Rethinking the Foundations

Kevin H. Knuth
Depts. Physics and Informatics
University at Albany

with Prof. Newshaw Bahreyni and James Walsh
Familiarity Breeds the Illusion of Understanding

anonymous
Breaking through the Illusion

The Laws of Physics
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)

The Laws of Nature are but the mathematical thoughts of God
- Euclid
Breaking through the Illusion

The Laws of Physics

Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Observations not only disturb what is to be measured, they produce it.
- Pasqual Jordan

How can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality?
- Albert Einstein

... all things physical are information-theoretic in origin and ... this is a participatory universe
- John Archibald Wheeler
Breaking through the Illusion

The Laws of Physics

Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?

A. A. Michaelson
E. W. Morley
The variables $\alpha$ also give rise to some rather unexpected phenomena concerning the motion of the electron. These have been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which cannot be directly verified by experiment, since the frequency of the oscillatory motion is so high and its amplitude is so small. But one must believe in this consequence of the theory, since other consequences of the theory which are inseparably bound up with this one, such as the law of scattering of light by an electron, are confirmed by experiment.

- P.A.M. Dirac
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?

Space-Time
Breaking through the Illusion

The Laws of Physics

Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables

Foundational?
Convenient?

Motion

Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?

Space-Time

Continuous Manifold?

... for a discrete manifold, the principle of its metric relationships is already contained in the concept of the manifold itself, whereas for a continuous manifold, it must come from somewhere else. Therefore, either the reality which underlies physical space must form a discrete manifold or else the basis of its metric relationships should be sought for outside it.

-Bernard Riemann 1854
The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?

Space-Time
Continuous Manifold?
Testable?

Science ... is the most reliable form of knowledge because it is based on testable hypotheses.
- Paul Davies
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?

Space-Time
Continuous Manifold?
Testable?
Properties?

I hold that space cannot be curved, for the simple reason that it can have no properties.
Nikolai Tesla, 1932
Breaking through the Illusion

The Laws of Physics
Decreed by Nature? (Prescribe - Ontology)
Observer-Based Rules for Information Processing? (Describe - Epistemology)

Relevant Variables
Foundational?
Convenient?

Motion
Doctrine of Parmenides?
Zeno’s Paradoxes?
Constant Speed of Light?
Zitterbewegung?

Space-Time
Continuous Manifold?
Testable?
Properties?
Change vs. Distinguishability?
Starting Over
Electrons

Many of us feel that we have experienced electrons directly.

They seem to be bright crackly sorts of things.

But what are they really?
Electrons

Imagine that electrons might be pink and fuzzy.

Maybe they smell like watermelon.

Whatever properties or attributes they may possess, we can only know about such qualities if they affect how electrons influence us or our equipment.
The only properties that we can know about are those that affect how an electron influences others.

Operational Viewpoint:
Define electron properties based on how they influence others

Since we cannot know what an electron is, perhaps it is best to simply focus on what an electron does.
The observer, when he seems to himself to be observing a stone, is really, if physics is to be believed, observing the effects of the stone upon himself.

- Bertrand Russell
Influence and Events

We consider that all we can know is that particles (entities) influence one another.

Both an act of influence and an act of being influenced are considered to be events.

Notes
Events occur in pairs
Each event is associated with a different particle
The asymmetry of influence allows these two events to be ordered
Partially-Ordered Set Model

Particles are represented by an ordered sequence of states (nodes connected by thick lines with little arrows) with each state being determined in part by directed interactions with another particle (thin lines with big arrows).

Remove arrows and straighten chains
Focus on nodes (elements) and ignore states

Influence relates one element on one particle chain to one element on another particle chain. Here we consider coarse graining.

Note that connectivity depends on the ability to resolve events.
Quantification

Measure that which is measurable and make measurable that which is not so

Galileo Galilei
Quantifying a Chain

Chains are easily quantified by a **monotonic valuation** assigning to each element a number.

Both particles and observers are modeled by chains.
Chain Projection

\[ P_x = p_x \]

- \( p_i \geq x \) for all \( p_i \geq p_x \)
- \( p_i \parallel x \) for all \( p_i < p_x \)

\[ \overline{P}_x = \overline{p}_x \]

- \( p_i \leq x \) for all \( p_i \leq \overline{p}_x \)
- \( p_i \parallel x \) for all \( \overline{p}_x < p_i < p_x \)
- \( p_i \geq x \) for all \( p_i \geq p_x \)
- \( p_i \parallel x \) for all \( p_i > \overline{p}_x \)
Quantification can be extended by relating poset elements to the embedded chain via chain projection.

For an element $x$, there is the potential to be quantified by a pair of numbers $(p_x, \bar{p}_x)$.
Quantifying the poset with respect to the chain $P$ results in a rather strange chain-based coordinate system.
Coordinated Observers

Here we have two observers who influence one another in a constant fashion so that the length of an interval along one chain equals the length of its projection onto the other chain.

\[ \Delta p = \Delta q = \Delta \bar{q} \]
Consider two coordinated observers, and consider an interval that spans the two chains.

The length of this interval is consistently quantified by

\[
\frac{\Delta p + \Delta q}{2}
\]
Consider two coordinated observers, and consider quantifying the relationship between these two chains.

We call this the **distance** between chains

\[
\frac{\Delta p - \Delta q}{2}
\]
Intervals are consistently quantified by

\[ \Delta s^2 = \Delta p \Delta q \]

where

\[ \Delta p \Delta q = \left(\frac{\Delta p + \Delta q}{2}\right)^2 - \left(\frac{\Delta p - \Delta q}{2}\right)^2 \]
Emergence

Individual events. Events beyond law. Events so numerous and so uncoordinated that, flaunting their freedom from formula, they yet fabricate firm form.

- John Archibald Wheeler
Quantifying a Poset

Antichain-like Interval
4-tuple: (5,5 ; 6,4)
pair: (6-5 , 4-5) = (1,-1)
scalar: (1)(-1) = -1

Chain-like Interval
4-tuple: (5,1 ; 6,2)
pair: (6-5 , 2-1) = (1,1)
scalar: (1)(1) = 1

Projection-like Interval
4-tuple: (2,2 ; 5,2)
pair: (5-2 , 2-2) = (3,0)
scalar: (3)(0) = 0
Pair Transformation

Coordinated observers $P$ and $Q$ quantify the interval $I$ with the pair of numbers $(\Delta p, \Delta q)$

Coordinated observers $P'$ and $Q'$ quantify the interval $I$ with the pair of numbers $(\Delta p', \Delta q')$

Intervals along $P$ and $Q$ of length $k$ are quantified by $P'$ and $Q'$ by $(m, n)$ which implies

$$(\Delta p', \Delta q') = \left( \frac{m}{\sqrt{n}} \Delta p, \frac{n}{\sqrt{m}} \Delta q \right)$$
Minkowski Metric

Writing

\[ \Delta t = \frac{\Delta p + \Delta q}{2}, \quad \Delta x = \frac{\Delta p - \Delta q}{2} \]

The metric becomes

\[ \Delta s^2 = \left( \frac{\Delta p + \Delta q}{2} \right)^2 - \left( \frac{\Delta p - \Delta q}{2} \right)^2 \]

\[ \Delta s^2 = \Delta t^2 - \Delta x^2 \]
Speed

Writing

\[ \Delta t = \frac{\Delta p + \Delta q}{2} \quad \Delta x = \frac{\Delta p - \Delta q}{2} \]

We define

\[ \beta = \frac{\Delta x}{\Delta t} = \frac{\Delta p - \Delta q}{\Delta p + \Delta q} \]

As well as

\[ \gamma = \frac{1}{\sqrt{1 - \beta^2}} \]
Lorentz Transformations

Relating one observer pair to the other

\[ \beta = \frac{m - n}{m + n} \]

Recall \( \Delta t = \frac{\Delta p + \Delta q}{2} \) \( \Delta x = \frac{\Delta p - \Delta q}{2} \)

The pair transformation

\[ (\Delta p', \Delta q') = \left( \sqrt{\frac{m}{n}} \Delta p, \sqrt{\frac{n}{m}} \Delta q \right) \]

becomes

\[ \Delta t' = \gamma \Delta t - \beta \gamma \Delta x \]
\[ \Delta x' = -\beta \gamma \Delta t + \gamma \Delta x \]
3+1 Dimensions (four quantifying chains: p,q,r,s)

Space parts have antisymmetric features
Closed!

\[ t = \frac{(p + q + r + s)}{4} \]
\[ x = \frac{(p - q + r - s)}{4} \]
\[ y = \frac{(p - q - r + s)}{4} \]
\[ z = \frac{(p + q - r - s)}{4} \]

\[ t^2 - x^2 = (p + q)(r + s) \]
\[ t^2 - y^2 = (q + r)(p + s) \]
\[ t^2 - z^2 = (p + q)(r + s) \]

\[ t^2 - x^2 - y^2 - z^2 = -\frac{1}{8} (p^2 + q^2 + r^2 + s^2) + \frac{1}{4} (pq + pr + qr + ps + qs + rs) \]

Lorentz invariant!
Invariant wrt permuting chain labels!
3+1 Dimensions (four quantifying chains: p,q,r,s)

\[ t = \frac{(p + q + r + s)}{4} \]
\[ x = \frac{(p - q + r - s)}{4} \]
\[ y = \frac{(p - q - r + s)}{4} \]
\[ z = \frac{(p + q - r - s)}{4} \]
Influence Theory results in an Emergent Observer-Based Spacetime that is consistent with Special Relativity
“In the world of the very small, where particle and wave aspects of reality are equally significant, things do not behave in any way that we can understand from our experience of the everyday world...all pictures are false, and there is no physical analogy we can make to understand what goes on inside atoms. Atoms behave like atoms, nothing else.”

— John Gribbin,
In Search of Schrödinger's Cat: Quantum Physics and Reality
The Free Particle
Define a **Free Particle** as a particle that influences, but is not influenced.

This is an idealization that enables us to develop some useful concepts.
Instead of focusing on intervals, we could equivalently choose to quantify rates.

Rates and intervals are related by Fourier transforms.

Define

\[ r_P = \frac{N}{\Delta p} \quad r_Q = \frac{N}{\Delta q} \]

Rates are consistent only as coarse-grained averages!
Relations among Rates

The product of rates is invariant

\[ r_P r_Q = \frac{N^2}{\Delta p \Delta q} \]

So that

\[ r_P r_Q = \left( \frac{r_P + r_Q}{2} \right)^2 - \left( \frac{r_Q - r_P}{2} \right)^2 \]
Energy, Momentum and Mass

Writing

\[ E = \frac{r_P + r_Q}{2} \quad \quad p = \frac{r_Q - r_P}{2} \]

We have that

\[ r_P r_Q = \left( \frac{r_P + r_Q}{2} \right)^2 - \left( \frac{r_Q - r_P}{2} \right)^2 \]

Is simply

\[ M^2 = E^2 - p^2 \]

This is essentially DeBroglie’s internal electron clock
Recall

$$\beta = \frac{\Delta x}{\Delta t} = \frac{\Delta p - \Delta q}{\Delta p + \Delta q}$$

$$\frac{p}{E} = \frac{r_Q - r_P}{r_P + r_Q}$$

$$= \frac{N}{\Delta q} \frac{N}{\Delta p} + \frac{N}{\Delta p} \frac{N}{\Delta q} = \frac{\Delta p}{\Delta p \Delta q} - \frac{\Delta q}{\Delta q \Delta p} = \frac{\Delta p - \Delta q}{\Delta p + \Delta q} = \frac{\Delta x}{\Delta t} = \beta$$
Lorentz Transform and Rates

Rates transform as

\[ r_P' = \sqrt{\frac{n}{m}} r_P \quad r_Q' = \sqrt{\frac{m}{n}} r_Q \]

We can rewrite the Energy and Momentum as

\[ E' = \frac{1}{2} \left( \sqrt{\frac{n}{m}} r_P + \sqrt{\frac{m}{n}} r_Q \right) \quad p' = \frac{1}{2} \left( \sqrt{\frac{m}{n}} r_Q - \sqrt{\frac{n}{m}} r_{Q'} \right) \]

becomes

\[ E' = \gamma E + \gamma \beta p \quad p' = \gamma \beta E + \gamma p \]

Given \( p = 0 \), which implies \( E = M \)

\[ E' = \gamma M \quad p' = \gamma \beta M \]
Complementarity

Position, \( \Delta x \), and momentum, \( p \), are Fourier Transform duals as are time, \( \Delta t \), and energy \( E \).

Momentum and Energy only make sense as long-term averages. That is, they cannot be defined at an event.

A particle *possesses* neither position nor momentum. These quantities describe the behavior of the particle.

The mystery of Complementarity dissolves as these quantities are mere descriptions of a particle, not properties of a particle.
The action, $S$, of a free particle computed for a transition from an initial state to a final state is simply the number of events.

$$S = E \Delta t - p \Delta x$$

This is

$$S = \left( \frac{r_p + r_Q}{2} \right) \left( \frac{\Delta p + \Delta q}{2} \right) - \left( \frac{r_Q - r_p}{2} \right) \left( \frac{\Delta p - \Delta q}{2} \right)$$

$$S = \left( \frac{N}{\Delta p} + \frac{N}{\Delta q} \right) \left( \frac{\Delta p + \Delta q}{2} \right) - \left( \frac{N}{\Delta q} - \frac{N}{\Delta p} \right) \left( \frac{\Delta p - \Delta q}{2} \right)$$

which simplifies to...
The action, $S$, of a free particle computed for a transition from an initial state to a final state is simply the number of events!

The theory is **naturally quantized**!

This is similar to **Bohr-Sommerfeld quantization**.
As events occur, the phase space grows cell-by-cell!

These results also hold in our 3+1 dimensional formulation.
Observers $P$ and $Q$ both record detections.

However, the detections made by chain $P$ cannot be ordered with respect to the detections made by chain $Q$.

The particle’s behavior is informationally isolated from the rest of the universe! To make inferences, all possible orderings must be considered.
Influence Sequences Correspond to Paths

Considering all possible sequences corresponds to considering all possible paths.

\[(PPQ)\]

Influencing the particle (measurement) allows one to order events thus breaking the informational isolation.

In this example one is able to say that

\[ p_1 < p_2 < q_2 \]

We have not yet fully explored the consequences in such cases.
Intervals along a free particle chain have only one of two speeds, $\beta = \pm 1$, determined by the previous influence direction. This effect was predicted by Schrödinger by considering the speed eigenvalues of the Dirac equation. He called it Zitterbewegung. It is thought to be closely related to spin and mass, and perhaps related to scattering off the Higg’s field.
We have shown that this problem is the same as the Feynman checkerboard problem (Feynman & Hibbs, 1965) where the electron is described as making Bishop moves on a chess board at the speed of light. Feynman made a quantum amplitude assignment to the two moves (continuation and reversal) that is known to lead to the Dirac equation. We have been able to derive these amplitudes using this framework and probability theory.
Influence Theory provides a reasonable physical picture of Quantum Mechanics where the following features can be understood and/or derived:

- Quantized Action
- Information Isolation
- Complementarity
- Uncertainty Relation
- Compton Wavelength
- Pauli Exclusion Principle (in 1+1 dimensions)
- Zitterbewegung
- Disturbance due to Measurement
- Consideration of Multiple Paths
- Feynman Path Integral Formulation
- Dirac Equation
Statistical Mechanics of Motion
Since influence in the $P$-direction results in $\beta = +1$ and influence in the $Q$-direction results in $\beta = -1$ we can find the average speed by

$$\langle \beta \rangle = (+1) \Pr(P) + (-1) \Pr(Q) = \Pr(P) - \Pr(Q)$$

Since $\Pr(P) + \Pr(Q) = 1$, we have that

$$\Pr(P) = \frac{1 + \langle \beta \rangle}{2}$$

$$\Pr(Q) = \frac{1 - \langle \beta \rangle}{2}$$
Entropy of a Free Particle

Since motion to the left and right is probabilistic, we can compute the entropy of a particle with average speed $\beta$

$$S = - Pr(P) \log Pr(P) - Pr(Q) \log Pr(Q)$$

which in terms of the speed $\beta$:

$$S = - \frac{1 + \beta}{2} \log \frac{1 + \beta}{2} - \frac{1 - \beta}{2} \log \frac{1 - \beta}{2}$$

which simplifies to

$$S = - \log \frac{1}{2} + \log \gamma - \beta \log(z + 1)$$

Minimum at $\beta = \pm 1$ and maximum at rest $\beta = 0$

Doing work on an object reduces its entropy thus making it move
Entropy in Terms of Energy

Recall that $\beta = \frac{p}{E}$ and that $p^2 = E^2 - m^2$

This allows us to write the Entropy of a Free Particle as

$$S = -\frac{1}{2} \log M^2 + \log 2E + \frac{p}{2E} \log \left(\frac{E-p}{E+p}\right)$$

One can define a temperature by taking the derivative of the entropy with respect to the energy

$$T = \left(\frac{dS}{dE}\right)^{-1} = \frac{M}{pE^2} \log \left(\frac{E-p}{E+p}\right)$$

$$= \frac{(1 - \beta^2)^{\frac{3}{2}}}{M\beta} \log \left(\frac{1 - \beta}{1 + \beta}\right)$$
Forces

Acts of influence clearly affect rates of influence in one direction or another.

This affects the momentum, which means that influence must also give rise to forces.
Consider a particle that influences others (blue) so it can be detected and also is influenced at a constant rate from one direction (red). How do coordinated observers interpret this?

For each incoming influence event, $\Delta p$ is incremented: $\Delta \tilde{p} = \Delta p + k$

where $k = \sqrt{\frac{m}{n}}$

We then have that

$\Delta \tilde{q} = \Delta q \frac{\Delta p}{\Delta p + k} \approx \Delta q - \frac{\Delta q}{\Delta p} k$

So that

$\delta \Delta p = \Delta \tilde{p} - \Delta p = k$

$\delta \Delta q = \Delta \tilde{q} - \Delta q = -\frac{\Delta q}{\Delta p} k$
So for one incoming influence, we have

\[ \delta \Delta p = \Delta \tilde{p} - \Delta p = k \]

\[ \delta \Delta q = \Delta \tilde{q} - \Delta q = -\frac{\Delta q}{\Delta p} k \]

For many influence events, we define the rate as

\[ r \equiv \frac{N_r}{N_P \Delta \tau} \]

Where \( N_r \) and \( N_P \) are the number of incoming r-events and outgoing P events.

We then have

\[ d\Delta p = N_r \delta \Delta p = N_r k = r N_P k \Delta \tau = r \Delta p \Delta \tau \]

\[ d\Delta q = N_r \delta \Delta q = -N_r \frac{\Delta q}{\Delta p} k = -r N_P k \frac{\Delta q}{\Delta p} \Delta \tau \]

\[ = -r \Delta q \Delta \tau \]
Constant Rate of Incoming Influence

The incoming influences increment by

\[ d\Delta p = r\Delta p\Delta \tau \]
\[ d\Delta q = -r\Delta q\Delta \tau \]

Together with the outgoing influences, we have

\[ \frac{d\Delta p}{d\tau} = \left( r + \frac{1}{\tau} \right)\Delta p \]
\[ \frac{d\Delta q}{d\tau} = \left( -r + \frac{1}{\tau} \right)\Delta q \]

Which have as a solution:

\[ \Delta p = A\tau e^{r\tau} \]
\[ \Delta q = B\tau e^{-r\tau} \]

Since \( \Delta p\Delta q \) is invariant, \( A = B^{-1} \). Writing \( A = e^{\varphi_0} \) we have...
Constant Rate of Incoming Influence

The intervals change as a function of proper time according to

\[ \Delta p = \tau e^{r\tau + \varphi_0} \]
\[ \Delta q = \tau e^{-r\tau - \varphi_0} \]

The speed becomes:

\[ \beta = \frac{\Delta p - \Delta q}{\Delta p + \Delta q} = \frac{e^{r\tau + \varphi_0} - e^{-r\tau - \varphi_0}}{e^{r\tau + \varphi_0} + e^{-r\tau - \varphi_0}} \]

\[ \beta = \tanh(r\tau + \varphi_0) \]

Which is RELATIVISTIC ACCELERATION with an acceleration \( r \) and initial rapidity \( \varphi_0 \)!
Forces

The average influence rate results in the following changes

\[ d\Delta p = (r_{\bar{q}} - r_{\bar{p}})\Delta p d\tau \]
\[ d\Delta q = (r_{\bar{p}} - r_{\bar{q}})\Delta q d\tau \]

Writing \( r = r_{\bar{q}} - r_{\bar{p}} \) we can write the momentum as

\[
\frac{dP}{d\tau} = \frac{N}{2} \left[ \frac{\Delta p(1 + r d\tau) - \Delta q(1 - r d\tau)}{\Delta p \Delta q} - \frac{\Delta p - \Delta q}{\Delta p \Delta q} \right]
\]

\[
\frac{dP}{d\tau} = \frac{N}{2 \sqrt{\Delta p \Delta q}} \frac{\Delta p + \Delta q}{2 \sqrt{\Delta p \Delta q}} r
\]

Which is the relativistic version of Newton’s Second Law!
What Next?
Three-Dimensions and CPT

We can interpret time-reversal and parity in the poset. However, we know that CPT is the invariant. Could it be that Charge Conjugation is supported by the poset? If so, these influence events may give rise to electromagnetism as well as gravity!
It from bit symbolizes the idea that every item of the physical world has at bottom — at a very deep bottom, in most instances — an immaterial source and explanation; that which we call reality arises in the last analysis from the posing of yes-no questions and the registering of equipment-evoked responses; in short, that all things physical are information-theoretic in origin and that this is a participatory universe.

- John Archibald Wheeler
Thank You

This talk represents work from the following papers:


I would like to thank Newshaw Bahreyni, James Walsh, Ariel Caticha, Keith Earle, Oleg Lunin, Jeffrey Scargle and John Skilling for lively discussions, insights and comments. Portions of this work was supported by a grant from the Templeton Foundation.