

A. Strong

Copenhagen, September 2004

Work done with

Igor Moskalenko (NASA Goddard)

Olaf Reimer (Bochum)

Seth Digel (Stanford)

γ**-rays**

The **goal** : use *all* types of data in self-consistent way to test models of cosmic-ray propagation.

Observed *near sun:* primary spectra (p, He ... Fe; e⁻) secondary/primary (B/C etc) secondary e⁺ secondary antiprotons

Observed *from whole Galaxy:* γ - rays

synchrotron

Cosmic-ray propagation

 $\partial \psi(\underline{r}, p) / \partial t = q(\underline{r}, p)$ cosmic-ray sources (primary and secondary)

+ $\nabla \cdot (D_{xx} \nabla \psi \quad \psi)$ diffusion convection

+ $\partial/\partial p \left[p^2 D_{pp} \partial/\partial p \psi / p^2 \right]$ $D_{pp} D_{xx} \sim p^2 v_A^2$ diffusive reacceleration (diffusion in p)

- $\frac{\partial}{\partial p} \left[\frac{dp}{dt} \psi \frac{p}{3} (\nabla \cdot) \psi \right]$ momentum loss adiabatic momentum loss ionization, bremstrahlung
- $-\psi/\tau_{f}$ nuclear fragmentation
- $-\psi / \tau_r$ radioactive decay

galprop

numerical solution of cosmic-ray transport 2D or 3D grid time-independent or time-dependent

primary source functions (p, He, C Ni) source abundances, spectra primary propagation

secondary source functions (Be, B...., e⁺ e⁻ p) using primaries and gas distributions secondary propagation

tertiary source functions tertiary propagation

 γ - rays (inverse Compton, π° - decay, bremsstrahlung) radio: synchrotron

galprop

3D gas model based on HI, CO surveys cosmic-ray sources $f(\underline{\mathbf{r}}, p)$ interstellar radiation field $f(\underline{\mathbf{r}}, \mathbf{v})$ nuclear cross-sections database energy-loss processes B-field model solar modulation

 γ - ray processes

galprop code: publicly available since 1998, many users continuous development Strong & Moskalenko ApJ 1998, 2000, 2004 Standard propagation model:

halo: sharp boundary, free escape. diffusion: Kolmogorov $D_{xx}(p) \sim \beta p^{1/3}$ diffusive reacceleration: $v_A \sim 30 \text{ km s}^{-1}$ no convection

This can give secondary/primary energy-dependence (GeV peak) without ad-hoc break in $D_{xx}(p)$.

(cf traditional procedure : $D_{xx}(p)$ = const below 3 GeV, $p^{0.6}$ above 3 GeV

Radioactive ¹⁰Be ($\tau = 10^6$ yr) sets limits on halo size and convection

```
Strong & Moskalenko 1998:
Halo height = 4 kpc
convection velocity < 7 km s<sup>-1</sup> kpc<sup>-1</sup>
```

NB needs more work since convection expected from Galactic wind!

Reference secondary/primary ratio: B/C (¹⁰⁺¹¹B/¹²⁺¹³C)

p

But observe fall-off at low energy peak in B/C

for D ~ β p^{0.6} (required to fit high energies)

B/C ~ β/D ~ $p^{-0.6}$

Conventional approach ad-hoc break in D_{xx}(p) Can reproduce data but no physical origin

Used in 'eaky-box' models

E

Peak in B/C explained by diffusive reacceleration with Kolmogorov D ~ β p ^{1/3} + avoids large cosmic-ray anisotropy at high energies.

Energy-dependent diffusive reacceleration produces bump in particle spectrum

Peak in B/C can also be due to a LOCAL SOURCE of cosmic-ray *primaries* with steep spectrum, good candidate: LOCAL BUBBLE

(Moskalenko et al. 2003)

Radioactive nuclei set limits on size of halo

Radioactive nuclei set limits on size of halo New data: ACE, ISOMAX

Moskalenko et al. 2003

Radioactive nuclei set limits on size of halo New data: ACE, ISOMAX

Hams et al. 2004 ApJ Aug 20

Secondary positrons, antiprotons good test of model (production in p-p collisions like γ-rays !)

galprop-computed cosmic-ray elemental abundances

Moskalenko et al. 2003

Synchrotron and B field

Cosmic-ray electrons from EGRET γ- rays -> B from synchrotron Strong, Moskalenko & Reimer 2000

Synchrotron and B field

Cosmic-ray electrons from EGRET γ- rays -> B from synchrotron Strong, Moskalenko & Reimer 2000

Synchrotron spectral index constrains interstellar electron spectral shape

Strong, Moskalenko & Reimer 2000

New WMAP etc. data not yet exploited !

Modelling diffuse Galactic gamma-rays:

Conventional model: p, e spectra as measured (& demodulated)

Conventional model: protons (+He) and electrons as directly measured

There really IS an excess !

Proposed explanations of GeV γ - ray excess:

1. SNR with injection CR spectra

2. Hard nucleon injection spectrum.

3. Hard electron injection spectrum

4. Moderate changes of nucleon and electron spectra

5. Exotic: dark matter

Wherever you look, the GeV γ -ray excess is there !

Proposed explanations of GeV γ - ray excess:

1. SNR with injection CR spectra: harder than propagated spectra => excess

NO: would give only excess at low latitudes, but observed everywhere

Proposed explanations of GeV γ - ray excess:

#2. Hard proton injection spectrum(e.g. if directly measured spectra are different from Galactic)

NO: too many antiprotons, positrons (produced along with γ - rays).

illustrates advantage of combined particles and γ - ray analysis

Hard electron injection spectrum: problem $E_{\gamma} > 10 \text{ GeV}$

rate $1/10^4$ yr/kpc³

Depends on SN rate

Proposed explanations of GeV γ -ray excess:

3. Hard electron injection spectrum

(interstellar harder than observed locally due to large energy losses causing big spatial fluctuations)

NO: too hard above 10 GeV

and

spatial fluctuations not enough to allow locally observed spectrum

Optimized model: *p*, *e* spectra factor 2-3 higher than measured (justification: spatial variations due to stochastic nature of sources)

Optimized model: vary proton, electron spectra compatible with expected spatial variations

Optimized model explains the GeV γ - ray excess everywhere!

Proposed explanations of GeV γ -ray excess:

4. Moderate changes in nucleon and electron spectra:

YES !

Optimized model Longitude, Latitude profiles

Optimized model Longitude, Latitude profiles EGRET γ-ray data

9g 10g

Optimized model Longitude, Latitude profiles EGRET γ-ray data

Conventional model underpredicts antiprotons

Optimized model for γ - rays also improves antiproton, positron predictions

Proposed explanations of GeV excess:

- SNR with injection CR spectra: NO: would give only excess at low latitudes, but observed everywhere
- 2. Hard nucleon injection spectrum: NO: too many antiprotrons, positrons.
- 3. Hard electron injection spectrum:
 NO: too hard above 10 GeV
 and spatial fluctuations not enough to allow locally observed spectrum
- 4. Moderate changes in nucleon and electron spectra YES !
- 5. Exotic: dark matter (WIMPS: e.g. de Boer et al. astro-ph/0312037) Maybe, if not #4

Pulsar distribution

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient.

SNR (traced by latest pulsar surveys: Lorimer 2004)

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient.

SNR (traced by latest pulsar surveys: Lorimer 2004)

Clue: Galactic metallicity gradient e.g. [O/H] *metallicity decreases with R*, X=H₂/CO *decreases with metallicity*

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient.

SNR (traced by latest pulsar surveys: Lorimer 2004)

Pulsar-SNR source distribution , $H_2/CO(R)$

Agrees with SNR distribution: supports SNR origin of cosmic rays

Conclusions

- 1. diffusive reacceleration model works well but not proven
- 2. halo height ~ 4 kpc
- 3. γ ray GeV excess caused by interstellar nucleon and electron spectra which are higher than directly measured
- 4. Bonus: predicts positrons & antiprotons correctly in reacceleration model !
- 5. SNR origin of CR consistent with EGRET data considering effect of metallicity gradient on H₂ / CO
 → better understanding of γ- ray / CR relation

Outlook:

more physical input (e.g. this meeting !) for

B-field model cosmic-ray propagation truly self-consistent models

Use of *galprop* to test such models against all available data.

Near future: GLAST γ - ray observatory: 2007

Galprop formula relevance to this conference: B, propagation, galprop code what could be done together

galprop model

2D / 3D / equilibrium / time dependent, stochastic sources CR propagation: primary, secondary, e^+ , p^- etc. Injection -- diffusion -- convection-- energy-loss - reacceleration γ - rays : using HI, CO, interstellar radiation field

