Large Scale Bayesian Inference in Cosmology

Jens Jasche

Garching, 11 September 2012
Introduction

- Cosmography
 - 3D density and velocity fields
 - Power-spectra, bi-spectra
 - Dark Energy, Dark Matter, Gravity
 - Cosmological parameters
Introduction

- Cosmography
 - 3D density and velocity fields
 - Power-spectra, bi-spectra
 - Dark Energy, Dark Matter, Gravity
 - Cosmological parameters

- Large Scale Bayesian inference
 - High dimensional (~ 10^7 parameters)
 - State-of-the-art technology
 - On the verge of numerical feasibility
Introduction

- Why do we need Bayesian inference?
Introduction

- Why do we need Bayesian inference?
 - Inference of signals = ill-posed problem
Introduction

Why do we need Bayesian inference?
- Inference of signals = ill-posed problem
- Noise
Introduction

- Why do we need Bayesian inference?
 - Inference of signals = ill-posed problem
 - Noise
 - Incomplete observations
Why do we need Bayesian inference?

- Inference of signals = ill-posed problem
 - Noise
 - Incomplete observations
 - Systematics
Why do we need Bayesian inference?
- Inference of signals = ill-posed problem
 - Noise
 - Incomplete observations
 - Systematics

No unique recovery possible!!!
Introduction

“What are the possible signals compatible with observations?”
“What are the possible signals compatible with observations?”

- Object of interest: Signal posterior distribution

\[\mathcal{P}(s|d) = \mathcal{P}(s) \frac{\mathcal{P}(d|s)}{\mathcal{P}(d)} \]
Introduction

“What are the possible signals compatible with observations?”

- Object of interest: Signal posterior distribution

\[\mathcal{P}(s|d) = \mathcal{P}(s) \frac{\mathcal{P}(d|s)}{\mathcal{P}(d)} \]

- We can do science!
 - Model comparison
 - Parameter studies
 - Report statistical summaries
 - Non-linear, Non-Gaussian error propagation
Problems:

- High dimensional (~10^7 parameter)
Markov Chain Monte Carlo

Problems:

- High dimensional (~10^7 parameter)
- A large number of correlated parameters
 - No reduction of problem size possible
Markov Chain Monte Carlo

- Problems:
 - High dimensional (~10^7 parameter)
 - A large number of correlated parameters
 - No reduction of problem size possible
 - Complex posterior distributions

- Numerical approximation
Markov Chain Monte Carlo

- Problems:
 - High dimensional (~10^7 parameter)
 - A large number of correlated parameters
 - **No reduction of problem size possible**
 - Complex posterior distributions

- Numerical approximation
 - Dim > 4 MCMC

\[
\mathcal{P}(s|d) \rightarrow \mathcal{P}_N(s|d) = \frac{1}{N} \sum_{i=1}^{N} \delta^D(s - s_i)
\]
Problems:
- High dimensional (~10^7 parameter)
- A large number of correlated parameters
 - No reduction of problem size possible
- Complex posterior distributions

Numerical approximation
- Dim > 4 \implies \text{MCMC}

\[\mathcal{P}(s|d) \rightarrow \mathcal{P}_N(s|d) = \frac{1}{N} \sum_{i=1}^{N} \delta^D(s - s_i) \]

- Metropolis-Hastings
Hamiltonian sampling

- Parameter space exploration via Hamiltonian sampling
Parameter space exploration via Hamiltonian sampling

- interpret log-posterior as potential

\[\psi(x) = -\ln(P(x)) \]
Parameter space exploration via Hamiltonian sampling

• interpret log-posterior as potential

\[\psi(x) = -\ln(P(x)) \]

• introduce Gaussian auxiliary “momentum” variable

\[H = \sum_i \sum_j \frac{1}{2} p_i M_{ij}^{-1} p_j + \psi(x) \]
Hamiltonian sampling

- Parameter space exploration via Hamiltonian sampling
 - interpret log-posterior as potential
 \[\psi(x) = -ln(P(x)) \]
 - introduce Gaussian auxiliary “momentum” variable
 \[H = \sum_i \sum_j \frac{1}{2} p_i M^{-1}_{ij} p_j + \psi(x) \]
 - resultant joint posterior distribution of \(\chi \) and \(p \)
 \[e^{-H} = P(|\chi_i|) e^{-\frac{1}{2} \sum_i \sum_j p_i M^{-1}_{ij} p_j} \]
 - separable in \(\chi \) and \(P \)
Hamiltonian sampling

- Parameter space exploration via Hamiltonian sampling
 - interpret log-posterior as potential
 \[\psi(x) = -\ln(P(x)) \]
 - introduce Gaussian auxiliary “momentum” variable
 \[H = \sum_i \sum_j \frac{1}{2} p_i M_{ij}^{-1} p_j + \psi(x) \]
 - resultant joint posterior distribution of \(x \) and \(p \)
 \[e^{-H} = P(\{x_i\}) e^{-\frac{1}{2} \sum_i \sum_j p_i M_{ij}^{-1} p_j} \]
 - separable in \(x \) and \(p \)
 - marginalization over \(p \) yields again \(P(x) \)
IDEA: Use Hamiltonian dynamics to explore e^{-H}
IDEA: Use Hamiltonian dynamics to explore e^{-H}

- solve Hamiltonian system to obtain new sample

\[\{x^i, p^i\} \rightarrow \left(\frac{dx_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = \frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i} \right) \rightarrow \{x^{i+1}, p^{i+1}\} \]
IDEA: Use Hamiltonian dynamics to explore e^{-H}

- solve Hamiltonian system to obtain new sample

$$\begin{align*}
\{x^i, p^i\} & \rightarrow \frac{dx_i}{dt} = \frac{\partial H}{\partial p_i} \\
\frac{dp_i}{dt} & = \frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i} \\
\end{align*}$$

$$\rightarrow \{x^{i+1}, p^{i+1}\}$$

- Hamiltonian dynamics conserve the Hamiltonian H
IDEA: Use Hamiltonian dynamics to explore e^{-H}

- solve Hamiltonian system to obtain new sample

\[
\left\{ x^i, p^i \right\} \longrightarrow \begin{cases}
 \frac{dx_i}{dt} = \frac{\partial H}{\partial p_i} \\
 \frac{dp_i}{dt} = \frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i}
\end{cases} \longrightarrow \left\{ x^{i+1}, p^{i+1} \right\}
\]

Hamiltonian dynamics conserve the Hamiltonian H

- Metropolis acceptance probability is unity

\[
P_A = \min \left[1, \exp \left(- (H(\{x'_i\}, \{p'_i\}) - H(\{x_i\}, \{p_i\})) \right) \right]
\]
IDEA: Use Hamiltonian dynamics to explore e^{-H}

- solve Hamiltonian system to obtain new sample

\[
\begin{align*}
\{x^i, p^i\} & \rightarrow \left\{ \frac{dx_i}{dt} = \frac{\partial H}{\partial p_i}, \quad \frac{dp_i}{dt} = \frac{\partial H}{\partial x_i} = -\frac{\partial \psi(x)}{\partial x_i} \right\} \\
& \rightarrow \{x^{i+1}, p^{i+1}\}
\end{align*}
\]

Hamiltonian dynamics conserve the Hamiltonian H

- Metropolis acceptance probability is unity

\[
\mathcal{P}_A = \min\left[1, \exp(- (H(\{x'_i\}, \{p'_i\}) - H(\{x_i\}, \{p_i\}))\right]
\]

- All samples are accepted
Hamiltonian sampling

Example: Wiener posterior = multivariate normal distribution

\[\Psi = \frac{1}{2} \sum_{ij} x_i S_{ij}^{-1} x_j + \frac{1}{2} \sum_{ij} (x_i - d_i) N_{ij}^{-1} (x_j - d_j) \]
Example: Wiener posterior = multivariate normal distribution

\[\Psi = \frac{1}{2} \sum_{ij} x_i S_{ij}^{-1} x_j + \frac{1}{2} \sum_{ij} (x_i - d_i) N_{ij}^{-1} (x_j - d_j) \]
Example: Wiener posterior = multivariate normal distribution

$$
\Psi = \frac{1}{2} \sum_{ij} x_i S^{-1}_{ij} x_j + \frac{1}{2} \sum_{ij} (x_i - d_i) N^{-1}_{ij} (x_j - d_j)
$$

Likelihood
Example: Wiener posterior = multivariate normal distribution

\[\Psi = \frac{1}{2} \sum_{ij} x_i S^{-1}_{ij} x_j + \frac{1}{2} \sum_{ij} (x_i - d_i) N^{-1}_{ij} (x_j - d_j) \]

\[\frac{\partial \Psi}{\partial x_m} = \sum_j \left[S^{-1}_{mj} + N^{-1}_{mj} \right] x_j - \sum_{ij} N^{-1}_{mj} d_j \]

\[= \sum_j A_{mj} x_j - B_m \]
Hamiltonian sampling

Example: Wiener posterior = multivariate normal distribution

\[\Psi = \frac{1}{2} \sum_{ij} x_i S^{-1}_{ij} x_j + \frac{1}{2} \sum_{ij} (x_i - d_i) N^{-1}_{ij}(x_j - d_j) \]

\[\frac{\partial \Psi}{\partial x_m} = \sum_j \left[S^{-1}_{mj} + N^{-1}_{mj} \right] x_j - \sum_{ij} N^{-1}_{mj} d_j \]

\[= \sum_j A_{mj} x_j - B_m \]

EOM:

coupled harmonic oscillator

\[\frac{dx_m}{dt} = \sum_j M^{-1}_{mj} p_j \]

\[\frac{dp_m}{dt} = -\sum_j A_{mj} x_j + B_m \]
Hamiltonian sampling

- How to set the Mass matrix?
How to set the Mass matrix?

- Large number of tunable parameters

Mass matrix aims at decoupling the system.
In practice: use diagonal approximation. The quality of approximation determines sampler efficiency.

Non-Gaussian case: Taylor expand to find Mass matrix.
Hamiltonian sampling

- How to set the Mass matrix?
 - Large number of tunable parameter
 - Determines efficiency of sampler
Hamiltonian sampling

- How to set the Mass matrix?
 - Large number of tunable parameter
 - Determines efficiency of sampler

\[
\frac{d^2 x_i}{dt^2} = - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + \sum_l M_{il}^{-1} B_l \\
= - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + D_m
\]
How to set the Mass matrix?

- Large number of tunable parameter
- Determines efficiency of sampler

\[
\frac{d^2 x_i}{dt^2} = - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + \sum_l M_{il}^{-1} B_l
\]

\[
= - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + D_m
\]

\[M_{ij} = A_{ij} \]

- Mass matrix aims at decoupling the system
Hamiltonian sampling

- How to set the Mass matrix?
 - Large number of tunable parameter
 - Determines efficiency of sampler

\[
\begin{align*}
\frac{d^2 x_i}{dt^2} &= - \sum_l M_{il}^{-1} \sum_j A_{ij} x_j + \sum_l M_{il}^{-1} B_l \\
&= - \sum_l M_{il}^{-1} \sum_j A_{ij} x_j + D_m \\
M_{ij} &= A_{ij}
\end{align*}
\]

- Mass matrix aims at decoupling the system
- In practice: use diagonal approximation
Hamiltonian sampling

☐ How to set the Mass matrix?
 • Large number of tunable parameter
 • Determines efficiency of sampler

\[
\frac{d^2 x_i}{dt^2} = - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + \sum_l M_{il}^{-1} B_l \\
= - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + D_m \\
\]

\[M_{ij} = A_{ij} \]

• Mass matrix aims at decoupling the system
• In practice: use diagonal approximation
• The quality of approximation determines sampler efficiency
Hamiltonian sampling

- How to set the Mass matrix?
 - Large number of tunable parameter
 - Determines efficiency of sampler

\[
\frac{d^2 x_i}{dt^2} = - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + \sum_l M_{il}^{-1} B_l \\
= - \sum_l M_{il}^{-1} \sum_j A_{lj} x_j + D_m
\]

\[M_{ij} = A_{ij}\]

- Mass matrix aims at decoupling the system
- In practice: use diagonal approximation
- The quality of approximation determines sampler efficiency
- Non-Gaussian case: Taylor expand to find Mass matrix
HMC in action

- Inference of non-linear density fields in cosmology
 - Non-linear density field
 - Log-normal prior

See e.g. Coles & Jones (1991), Kayo et al. (2001)

Jasche, Kitaura (2010)
HMC in action

- Inference of non-linear density fields in cosmology
 - Non-linear density field
 - Log-normal prior
 See e.g. Coles & Jones (1991), Kayo et al. (2001)
 - Galaxy distribution
 - Poisson likelihood
 - Signal dependent noise

Credit: M. Blanton and the Sloan Digital Sky Survey

Jasche, Kitaura (2010)
HMC in action

- Inference of non-linear density fields in cosmology
 - Non-linear density field
 - Log-normal prior
 See e.g. Coles & Jones (1991), Kayo et al. (2001)
 - Galaxy distribution
 - Poisson likelihood
 - Signal dependent noise

Problem: Non-Gaussian sampling in high dimensions

→ HADES (HAmiltonian Density Estimation and Sampling)

Jasche, Kitaura (2010)
LSS inference with the SDSS

- Application of HADES to SDSS DR7
 - cubic, equidistant box with sidelength 750 Mpc
 - ~ 3 Mpc grid resolution
 - ~ 10^7 volume elements / parameters

Jasche, Kitaura, Li, Enßlin (2010)
LSS inference with the SDSS

- Application of HADES to SDSS DR7
 - cubic, equidistant box with sidelength 750 Mpc
 - ~ 3 Mpc grid resolution
 - ~ 10^7 volume elements / parameters

- Goal: provide a representation of the SDSS density posterior
 - to provide 3D cosmographic descriptions
 - to quantify uncertainties of the density distribution

Jasche, Kitaura, Li, Enßlin (2010)
LSS inference with the SDSS
Multiple Block Sampling

What if the HMC is not an option?

\[A, B \sim \mathcal{P}(A, B) \]
Multiple Block Sampling

- What if the HMC is not an option?

 $$A, B \sim \mathcal{P}(A, B)$$

 - Problem: Design of “good” proposal distributions
Multiple Block Sampling

- What if the HMC is not an option?

 $A, B \sim \mathcal{P}(A, B)$

 - Problem: Design of “good” proposal distributions
 - High rejection rates
Multiple Block Sampling

What if the HMC is not an option?

\[A, B \sim \mathcal{P}(A, B) \]

• Problem: Design of “good” proposal distributions
• High rejection rates

Multiple block sampling (see e.g. Hastings (1997))
Multiple Block Sampling

- What if the HMC is not an option?
 \[A, B \sim \mathcal{P}(A, B) \]
 - Problem: Design of “good” proposal distributions
 - High rejection rates

- Multiple block sampling (see e.g. Hastings (1997))
 - Break down into subproblems
 \[A_{i+1} \sim \mathcal{P}(A|B^i) \]
 \[B_{i+1} \sim \mathcal{P}(B|A^{i+1}) \]
Multiple Block Sampling

- What if the HMC is not an option?

 \[A, B \sim P(A, B) \]

 • Problem: Design of “good” proposal distributions
 • High rejection rates

- Multiple block sampling (see e.g. Hastings (1997))

 • Break down into subproblems

 \[A^{i+1} \sim P(A|B^i) \]
 \[B^{i+1} \sim P(B|A^{i+1}) \]

 • simplifies design of conditional proposal distributions
What if the HMC is not an option?

\[A, B \sim \mathcal{P}(A, B) \]

- Problem: Design of “good” proposal distributions
- High rejection rates

Multiple block sampling (see e.g. Hastings (1997))

- Break down into subproblems

 \[A^{i+1} \sim \mathcal{P}(A|B^i) \]

 \[B^{i+1} \sim \mathcal{P}(B|A^{i+1}) \]

- Simplifies design of conditional proposal distributions
- Average acceptance rate is higher
Multiple Block Sampling

- What if the HMC is not an option?
 \[A, B \sim \mathcal{P}(A, B) \]
 - Problem: Design of “good” proposal distributions
 - High rejection rates

- Multiple block sampling (see e.g. Hastings (1997))
 - Break down into subproblems
 \[A^{i+1} \sim \mathcal{P}(A|B^i) \]
 \[B^{i+1} \sim \mathcal{P}(B|A^{i+1}) \]
 Serial processing only!
 - simplifies design of conditional proposal distributions
 - Average acceptance rate is higher
 - Requires serial processing
Multiple Block Sampling

- Can we “boost” block sampling?

\[P(A, B) = \int dC \ P(A, B, C) \]
Can we “boost” block sampling?

\[P(A, B) = \int dC P(A, B, C) \]

• Sometimes it is easier to explore full joint the PDF

\[A, B, C \sim P(A, B, C) \]
Multiple Block Sampling

Can we “boost” block sampling?

\[P(A, B) = \int dC \ P(A, B, C) \]

- Sometimes it is easier to explore full joint the PDF

\[A, B, C \sim P(A, B, C) \]

- Block sampler:

\[
\begin{align*}
A^{i+1} &\sim P(A|B^i, C^i) \\
B^{i+1} &\sim P(B|A^{i+1}, C^i) \\
C^{i+1} &\sim P(C|A^{i+1}, B^{i+1})
\end{align*}
\]
Multiple Block Sampling

Can we “boost” block sampling?

\[P(A, B) = \int dC \ P(A, B, C) \]

- Sometimes it is easier to explore full joint the PDF

\[A, B, C \sim P(A, B, C) \]

- Block sampler:

\[A_{i+1} \sim P(A|B^i, C^i) = P(A|C^i) \]
\[B_{i+1} \sim P(B|A_{i+1}, C^i) = P(B|C^i) \]
\[C_{i+1} \sim P(C|A_{i+1}, B_{i+1}) \]
Multiple Block Sampling

- Can we “boost” block sampling?

\[P(A, B) = \int dC P(A, B, C) \]

- Sometimes it is easier to explore full joint the PDF

\[A, B, C \sim P(A, B, C) \]

- Block sampler:

\[
\begin{align*}
A^{i+1} &\sim P(A|B^i, C^i) = P(A|C^i) \\
B^{i+1} &\sim P(B|A^{i+1}, C^i) = P(B|C^i) \\
C^{i+1} &\sim P(C|A^{i+1}, B^{i+1})
\end{align*}
\]

- Permits efficient sampling for numerical expensive posteriors

process in parallel!
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies (~10^7 - 10^8)
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies (\(\sim 10^7 - 10^8 \))
 - low redshift accuracy (\(\sim 100 \text{ Mpc along LOS} \))
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies (≈10^7 - 10^8)
 - low redshift accuracy (≈ 100 Mpc along LOS)
 - Infer accurate redshifts: \(\{z_p\} \sim \mathcal{P}(\{z_p\}|d) \)
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies (~$10^7 - 10^8$)
 - low redshift accuracy (~100 Mpc along LOS)
 - Infer accurate redshifts: $\{z_p\} \sim \mathcal{P}(\{z_p\}|d)$
 - Rather sample from joint distribution:
 $$\{z_p\}, \delta \sim \mathcal{P}(\delta, \{z_p\}|d)$$
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies ($\sim 10^7 - 10^8$)
 - low redshift accuracy (~ 100 Mpc along LOS)
 - Infer accurate redshifts: $\{z_p\} \sim P(\{z_p\}|d)$
 - Rather sample from joint distribution:
 - $\{z_p\}, \delta \sim P(\delta, \{z_p\}|d)$
 - Block sampler:
 - $z_1 \sim P(z_1|\delta^i, d)$
 - \ldots
 - $z_N \sim P(z_N|\delta^i, d)$
 - $\delta^{i+1} \sim P(\delta|\{z_p\}^{i+1}, d)$
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies ($\sim 10^7 - 10^8$)
 - low redshift accuracy (~ 100 Mpc along LOS)
 - Infer accurate redshifts: $\{z_p\} \sim \mathcal{P}(\{z_p\}|d)$
 - Rather sample from joint distribution:
 $$\{z_p\}, \delta \sim \mathcal{P}(\delta, \{z_p\}|d)$$
 - Block sampler:
 $$z_1^{i+1} \sim \mathcal{P}(z_1|\delta^i, d)$$
 $$\vdots$$
 $$z_N^{i+1} \sim \mathcal{P}(z_N|\delta^i, d)$$
 $$\delta^{i+1} \sim \mathcal{P}(\delta|\{z_p\}^{i+1}, d)$$

Process in parallel!
Photometric redshift sampling

- Photometric surveys
 - millions of galaxies (≈10^7 - 10^8)
 - low redshift accuracy (≈ 100 Mpc along LOS)
 - Infer accurate redshifts: \(\{z_p\} \sim \mathcal{P}(\{z_p\}|d) \)
 - Rather sample from joint distribution:
 \[\{z_p\}, \delta \sim \mathcal{P}(\delta, \{z_p\}|d) \]
 - Block sampler:
 \[

 \begin{align*}
 z_1^{i+1} & \sim \mathcal{P}(z_1|\delta^i, d) \\
 \vdots & \\
 z_N^{i+1} & \sim \mathcal{P}(z_N|\delta^i, d) \\
 \delta^{i+1} & \sim \mathcal{P}(\delta|\{z_p\}^{i+1}, d)
 \end{align*}
 \]
 - Process in parallel!
 - HMC sampler!
Photometric redshift sampling

- Application to artificial photometric data

• ~ Noise, Systematics, Position uncertainty (~100 Mpc)
• ~ 10^7 density amplitudes /parameters
• ~ 2×10^7 radial galaxy positions / parameters
Photometric redshift sampling

- Application to artificial photometric data

- ~ Noise, Systematics, Position uncertainty (~100 Mpc)
- ~ 10^7 density amplitudes /parameters
- ~ 2×10^7 radial galaxy positions / parameters
- ~ 3×10^7 parameters in total
Photometric redshift sampling

Jasche, Wandelt (2012)
Deviation from the truth

Jasche, Wandelt (2012)
Deviation from the truth

\[r(k_{th}) = \frac{\langle \delta_{true}^{k_{th} \cdot \langle \delta \rangle_{k_{th}}} \rangle}{\sqrt{\langle \delta_{true}^{k_{th}} \rangle^2} \sqrt{\langle \langle \delta \rangle_{k_{th}}^2 \rangle}} \]

Jasche, Wandelt (2012)
4D physical inference

- Physical motivation
4D physical inference

- Physical motivation
 - Complex final state

Final state
4D physical inference

- Physical motivation
 - Complex final state
 - Simple initial state

Initial state

Final state
4D physical inference

- Physical motivation
 - Complex final state
 - Simple initial state

Initial state

Final state

Gravity
4D physical inference

☐ The ideal scenario:
 • We need a very very very large computer!
4D physical inference

- The ideal scenario:
 - We need a **very very very** large computer!
4D physical inference

- The ideal scenario:
 - We need a very very very large computer!
4D physical inference

- The ideal scenario:
 - We need a very very very large computer!
4D physical inference

The ideal scenario:

- We need a very very very large computer!

Not practical! Even with approximations!!!!
4D physical inference

- BORG (Bayesian Origin Reconstruction from Galaxies)
 - HMC
 - Second order Lagrangian perturbation theory

Jasche, Wandelt (2012)
4D physical inference
4D physical inference

- Cosmological applications:
 - Higher order statistics \rightarrow primordial non-Gaussianity
 - 4D dynamic states \rightarrow Dark Energy, ISW, kSZ
 - Physically joint analysis of data at different cosmic Epochs
Summary & Conclusion

- Large scale Bayesian inference
 - Inference in high dimensions from incomplete observations
 - Noise, systematic effects, survey geometry, selection effects, biases
 - Need to quantify uncertainties

- Explore posterior distribution
 - Markov Chain Monte Carlo methods
 - Hamiltonian sampling (exploit symmetries, decouple system)
 - Multiple block sampling (break down into subproblems)

- 3 high dimensional examples (>10^7 parameter)
 - Nonlinear density inference
 - Photometric redshift and density inference
 - 4D physical inference
The End ...

Thank you