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The Bayes’ rule

1(m|0)7(6)

w(0lm) = POm)

, P(m) >0 (1)

e 7w(60|m) is the posterior density of the parameter given the measurements.

e w(60) is the prior density, the information on 6 before the measurement m
was made.

e [(m|0) is the likelihood function of the measurement — the statistical
model.

e P(m) is constant, usually called the marginal integral, that makes sure
that the posterior is a proper probability density.

P(m)Z/e @l(m|0)7r(9)d0. (2)
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The Bayes’ rule

The posterior density of parameters is actually always conditioned on the
chosen model (i.e. the likelihood is defined according to some statistical
model M). Hence, the Bayes' rule becomes

l(m|0, M) (6| M)

Olm, M) = 3
m(0]m, M) Bl A0 (3)
Similarly, the marginal integral can be written as
P(m|M) :/ [(m|0, M) (6, M)de. (4)
e

Because it is actually the probability of getting the measurements given that
the model M is the *‘correct one”, it can be called the likelihood of the
model. Sometimes it is also called the Bayesian evidence, though that might
be slightly misleading.
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The Bayes’ rule

The Bayes' rule works the same way regardless of the number of measure-
ments (or sets of measurements) available. For independent measurements
mi,t=1,...,N,

(i, .., m|0)m(0) _ w(8) [T, Li(mil)
P(mi,...,mn) P(mai,...,mn)

(5)

7(0lm1,...,my) =

The best part about the above equation is that:

e The likelihood model(s) can be anything that can be expressed mathe-
matically.

e The measurements can be anything (from different sources: RV, transit,
astrometry, etc.).

e NO assumptions are required about the nature of the probability densities
of model parameters 6.

e Also, if N is large (etc.), the prior w(6) can also be pretty much anything.
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Bayesian model selection

The relative posterior probability of model M; given measurement m can be
written as

P(m|M;)P(M;)
>ty P(m|M)P(M;)
where P(M;) is the prior probability of the ith model.

P(Mi|m) = (6)

The probability of (the event of getting) the measurement given the ith model
P(m|M;) is in fact the marginal integral. With the model in the notation, it
can be written as

P(m|M,) = /9  LGmlos MR(OIM,) a8 (7)

To compare the different models, all that is needed is the ability to calculate
the integral in Eq. (7).
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Likelihood functions

The common choice for a likelihood, arising from the famous central limit
theorem, is the Gaussian density:

1(m]6) = I(m]¢, =) = (2m)~/?[=| exp{—%[gw)—mfz-l[g(qs)—m}} (8)

The matrix X is unknown too (one of the nuisance parameters), though
usually it is assumed that X = 021, where 02 ¢ Ry.

Function g(¢) is commonly called the model, though it is the whole function
in Eq. (8) that actually is the model. The Gaussianity of the likelihood is
simply a very common assumption in practice (perhaps too much so).
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Priors

Priors are the only subjective part of Bayesian analyses — the rest consists of
mindless repetitive tasks (i.e. computing).

e Prior probability densities (prior models): something has to be assumed
always, a flat prior is still a prior (one that all frequentists using likelihoods
assume).

e Fixing parameters (e.g. fixing e = 0) corresponds to a delta-function
prior.

e Flat priors on different parameterisations, e.g. using parameters (e,w)
vs. (esinw,ecosw), result in different results.

e Prior probabilities for models do not have to be equal.
e [ he collection of candidate models is also selected a priori — comparison

of these models might be indistinguishable from comparison of different
prior models.
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Priors
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Bartlett’s paradox
Assume that for model M, 6 is defined such that 6 € ©.

Assume that the prior is of the form: =(6) = ch(f) for all 8 € © (zero
otherwise).

Given any m, it follows that
P(M1|m) x P(m|Mi)P(M3i)
= cP(My) / (]9, M1 )R(68)do (9)
USS)

If model Mg is the “null hypothesis such that e.g. 6 = 0, and we assume
that h(#) = 1 (because it can be chosen to be anything anyway) the model
probability P(Mi|m) « ¢ and P(Mglm) o« ¢!, which means that given a
sufficiently small ¢, the null hypothesis can never be rejected regardless of the
measured m/!

A paradox?
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Prior range

It is always possible to define the model parameters in such a way that the
prior range, i.e. the space © integrates to unity.

This corresponds to a linear transformation (or a chance of unit system):
0 —0, st. 0 =a0+0b. (10)

For instance, if the radial velocity amplitude K € [0,1000] ms~!, we can
choose K/’ = 1073K and the parameter space of K’ indeed integrates to unity.

This does not affect the analyses because we can use K or K’ in the likelihood
mean ¢g(#) to receive the exact same results. It does, however, change the
units of dK nicer.

Generally, any linear transformation of the parameters does not (cannot)
affect the results. What about non-linear transformations?
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Non-linear transformation

Assume a change of variables: 0 — 6’. This changes the prior density accord-
ing to

do

7(0) = w(e)‘ﬁ . (11)

For instance, when performing periodogram analyses, is it implicitly assumed
that the prior density of the period parameter is flat — in the frequency space.

A transformation P~! — P changes the priors such that a flat prior on P71 is
equivalent to m(P) o« P=2 on P.

Therefore, periodogram analyses underestimate the prior probabilities of sig-
nals at larger periods a priori.

Priors indeed are everywhere.
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Posterior sampling

Monte Carlo methods can be used efficiently to estimate the posterior den-
sities and the marginal integral in Eq. (4). First, however, it is necessary to
draw a sample from the (unknown) posterior density of the model parameters
given the measurements: Markov chain Monte Carlo.

Several posterior sampling (MCMC) methods exist:
e Gibbs sampling algorithm.
e Metropolis-Hastings algorithm.
e Adaptive Metropolis algorithm.
° ...
Out of these, the adaptive Metropolis algorithm (Haario et al. 2001) is

reasonably reliable: converges rapidly to the posterior density and does not
usually care about the initially selected proposal density nor the initial state.
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Importance sampling

The margigal integral can be estimated using the importance sampling method.
Estimate P(m) can be calculated using

Zivzl wi

where w; = 7(0;)7*(0;)~! and 7*(6;) is called the importance sampling function
that can be selected rather freely. N is the size of the sample drawn from =*.

B(m) = = (12)

A simple choise would be the posterior density. Setting 7*(0;) = w(8;/m) leads
to the harmonic mean estimate Py, defined as

N

_1
Pry(m) = N[Zl(mwz')l] : (13)

=1

However, this estimate has poor convergence properties. Other more complex
estimates should be preferred.
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Importance sampling

Another simple choise for the importance sampling function is a truncated
posterior, where

7(0:) = (1 = M) (0ilm) + Aw(0;—p|m). (14)

Parameter h is some small integer such that 0,_; is independent of 6, and A
IS a small positive number.

The resulting estimate, the “truncated posterior mixture* (TPM) estimate is

N N -
~ lim; i
B _ . (15
() =1 2 G i + Azimh] [; (A= Nlom + M| )

In practice, it appears to converge rapidly but more work is needed to assess
its properties. Especially, what would be the best choises of h and .

TPM estimate (Tuomi & Jones, 2012) M. Tuomi
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Is the best model good enough?

With the aforementioned tools, the best model out of the M different models
is available. But how do we know that this “best” model describes all the
information in the measurement?

The “Bayesian model inadequacy criterion” (BMIC) can help answering this
question.

e Assume that the best model M has been found.

e Assume that there are several independent measurements or sets of mea-
surements m;,i = 1,..., N.

e Model M describes the measurement m; using parameter 6.

e Assume that another model N describes the measurement m; with pa-
rameter 0; that differ from one another for : = 1,..., N. But model N has
the same likelihood function as M.

BMIC (Tuomi et al. 2011) M. Tuomi
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Bayesian model inadequacy criterion (BMIC)

With the above assumptions, it follows that:

N
P(ma, ... myN) = || P(miM) (16)
=1

Now, we compare the models M and N and say that the model M is an
inadequate description of the measurements if its probability is less than some
threshold probability s. Therefore, the model M is an inadequate description
of the measurements if

P(mai,...,my) s
Hilp(mi) < T (17)

B(ml, ...,mN) —

If the condition in Eq. (17) is satisfied, the model is an inadequate description
of the measurements with a probability of 1 — s.

BMIC (Tuomi et al. 2011) M. Tuomi
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Interpretation of the model inadequacy criterion

The Kullback-Leibler divergence is a measure of ‘“difference” between two
probability density functions f(6) and g(0) of random variable 6 and is defined
as

Dl fOlls@)} = | _©) 100 %da (18)

It is not symmetric, and generally Dx1{f(0)||g(0)} # Dr1r{g(0)||f(0)}.

When using the prior and posterior densities, it can be interpreted as the
“information gain” of moving from the prior to the posterior or “information
loss” of moving from the posterior back to the prior. With this interpretation,
the information loss is simply

do. (19)

Dicr{n(0)||m(6lm)} = / 2(0) log )

0cO 77(9|m)

BMIC (Tuomi et al. 2011) M. Tuomi
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Interpretation of the BMIC
In terms of information loss, the Bayes factor B(mi,...,my) can be written as

log B(mz, ...,mn) = Dgp{n()||x(8lm1,....,mn)}

N
—ZDKL{W(9)||7T(9|"”@')}- (20)
i=1

In other words, the information loss of not using any of the measurements
minus the information losses of each measurement is equal to the logarithm
of the “model inadequacy”.

Therefore, the Bayesian model inadequacy criterion is naturally related to the
information in the data in the above manner.

BMIC (Tuomi et al. 2011) M. Tuomi
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Interpretation of the BMIC

If it holds that B(m1,...,my) > 1, we cannot say that there is any model
inadequacy. However, this implies that

N
Dy {m(0)|[w(0|ma,...;mn)} =Y Drp{m(0)||w(6]mi)}. (21)
=1

This can be interpreted as saying that there is more information in the com-
bined set of data than there are in the individual measurements.

But it is only the case if the model is good enough in the sense of Eq. (17)
with s = 1/2.

BMIC (Tuomi et al. 2011) M. Tuomi
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BMIC for nested models

If each measurements m; can be described the best using some model M;
nested in the full model M, it follows that

P(ma1,...,my|M) S
: >
[[;=1 P(mi| M) 1—s

If the last inequality holds for the nested “submodels”, the full model cannot
be found inadequate either.

B(may, ..., mn|M) > (22)

A simple application of this result would be that the full model describes the
combined radial velocities of some target well but some nested submodels are
better for data from certain instruments because of their greater noise levels
or shorter baselines (a very common situation in practice).

Also, it holds that selecting s = 1/2,
B(m;,m;) > 1, forall i,j = B(mi,....,my) >1 (23)

BMIC (Tuomi et al. 2013, in preparation) M. Tuomi
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Bayes’ rule and dynamical information

In case of detections of exoplanet systems, there is a very useful additional
source of information — the Newtonian (or post-Newtonian if necessary) me-
chanics.

Because we cannot expect to detect an unstable planetary system, we can
say that the prior probability of detecting something unstable is zero (at least
negligible). Hence:

I(m,S|0)m(0) _ I(m|S,0)I(S|0)r(0)

m(fm, ) = P(m,S) P(m,S)

(24)

Because the laws of gravity do not depend on what we measured but the
results we obtain depend on them. We call § the “dynamical information’ .

But what is the likelihood function of dynamical information, I(S]0)7

Dynamical information (Tuomi et al. 2013, in preparation) M. Tuomi
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Bayes’ rule and dynamical information

The approximated Lagrange stability criterion for two subsequent planets
(Barnes & Greenberg, 2006) is defined as

» . 3\ 4/3
a3 (ul — 5—2> (p1v1 4 p2v20)” > 14 papo <E> , (25)

where p; = miM ™1, a = p1+p2, vi = /1 —€?, 6 = \Jaz/a1, M = m.+mi1+mo,
e; IS the eccentricity, a; is the semimajor axis, m; is the planetary mass, and
my 1S stellar mass.

We simply set [(S|0) = c if the criterion is satisfied and [(S]08) = 0 otherwise
(we call the set of stable orbits in the parameter space B C ©).

Alternatively, we could use a simpler form that only prevents orbital crossings
of the planets. Note that the stellar mass is one of the parameters.

The above does not take e.g. resonances into account, and is only a rough
approximation. Can we do better?

Dynamical information (Tuomi et al. 2013, in preparation) M. Tuomi



Posterior sampling with dynamics

A posterior sample from a MCMC analysis: 30; ~ 7(0lm),i =1, ...,

22

Each 6; as an initial state of orbital integration: K chains of N vectors with
0{ j=1,...,N, and 03 = 0;(t;) and t; is some moment between ¢t; = 0 and the

duration of the mtegratlons ty =1T.

Hence, we can approximate the posterior probability of finding 8 € I, C © of

dynamical information and data for each n-interval I; as

1
P(0 € I)|S, d) iEE:PWEIMSH)

1 K N
~ iy L D)

where

[ 1ifeel _(1ifeeB
1,(0) = { 0 otherwise 2Nd 1(0) = { 0 otherwise

(26)

Dynamical information (Tuomi et al. 2013, in preparation) M. Tuomi
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How to detect a signal (planet) from RVs?

There are k periodic signals in the radial velocities if
o P(Mim) > aP(My_j|m) for a selected threshold o« > 1 and for all j > 1.

e T he radial velocity amplitudes of all signals are statistically distinguishable
from zero, i.e. their BCSs (*) do not overlap with zero for a selected
(but sufficiently high) threshold § € [0, 1].

e All periodicities get well constrained from above and below.

e The planetary system corresponding to the solution (parameters k£ and
0) is stable.

(*) Set Dy = {9 eCCO: /9 CW(0|m) = 9§, 7(0|m)|pcoc = c}. (27)

Detection criteria (Tuomi 2012). M. Tuomi
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Periodic variations in XXXX RVs

Bayesian model comparisons
~4 and posterior samplings are
1 the perfect tool for answering
] these questions.
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Eccentricity prior

When searching for low-mass planets around nearby M dwarfs, can we use
informative priors?

Selecting all low-mass (m, < 0.1M,,p) planets in the Extrasolar Planets En-
cyclopaedia gives a distribution of eccentricities or such planets.

0.4 Eccentricity distribution of low-mass planets.

The didstribution appears to peak ata zero,
but that could be a bias caused by data anal-
ysis methods.

o
w

Gaussian curves of A(0,0.12), A (0,0.22%), and

Probability / Frequency
o
N

01 N(0,0.32).
%% oz 014\\ 06 08 1 T he second one of these curves seems to co-
Eccentricity incide with the data.

Tuomi & Anglada-Escudé 2013, submitted M. Tuomi
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Modelling radial velocity noise

e Usually RV data is binned (somehow) by calculating the average of few
velocities within an hour or so.

e Binning will always result in loss of information (because the transforma-
tion called “binning” is not a bijective mapping).

e Instead, model the noise as realistically as possible.

e Possibility to have the “binning” procedure as a part of the statistical
model, which enables comparisons of different procedures.

RV noise (Tuomi et al. 2013) M. Tuomi
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Modelling radial velocity noise

An effective analogue of “binning” is e.g. a noise model with moving average
(MA) component. This statistical model can be written as

p
m; = fr(ti) + & + Z Pj€i—j, (28)
j=1
where measurement m; at epoch ¢; is modelled using the function f,. and some
convenient white noise component g;.

The analyses of HARPS radial velocities indicate, that this noise model is
much better than pure white noise — and information is not lost if the MA
coefficients ¢; are selected conveniently (or even better, free parameters).

RV noise (Tuomi et al. 2013) M. Tuomi
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Planets around M dwarfs

Search for periodic signals in RV data is basically a difficult task because the
posterior is highly multimodal in the period space.

Because the noise is not white, periodogram analyses give biased results -
spurious powers and lack of them where they should be.

Solution: global search of the period space using temperate samplings.
1) Draw a sample from = (6|m)” with 3 € [0, 1].
2) Calculate log w(#|m) as a function of this chain.

3) Plot the chain as a function of period and find the global maximum (and
local ones).

Tuomi et al. Iin preparation M. Tuomi
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Definition of a planet candidate

All RV planets are only “planet candidates” because only minimum mass
(mypsini) is available.

1) Detection criteria are satisfied, including the dynamical stability criterion.

2) Not a false positive: supporting evidence from at least two independent
data sets from different instruments.

3) No periodicities in the activity data at orbital periods or the first harmon-
ics/aliases of them.

4) The significance of the signal increases (on average) when adding more
measurements to the data set.

Tuomi et al. Iin preparation M. Tuomi
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