Dynamic system classifier

Daniel Pumpe, Maksim Greiner, Ewald Müller, Torsten Enßlin

22.01.2016
OUTLINE

INTRODUCTION

MODEL TRAINING

MODEL SELECTION

CONCLUSION
Motivation - Complex Systems

To classify complex dynamical systems
Motivation - Complex Systems

To classify complex dynamical systems
Motivation- Complex Systems

To classify complex dynamical systems
Motivation - Complex Systems

To classify complex dynamical systems
The Goal

To classify complex dynamical systems

\[\text{s_1} \rightarrow \text{d} \rightarrow \text{s_2} \rightarrow \text{d} \rightarrow \text{s_3} \]

system classes

\[x(t) [\text{m}] \]

data
Bayes Theorem

"Information is what forces a change in belief" by Caticha

\[P(s \mid d) = \frac{P(d \mid s)P(s)}{P(d)} \]
STOCHASTIC DIFFERENTIAL EQUATION (SDE)

oscillating dynamical systems

\[
\frac{d^2x(t)}{dt^2} + \gamma \frac{dx(t)}{dt} + \omega^2 x(t) = F(t)
\]
STOCHASTIC DIFFERENTIAL EQUATION (SDE)

complex dynamical systems

\[
\frac{d^2 x(t)}{dt^2} + \gamma(t) \frac{dx(t)}{dt} + \omega_0 e^{\beta(t)} x(t) = \xi(t)
\]
Stochastic differential equation (SDE)

Complex dynamical systems

\[
\frac{d^2 x(t)}{dt^2} + \gamma(t) \frac{dx(t)}{dt} + \omega_0 e^{\beta(t)} x(t) = \xi(t)
\]

Operator form

\[
x_t = R_{tt'}^{(s)} \xi_{t'} \\
\left(R_{tt'}^{(s)}\right)^{-1} = \delta^{(2)} (t - t') - \gamma_t \delta^{(1)} (t - t') + \omega_0 e^{\beta_t} \delta (t - t')
\]
TRAINING DATA
CONSTRUCTION OF THE LIKELIHOOD

\[\beta_t \quad \gamma_t \quad s \quad R^{(s)} \quad x_t \]

- \(\beta_t \) and \(\gamma_t \): Signal field
- \(s \): Response operator
- \(R^{(s)} \): Response operator
- \(x_t \): Training data
The Likelihood of a SDE

\[\mathcal{P}(x|s) = \mathcal{G}(x, R^{(s)}\hat{\Xi} R^{(s)}) \]

- temporarily structured covariance
- characterizes a non-stationary processes
THE PRIOR

\[\mathcal{P}(\beta_t|\Omega) = \mathcal{G}(\beta_t, \Omega) \]
assuming statistical stationarity:

\[\Omega = \sum_{k} e^{\tau_k} \Omega_k \]
A HIERARCHICAL PRIOR MODEL

inverse Gamma Distribution

\[\mathcal{P}(\tau^\alpha | \alpha, q) \]
A hierarchical Prior model

inverse Gamma Distribution

\[\mathcal{P}(e^\tau | \alpha, q) \]

\[\alpha_{\beta}, \ q_{\beta} \]

\[\sigma_{\beta} \]

smoothness enforcing

\[\mathcal{P}(\tau | \sigma) \]
The model training
TRAINING DATA
RECONSTRUCTED γ_{REC}

![Graph showing reconstructed γ_{REC} over time](image-url)

- **Orginal γ**
- $x_{1,2}$
- $x_{1,2,3}$
- $x_{1,2,3,4}$
- $x_{1,2,3,4,5}$
- $x_{1,2,3,4,5,6}$
Reconstructed $P(k)$

- $P(k)$
- $P_{\text{Original}}(k)$
- $x_{1,2}$
- $x_{1,2,3}$
- $x_{1,2,3,4}$
- $x_{1,2,3,4,5}$
- $x_{1,2,3,4,5,6}$

Graph showing the comparison between the original and reconstructed distributions of $P(k)$ for different combinations of x values.
MODEL SELECTION

\[d = R_{\text{OBS}} x + n = R_{\text{OBS}} R^{(s)} \xi + n \]
Model selection

\[d = R_{OBS} x + n = R_{OBS} R^{(s)} \xi + n \]
Model selection

\[d = R_{\text{OBS}} x + n = R_{\text{OBS}} R^{(s)} \xi + n \]

\[\mathcal{P}(s_i | d) = \frac{\mathcal{P}(d | s_i) \mathcal{P}(s_i)}{\mathcal{P}(d)} \]
The Bayesian Network of DSC

\[\alpha_\beta, q_\beta \quad \sigma_\beta \quad \alpha_\gamma, q_\gamma \quad \sigma_\gamma \]

\[\tau_\beta \quad \beta_t \quad \gamma_t \quad \tau_\gamma \quad s \quad x_t \quad d \]

\[R^{(s)} \quad s_1 \quad s_2 \quad s_3 \]

training

classification
MODEL SELECTION - THE SYSTEM CLASSES
Test Case - SNR=10

\[\Delta_{i,j} = \log \mathcal{P}(d|s_i) - \log \mathcal{P}(d|s_j) \]
Test case - SNR= 10

\[\Delta_{i,j} = \log P(d|s_i) - \log P(d|s_j) \]

<table>
<thead>
<tr>
<th>d_{s_1}</th>
<th>SNR=10</th>
<th>\Delta_{i,j=1}</th>
<th>\Delta_{i,j=2}</th>
<th>\Delta_{i,j=3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>-4352</td>
<td>-1757</td>
<td></td>
</tr>
</tbody>
</table>
TEST CASE - SNR = 0.01

\[\Delta_{i,j} = \log P(d|s_i) - \log P(d|s_j) \]
Performance of DSC

\[\Delta_{i,j} = \log \mathcal{P}(d|s_i) - \log \mathcal{P}(d|s_j) \]

<table>
<thead>
<tr>
<th>SNR=0.01</th>
<th>(\Delta_{i,j=1})</th>
<th>(\Delta_{i,j=2})</th>
<th>(\Delta_{i,j=3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{s1})</td>
<td>0</td>
<td>-6</td>
<td>-5</td>
</tr>
<tr>
<td>(d_{s2})</td>
<td>-8</td>
<td>0</td>
<td>-10</td>
</tr>
<tr>
<td>(d_{s3})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNR=0.1</th>
<th>(\Delta_{i,j=1})</th>
<th>(\Delta_{i,j=2})</th>
<th>(\Delta_{i,j=3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{s1})</td>
<td>0</td>
<td>-144</td>
<td>-55</td>
</tr>
<tr>
<td>(d_{s2})</td>
<td>-151</td>
<td>0</td>
<td>-139</td>
</tr>
<tr>
<td>(d_{s3})</td>
<td>-1</td>
<td>-12</td>
<td>-0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SNR=10</th>
<th>(\Delta_{i,j=1})</th>
<th>(\Delta_{i,j=2})</th>
<th>(\Delta_{i,j=3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_{s1})</td>
<td>0</td>
<td>-4352</td>
<td>-1757</td>
</tr>
<tr>
<td>(d_{s2})</td>
<td>-6355</td>
<td>0</td>
<td>-5724</td>
</tr>
<tr>
<td>(d_{s3})</td>
<td>-60</td>
<td>-136</td>
<td>0</td>
</tr>
</tbody>
</table>
CONCLUSION

- DSC algorithm is established:
 1. Analyzes training data from system classes to construct abstract classifying information
 2. Confronts data with the system classes, to state the probability which system class explains observations best

- The classification ability of the DSC-algorithm has successfully been demonstrated in realistic numerical tests

- The DSC-algorithm should be applicable to a wide range of model selection problems
Thanks for your attention!
Classification - The likelihood

\[d = R_{\text{OBS}} x + n = R_{\text{OBS}} R^{(s)} \xi + n. \]

\[P(d|s_i) = \int D x \ P(d|x) P(x|s_i) \]

\[= \int D x \ G(d - R_{\text{OBS}} x, N) \]

\[\times G(x, R^{(s)\dagger} \Xi R^{(s)}) \]

\[\propto \frac{1}{\sqrt{|D|}} \exp \left(\frac{1}{2} j^\dagger D j \right) \]

with

\[j = R^{(s)\dagger} R_{\text{OBS}} N^{-1} d \]

and

\[D^{-1} = R^{(s)\dagger} R_{\text{OBS}} N^{-1} R_{\text{OBS}} R^{(s)} + \Xi^{-1}. \]