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Overview

» Why?

Niche problem

Very general application
Start with simplest case

Try to understand everything
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» Structure of talk

Layer 1 Basic x? fitting

Layer 2 Rescaled coordinates

Layer 3 Correlations and Eigenvalue scales
Model comparison with evidence

Layer 4 The hypersphere

> Projection onto radius
> Earlier work
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» Simulation results
> Layer 5 Incomplete or unsolved issues
> South Africa



Layer 1

Gaussian regression:
dimensioned version



Data, experimental uncertainties, trial function

No. of data points N Trial function y(x|a)

Data means y=0U1- ) with K parameters a = (a1, a2,...,ak)
. — 2 2 2

Data uncertainties, o = (oy,...,oy)| Aim: Small x X" ~ (data — model)

taken as constants

Aim: best-fit values a

’ Implicit aim: model comparison‘
A

y y

Ve y(xla)
S,
| | | | > | | | | >
\ \ \ \ ™ \ \ \ \ >
X X, X, X4 X X, X X4



Basic y2: model assumptions

Trial function y(x|a) Z fr(x
made up of K functions fi(x) of any kind, differentiable, e.g. cos(k¢)
with K linear parameters a=(a,...,3)
Additive error model €n=yn — y(xn|a) = data — model
e—si/2o§
Model errors plen|on) =
assumed gaussian iid v2man,
1o (Yo =yl @)\
Likelihood =GCo- —= A
ikelihoo p(y|a) exp[ 2;< - )]
plyla) = C,e X2 Co = [@m? [T on ™
N 2
n f n
contains the usual x> *(a) = Z (y 2 fl )ak)
n=1 Tn



x? (Gaussian) fitting in vector notation

Design matrix
or “response matrix”

Response vector
(scaled data)

Likelihood
Chisquared
Hessian

Maximum likelihood

Mode
(best-fit parameters)

Covariance matrix

z:(ﬂ,..w)
g1 ON

p(y|a) = Ce X/

x’(a) = (z— Aa)"(z — Aa)

5 g = ATA = Hy is constant for linear model
2
0= % =2(—ATz+ ATAA)
a—=—a

a=(A"A)'ATz = H'A"Z

Vg =H;!



Layer 2

Gaussian regression
scaled version




Dimensional analysis

Physical dimensions = very large or small eigenvalues, determinants

Start with usual chisquared

@)=y (yn = 3 filx) ak>2

g
n=1 n

Physical dimensions:

dim(y,) = Y (metres, GeV, ...)
dim(o,) =Y

SO Z, = Yn/0, is dimensionless

dim(ax) = Y if we assume f;(x) is dimensionless.

Scaling with N:
>, means that x? grows asymptotically almost linearly with N



There are TWO physical scales

yrms

1/2
precision scale z,,; =

mean scale y,

%Zynz

Sv=Y zm=NZ) () =2,

1/2
v



Double rescaling

mean scale

precision scale

dimensionless
parameters

precision-scaled
data

precision-scaled
uncertainties

Yrms =

Zrms =

Bk =

. 1/2
v
. ’ 1/2
R
b5




Vector-matrix notation

Mode B=(G'G)'Gu
. 129 _ s
essian =293 N
1
Scaled 2 Q(B) = N(U - GB)(u—-Gp)

Minimum 2 Q(B)=1-B"HA

Scaled likelihood pu]B) = 2L



Layer 3

Correlation and
eigenvalue scales




Diagonalisation: rotation in parameter space

B2

» Eigenvalues A, orthonormal
eigenvectors e of H:

He = e )y
» Orthogonal eigenvalue matrix
S=(e; - ex)
» Diagonalisation via

HS = SL
L = diag(A1, ..., An)

rotates Hessian and covariance
matrix

B=sp

By

Q(B/) -1 B/TLB/
QB) =B+ (B -3)L(B -3)



Squeeze: rescaling in parameter space

Parameters
b=1"3 = 1L*S'3

Minimum x?

Q(b) =1- b
Scaled 2
Q(b) = Q(b) + (b — b)?
=1+4+b>—-2b"b

Limit on radius

Qb)=1-b*>>0

<1

B>

b2

S
b; By
Likelihood
22)K/? 1
p(ulb) = W exp [—25/2\/ Q(b)}



Interlude

Model comparison,
evidence and K




Model comparison with evidence:
failure of uniform priors

» Given model M with parameters b and data y, its evidence is

p(y|M):/dbp(y|b,M)p(b\M)

» Try uniform priors in K dimensions

k=1

with cutoff parameters such as

—Ak/2 < dk < Ak/2



Model comparison with evidence:
failure of uniform priors

» Given evidence with prior in K dimensions
ply| M) = [ dbply|bM)p(bI M) p(b] M) ~ (uniform)

» Model comparison with Bayes Factors:
Compare M; with K; parameters to M, with K, > K; parameters.
Even choosing priors identical for all 1 < k < Kj, we still get a result that
depends on the prior widths for K < k < Kb:

ply [Mi) _ [ dbyp(y|bi, Mi)p(by| M)
py|Mz) [ dbyp(y| by, M2)p(by | M>)

_fdblp(ﬂbh/\/ll)( . A)
[ dbyp(y [ b2, M> kl;[H ‘

which can take on any value you like, depending on the choice of the
extra Ayx. = Failure of uniform priors, Failure of Bayes?

» How to compare models with different parameter space
dimensionalities K?




Layer 4

The hypersphere
and r-priors




Uniform prior for b on the K-hypersphere

» We are now looking for a prior p(b | M).
» For a prior, there is no data, therefore we do not know b.

» We are dealing with a K—1 dimensional model on any hyperplane defined
by bx = 0. Similarly for double-zero planes by = 0, by = 0.

» The origin b = 0 of the K-dimensional parameter space is special in the
sense that it corresponds to zero free parameters. It is therefore a point
with unique status.

» Information Symmetry Postulate:
We have no reason to prefer any particular direction on the
hypersphere.

» Hence use the prior centered on b = 0 which is uniform over the surface
of the K-hypersphere at any radius:

p(b)T(K/2)

plb M) = B2 1)



Radius-conditional evidence

» The evidence cannot be solved directly. However, by introducing a new
degree of freedom r, a radius in the K-sphere, we can make progress:

p(u| M) :/drdbp(u,b,r|/\/l)
= /Ooodrp(r./\/l)/Rdep(u| b,r, M)p(b|r, M)
= [ drote 1) plal .00
in terms of radius-conditional evidence
p(u|r,M) = /Rdep(u|b, r, M)p(b|r, M)
projecting K-dimensional parameter space onto 1-dimensional r-space.

» Drop the M in the notation, use H for different r-priors.



Projection onto radius-conditional evidence |

» We want to find  p(u|r) = [pxdbp(u|b,r)p(b|r)
» Choose

p(b|ry=6b—r) = 2r6(b2 — r2)
to get a prior radially symmetric about 0 and uniform on the K-sphere

r 2 _ 2
ol - ST _ 2

» Fourier representation of delta function is close to integral representation
of confluent hypergeometric function:

2 2y _ +i0075 2 _p2
S(b* —r*) = _exp [sr® — sb?]

—ico 27TI
M(c) [T z
oFi(c; z) = 2(7”) / dv v~ exp (v+ ;) )
— 100



Projection onto radius-conditional evidence |I

» The likelihood p(u| b, r) = p(u|b) is independent of r,

<22>K/2 e—Su/2

P(U|b):W

1 -
[—25,%,172 + S,%,bTb] ,
» As a result

plulr)= [ dbp(ulb)p(b] "

2\K/2
z 1 K 1_,-
= (<27r>)"’/2 exp {25,2\,(1 + r2)} oF1 (2 ; ZS,‘\‘, b2r2>

so the evidence has reduced to the one-dimensional r-integral

K/2)—1
<2>( /2)

plul M) = ELo [arpty oo | =350+ )] oFi (5




Plot of radius-conditional evidence

— k=1
— k=2
— k=3
— k=4
— k=5
— k=6
— k=7

k=8
— k=9
— k=10

p(r)




Precursors for r-priors |

» Notation: H for different r-priors

> Jeffreys (1967): null hypothesis vs A unknown hypothesis; obtained a
one-dimensional Cauchy prior:

M o) =~

> Zellner and Siow (1980) generalised to a K-dimensional Cauchy prior,

M(K+1)/2] +/detH/No?

PBloHzs) = = Gems T4 BTHB No?

Problem: evidence based on Cauchy cannot be found in closed form.

> Zellner (1986) simplified g-prior based on knowledge of H (o = 1 here)
e—Nb*/20%g

b S
P( |g707 HZ) (27T0'2g)K/2



Precursors for r-priors |l

» Problem: Zellner's g-prior leads to closed form for evidence; however, it
suffers from logical contradictions for limiting cases.

> Liang et al (2008): A hyper-g prior which is a mixture of g-priors were
proposed in 2008. Similar to our r-prior, Liang et al propose a g-prior with
hyperparameter a

-2

a —a
plglaty) = —5—(1+g)""

with a < 2 leading to improper and a > 2 to proper priors.

> Zellner's g-prior and Liang's hyper-g prior are widely used in the statistics
community but almost unknown in physics/astronomy.

» All of the above can be expressed as special forms of r-priors, i.e.
r-priors provide a general framework for all previous results which can be
compared and analysed.



Example: Parabolic r-prior

» The parabolic r-prior was chosen to resemble the hyper-g asymptotically,

K er)K/zu[K—Fl_l_l\lrz}

p(r|K’Hf)_r\/%<2 2 272

with U the second solution of the confluent hypergeometric function
differential equation

» This yields evidence

K/2 2 12
B (2%) _s2/2 K+1 ~Syb
p(u|H")_ (271-)N/22Ke N 1Fl 2 ’ K—|—1, 5

» Dependent on choice of r-prior, the evidence is a closed solution in
terms of hypergeometric functions 1 F; or >F;.

» Once the evidence is known, posteriors and characteristic functions
can be found trivially.



Results

Model comparison
with simulated data




Simulation of data

» For the purposes of the comparison, a “model” consists of
» Choice of r-prior or information criterion
> Assumption of a trial function y(x | B1,..., ;) with j free parameters
Bi,...,B; and functions fi, ..., f; (use cosines).
» Generation of simulated data
1. Generate a set of parameters 3; from a Cauchy distribution

1 1  weak signal
P 1:[ (1 + B2/B?) N {5 strong signal

2. For given fixed choice of Ki... and fixed parameter set 3 = (f4,. .., Bk)
generate N = 100 simdata points with fluctuation

K —true

Yn(Kirue) = €n + Z fi(xn) B en~ N(0,E) (Normal distribution)
=1

3. Repeat for different Kirue and 1000 different parameter sets and hence
simulated datasets.



Comparison of models using simulated data

For given model prior or information criterion

e.g. Zellner g, Liang hyper-g, Parabolic r-prior, Information criteria

1. Run different trial dimensions K. = 1,2,...,50 and use trial function

K—trial

(X|ﬁ Ktrlal Z fk

2. Find evidence for each, p(y | Kisial, H)
3. Find the best dimension Kj,s which yields the best evidence

Kbest = !r(Tgral)afl P(y| Ktriala H)

and the corresponding value of the parameters B3(Kpest ).

4. Kpest should ideally be equal to Kiue but the model must find K ost
without knowing K ue.



Comparison of models using simulated data

5. Compute the squared error between this “best shot” of a given prior H
and the simdata

K—best

2
SE(Ktru97 i) = Z (yn(Ktrue) - Z fk(Xn);é(Kbcst)>

n k=1

= [A8(Kurue) = £B(Kot) 2

i

6. For each K.y average the above over all datasets i to get the
Mean Square Error

1
MSE(Ktrue) = T Z SE(Ktrue)

7. The oracle case is defined by eliminating the uncertainty in the
dimensionality of the appropriate model,

Kbest - Ktrue



Effective information criteria

» Akaike Information Criterion (AIC) is an information-theory
(non-Bayesian) based Occam'’s penalty.

K—

» Bayes Information Criterion (BIC) effectively uses a r~1 improper

prior.
» Corrected Akaike Information Criterion (AlICc) makes additional
assumptions, without improving the result.



Strong Signal MSE
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Strong Signal, Differences with Oracle

MSE-MSE (Oracle)

3.0]

2.5

n
o

-
o

0.5

0.0]

—o— Akaike
Corrected Akaike

+- BIC

—=— Hyper-g

-+- Parabolic-r

10 20 30
Model Size

40

50



Weak Signal MSE
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Weak Signal, Differences

with Oracle

MSE-MSE (Oracle)
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Conclusions from simulations

v

Strong differences depending on signal strength (variability of
parameters in model mix)

» r-prior converges to hyper-g for large K as expected

v

r-prior much better than hyper-g for small K

v

Room for improvement!



Layer 5

Incomplete or
unsolved issues




Incomplete or unsolved issues

INCOMPLETE
» Work for variable o already done; needs updating
» Alternative model with offset component

K
yixla,B)=a+> fi(x) B = la+AB

k=1

» Relation between correlations and eigenvalues: should be known from
advanced linear algebra.

UNSOLVED

» Metapriors on the origin of the hypersphere?

» Implicit and explicit K-dependence in delta function and prior: are the
scales correct?



Nachrichten in 100 Sekunden

» Model comparison across different parameter space
dimensions is surprisingly subtle

» r-priors represent major progress

> Analytical results
» Framework for everything that has been done so far

» Some stuff still not understood
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