f(x_i)$ set $x_{i+1} = y$
- If $f(y) < f(x_i)$ set $x_{i+1} = y$ with prob. $p = f(y)/f(x_i)$
- If y is not accepted set $x_{i+1} = x_i$
- Start over
Does it work for difficult functions?

- Test MCMC on a function:

\[f(x) = x^4 \sin(x^2) \]

- Compare MCMC distribution to analytic function

- Several minima/maxima are no problem.

- Different orders of magnitude are no problem.
An example of MCMC:

- **f(x) vs. x**
- **χ² vs. x**
- **Pull distribution**

For more examples, see our test suite on the BAT web page.
How does MCMC help in Bayesian inference?

- Use MCMC to sample the posterior probability, i.e.
 \[f(\lambda) = p(\bar{D} | \lambda) p_0(\lambda) \]

- Marginalization of posterior:
 \[p(\lambda_i | \bar{D}) = \int p(\bar{D} | \lambda) p_0(\lambda) d\lambda_{j \neq i} \]

- Fill a histogram with just one coordinate while sampling

- Error propagation: calculate any function of the parameters while sampling

- Point estimate: find mode while sampling
MCMC in BAT

Metropolis is ~3 lines of code, fairly easy, but ...

Technical details:
- How are the new points generated? (Proposal function)
- How many points can we afford to throw away? (Efficiency)
- How many iterations do we need? (Convergence criterion)
- How correlated are the points? (Auto-correlation/lag)
How are the new points generated?

- **Proposal function**: probability density of the step size used in the random walk
- Should be independent of the underlying distribution, i.e., the same everywhere
- Shape is important (default: Breit-Wigner)
- Width defines efficiency = fraction of accepted points

- Small width = large efficiency
- Large width = small efficiency
- Trade off: efficiency ~25%
How many iterations do we need?

- MCMC distribution should converge to underlying function.
- In practice: need to stop the chain at some point. Need criteria.
- Two strategies:
 - Single chain convergence:
 - Could monitor auto-correlation
 - Very CPU-time intensive
 - Could be done offline
 - Multi-chain convergence:
 - Test convergence of multiple chains wrt each other
 - Use Gelman&Rubin criterion

Gelman & Rubin convergence:
- Calculate average variance of all chains
 \[W = \frac{1}{m(n-1)} \sum_{j=1}^{m} \sum_{i=1}^{n} (x_i - \bar{x}_j)^2 \]
- Estimate variance of target distribution
 \[\hat{V} = \left(1 - \frac{1}{n}\right) W + \frac{1}{m-1} \sum_{j=1}^{m} (\bar{x}_j - \bar{x})^2 \]
- Calculate ratio and compare with stopping criterion (relaxed version):
 \[r = \sqrt{\frac{\hat{V}}{W}} < 1.x \ (x = 0.1 \text{ default}) \]

Gelman & Rubin, StatSci 7, 1992
Convergence a la Gelman & Rubin

Burn-in phase

Parameter 0 value vs. iteration

Parameter 1 vs parameter 0
Auto-correlation and lag

How correlated are the points?

- Simple Monte Carlo sampling and “unbiased” random walk create sets of points without (auto-correlation) while MCMC algorithm can cause auto-correlation, e.g., when rejecting a point (since the old one is taken again)
- Size of the correlation depends on the underlying posterior and the proposal function
- Can thin the MCMC sample by introducing a lag, i.e., take only every n^{th} point to calculate the marginalized distributions
- Cost: need to run a factor of n longer to get the same stat. precision
Auto-correlation and lag

\[f(x) \text{ vs. } x \]

\[\chi^2 \text{ vs. lag} \]
Phrasing the problem:

- Estimate signal strength of Gaussian signal on top of flat background

- Data generated with the following settings:
 - **Gaussian signal:**
 - position $\mu = 2039$ keV
 - width $\sigma = 5$ keV
 - strength $<S> = 100$
 - **Flat background:**
 - strength $ = 3$/keV
 - Number of events per bin fluctuate with Poisson distribution
Statistical modeling:

- **Statistical model:**
 - Gaussian signal on top of flat background
 - 4 fit parameters:
 - Gaussian signal (3)
 - Flat background (1)

- **Prior knowledge:**
 - Background: 300 ± 20 in 100 keV (e.g., from sideband analysis)
 - Signal strength: exponentially decreasing (e.g., theoretical intuition)
 - Signal position: flat (e.g., no idea about the mass of a resonance)
 - Signal width: 5 ± 1 keV (detector resolution)
 - Signal and background efficiency fixed to 1 (in this example)
Statistical modeling:

- **Likelihood:**
 - Binned data
 - Number of expected events per bin:

\[
\lambda_i = \int_{\Delta x_i} \frac{S}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \, dx + \frac{0.01 \cdot B}{\Delta x_i}
\]

- Assume independent Poisson fluctuations in each bin
- Likelihood:

\[
p(D|S, \mu, \sigma, B) = \prod_{i=1}^{N_{\text{bins}}} \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i}
\]
Marginalized distributions:

- Project posterior onto one parameter axis
- Global mode and mode of marginalized distributions do not have to coincide
- Full (correlated) information in Markov Chain
- **Default output:**
 - Mean ± std. deviation
 - Median and central int.
 - Mode and smallest int.
- All 1-D and 2-D distributions are written out during main run

Quote median and central 68% prob. region

\[\text{Signal}^{\text{med}} = 83^{+11}_{-11} \]
An example: 2D distributions

Indicate smallest interval containing 68% probability

Indicate global mode
An example: the fit result

Uncertainty of prediction

Error band
Results of the marginalization
==================================
List of parameters and properties of the marginalized distributions:
(0) Parameter "Background":
 Mean +- sqrt(V): 282.2 +- 13.04
 Median +- central 68% interval: 282.1 + 13.11 - 12.92
 (Marginalized) mode: 281
 5% quantile: 260.8
 10% quantile: 265.5
 16% quantile: 269.2
 84% quantile: 295.7
 90% quantile: 299
 95% quantile: 303.8
 Smallest interval(s) containing 68% and local modes:
 (268, 298) (local mode at 281 with rel. height 1; rel. area 0.7169)

(2) Parameter "Signal":
 Mean +- sqrt(V): 83.59 +- 11.09
 Median +- central 68% interval: 83.28 + 11.35 - 10.73
 (Marginalized) mode: 83
 5% quantile: 65.85
 10% quantile: 69.55
 16% quantile: 72.55
 84% quantile: 95.13
 90% quantile: 97.99
 95% quantile: 102.4
 Smallest interval(s) containing 68% and local modes:
 (72, 96) (local mode at 83 with rel. height 1; rel. area 0.6806)

(4) Parameter "Signal mass":
 Mean +- sqrt(V): 2038 +- 0.8009
 Median +- central 68% interval: 2038 + 0.7945 - 0.7922
 (Marginalized) mode: 2038
 5% quantile: 2037
 10% quantile: 2037
 16% quantile: 2037
 84% quantile: 2039
 90% quantile: 2039
 95% quantile: 2039
 Smallest interval(s) containing 68% and local modes:
 (2037, 2039) (local mode at 2038 with rel. height 1; rel. area 0.6844)

Results of the optimization
============================
Optimization algorithm used: Metropolis MCMC
List of parameters and global mode:
(0) Parameter "Background": 22.68%
(2) Parameter "Signal": 19.76%
(4) Parameter "Signal mass": 23.64%
(5) Parameter "Signal width": 19.82%

Status of the MCMC
==================
Convergence reached: yes
Number of iterations until convergence: 24000
Number of chains: 10
Number of iterations per chain: 1000000
Average efficiencies:
(0) Parameter "Background": 20.03%
(2) Parameter "Signal": 17.35%
(4) Parameter "Signal mass": 24.52%
(5) Parameter "Signal width": 19.56%
An example: the summary

The Bayesian Analysis toolkit

Quantiles (5%, 10%, 16%, 50%, 84%, 90%, 95%)
Mean and RMS
Smallest 68% intervals and local modes
Global mode

Scaled parameter range [a.u.]

Par. max.
Par. min.

Signal
Signal mass
Signal widt.
Background
Efficiency Background
Efficiency_Signal
An example: correlation

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>-0.0036</td>
<td>-0.2</td>
<td>0.00031</td>
<td>-0.0091</td>
<td>-0.13</td>
</tr>
<tr>
<td>1</td>
<td>-0.0036</td>
<td>1</td>
<td>9.8e-05</td>
<td>-0.00056</td>
<td>-0.0001</td>
<td>-4.1e-05</td>
</tr>
<tr>
<td>2</td>
<td>-0.2</td>
<td>9.8e-05</td>
<td>1</td>
<td>-8.5e-05</td>
<td>0.00029</td>
<td>-0.13</td>
</tr>
<tr>
<td>3</td>
<td>0.00031</td>
<td>-0.00056</td>
<td>-8.5e-05</td>
<td>1</td>
<td>0.00035</td>
<td>-0.0001</td>
</tr>
<tr>
<td>4</td>
<td>-0.0091</td>
<td>-0.0001</td>
<td>0.00029</td>
<td>0.00036</td>
<td>1</td>
<td>0.047</td>
</tr>
<tr>
<td>5</td>
<td>-0.13</td>
<td>-4.1e-05</td>
<td>-0.13</td>
<td>-0.0001</td>
<td>0.047</td>
<td>1</td>
</tr>
</tbody>
</table>

The Bayesian Analysis toolkit
An example: knowledge update

The Bayesian Analysis toolkit

Kevin Kröninger – Universität Göttingen / University of Siegen
An example: knowledge update

The Bayesian Analysis toolkit

Kevin Kröninger – Universität Göttingen / University of Siegen
Published use cases
The Bayesian Analysis toolkit

- Quentin Buat, *Search for extra dimensions in the diphoton final state with ATLAS* [arXiv:1201.4748]
- ATLAS collaboration, *Search for excited leptons in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector* [arXiv:1201.3293]
- ATLAS collaboration, *Search for Extra Dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector* [arXiv:1112.2194]
Contact:

- Web page: http://www.mppmu.mpg.de/bat/
- Contact: bat@mppmu.mpg.de
- Paper on BAT:
 A. Caldwell, D. Kollar, K. Kröninger, BAT - The Bayesian Analysis Toolkit

Release 0.9 next week

Latest version: 0.4.3 (development)
Urgency: low
Release date: 21.06.2011
Source code: BAT-0.4.3.tar.gz (770kB)

installation instructions | reference guide | changelog | known issues | performance testing
BAT Tutorials

The tutorials are intended for the latest version of BAT (unless stated otherwise). However, after a new release they may need some adjustment to work. We try to do the necessary adjustments shortly after the release.

<table>
<thead>
<tr>
<th>Title</th>
<th>Category</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring a decay rate</td>
<td>counting experiment</td>
<td>basic</td>
</tr>
<tr>
<td>Estimating trigger efficiencies</td>
<td>fitting</td>
<td>basic</td>
</tr>
<tr>
<td>Charged current cross-section analysis</td>
<td>limit setting</td>
<td>basic</td>
</tr>
<tr>
<td>Signal search in the presence of background</td>
<td>hypothesis testing, template fitting</td>
<td>intermediate</td>
</tr>
<tr>
<td>Combination of cross-sections</td>
<td>combination</td>
<td>intermediate</td>
</tr>
</tbody>
</table>

Tutorials:

- Set of tutorials on the web page for first steps, including solutions
Current projects:

- BAT version v1.0
- ROOT-less version > v1.0
- Parallelization

Warrant:

- If you are interested joining the effort, please get in touch with us
- Also have (Bsc./MSc.) thesis projects to offer
Summary:

- Bayesian inference requires some computational effort (e.g., nuisance parameters)
- Markov Chain Monte Carlo is the key tool to solve these issues
- BAT is a tool to combine Bayesian inference with MCMC
- Toolbox with more algorithms (integration, optimization, etc.)
- C++ library, modular, easy to use
- Informative output with predefined plots, numbers, etc.
- Did not talk about hypothesis testing and goodness-of-fit, p-values, Bayes factors, information criteria
- Upgrade of BAT ongoing, more to come
- Participation and feedback are always welcome
What exactly is being done in BAT?

Step 1: Starting points
- Random within parameter space (default)
- Center of each dimension
- User-defined

Step 2: Burn-in
- Use multiple chains (default: 5)
- Run until convergence is reached and chains are efficient
- Or run until the maximum number of iterations is reached
- Chains are efficient if the efficiency is between 15% and 50%
- Run in sequences to adjust the width of the proposal functions:
 - If efficiency > 50%: increase the width
 - If efficiency < 15%: decrease the width
What exactly is being done in BAT?

- **Step 3: Main run**
 - Use width obtained from efficiency optimization and convergence (fixed)
 - Run for a specified number of iterations
 - Perform analysis-specific calculations (next slide)
 - Store information of every \(n \)th iteration (consider lag)
What is done in each step?

- **Marginalization:**
 - Fill 1-D and 2-D histograms
 - Large number: $N \cdot (N+1)/2$, e.g., for $N=50$ there are 1275 histograms
 - Individual histograms can be switched on/off

- **Optimization:**
 - Search for maximum of posterior
 - Not precise, but helpful as starting point for other algorithms

- **Error propagation:**
 - Calculate arbitrary (user-defined) functions from parameters

- **Misc:**
 - Write points to ROOT tree for offline analysis
 - Perform any user-defined analysis, histogram filling, etc.
An example: error propagation

Posterior probability for the number of expected events with energy $E=2032$ keV

Sum of all possible fit functions weighted with posterior: calculate fit function at energy E for all parameter values

Use as error band