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1 What Is It?

Im�t is a program for �tting astronomical images – speci�cally, for �tting images of galaxies,
though it could certainly be used for �tting other sources.�e user speci�es a set of one or more

2D surface-brightness functions (e.g., elliptical exponential, elliptical Sérsic, circular Gaussian)

which will be added together in order to generate a model image; this model image will then be

matched to the input image by adjusting the 2D function parameters via nonlinear minimization

of the total χ2 (or of the total Cash or Poisson-MLR statistics in the alternate case of Poisson statis-
tics).

�e 2D functions can be grouped into arbitrary sets sharing a common (x , y) position on the
image plane; this allows galaxies with o�-center components or multiple galaxies to be �t simulta-

neously. Parameters for the individual functions can be held �xed or restricted to user-speci�ed

ranges.�e model image can (optionally) be convolved with a point spread function (PSF) image

to bettermatch the input image; the PSF image can be any square, centered image the user supplies

– e.g., an analytic 2D Gaussian or Mo�at, a Hubble Space Telescope PSF generated by the TinyTim
program1 [Krist, 1995], or an actual stellar image. (A higher-resolution, “oversampled” PSF image

can also be used for one or more subsections of the full image.)

A key part of Im�t is a modular, object-oriented design that allows easy addition of new, user-
speci�ed 2D image functions.�is is accomplished bywriting C++ code for a new image-function

class (this can be done by copying and modifying an existing pair of .h/.cpp �les for one of
the pre-supplied image functions), making small modi�cations to two additional �les to include

references to the new function, and re-compiling the program.

Im�t is an open-source project; the source code is freely available under the gnu Public Li-
cense (gpl).

A note on names: �e Im�t package consists of three programs:

• imfit – the main image-�tting program;

• imfit-mcmc – a program to do Markov chain Monte Carlo (MCMC) analysis;

• makeimage – an auxiliary program which can be used to generate arti�cial galaxy images
(using the same input/output parameter-�le format that imfit uses).

In this document, I use Im�t (in boldface) to refer to the whole package and imfit to speci�c
use of the actual �tting program, although I’m not entirely consistent about this; in most cases

this distinction should be meaningless. (I.e., in most cases you’re using the imfit binary to �t
images.)

System Requirements: Im�t has been built and tested on Intel-based MacOS X (or macOS)
10.8–10.12 (Mountain Lion, Mavericks, Yosemite, El Capitan, and Sierra)2 and Linux (Ubuntu)

systems. It uses standard C++ or C++11 and should work on most Unix-style systems with a

1http://www.stsci.edu/hst/observatory/focus/TinyTim
2Versions 1.3 and earlier were also built for MacOS X 10.6 and 10.7; it’s unclear whether the current version could still

be compiled for those systems.
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modern C++ compiler and the Standard Template Library (e.g., gcc v4.8.1 or higher). It relies

on two external, open-source libraries: version 3 of the cfitsio library3 for fits image I/O and

version 3 of the fftw (Fastest Fourier Transform in theWest) library4 for PSF convolution. Some

optional components – as well as the imfit-mcmc program – require the gnu Scienti�c Library
(gsl),5 and the NLopt library6, but the program can also be built without these.

Im�t also includes modi�ed versions of Craig Markwardt’s mpfit code (an enhanced version
of the minpack-1 Levenberg-Marquardt least-squares �tting code); the Di�erential Evolution �t-

ting code of Rainer Storn and Kenneth Price (more speci�cally, a C++ wrapper written by Lester

E. Godwin); and an implementation of the MCMC DREAM algorithm in C++ by Gabriel Leven-

thal.7

3http://heasarc.nasa.gov/fitsio/
4http://www.fftw.org/
5http://www.gnu.org/s/gsl/
6http://ab-initio.mit.edu/wiki/index.php/NLopt
7https://github.com/gaberoo/cdream
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2 Getting and Installing Im�t

2.1 Pre-Compiled Binaries

Pre-built binaries for Intel-based MacOS X and Linux systems, along with the source code, are

available at http://www.mpe.mpg.de/~erwin/code/imfit/. �e pre-compiled binaries in-
cluded statically linked versions of the cfitsio, fftw, gsl, and NLopt libraries, so you do not

need to have those installed. (�e pre-built Linux binaries do require that the system GNU C
library be version 2.15 or more recent.)

2.2 Building Im�t from Source: Outline

�e standard source-code distribution for Im�t can be found at the main Im�t web site (see
above). An expanded version of the source code (including extra tests, notes, and auxiliary pro-

grams) can be found at Im�t’s GitHub site: http://github.com/perwin/imfit.
�e basic outline for building Im�t from source is:

1. Install the cfitsio library (version 3.0 or higher).

2. Install the fftw library (version 3.0 or higher) – note that if you have a multi-core CPU (or

multiple CPUs sharing main memory), you should build and install the threaded version

of fftw as well, since this speeds up PSF convolution considerably. Building fftw with

SSE2 and AVX support will provide a ∼ 10–20% speedup for PSF convolutions, so that’s also

recommended, though not as strongly.

3. (Optional, but strongly recommended) Install the NLopt library – this is necessary if you

wish to use the Nelder-Mead minimization algorithm. Im�t can be built without this, if for
some reason you don’t have access to the NLopt library.

4. (Optional) Install the gnu Scienti�c Library (gsl) – this is necessary if you want to use the

MCMC program imfit-mcmc. It is also necessary if you wish to use certain image func-
tions that rely on gsl. Currently, the only such functions are the EdgeOnDisk component

and the sample 3D line-of-sight integration functions (e.g., ExponentialDisk3D). Im�t can
be built without these components, if for some reason you don’t have access to the gsl.

5. Install SCons (if needed; see below).

6. Build imfit, imfit-mcmc, and makeimage.

7. (Optional) Run test scriptsdo_imfit_tests, do_mcmc_tests, anddo_makeimage_tests.

2.3 Building Im�t from Source: Details

Assuming that cfitsio and fftw (and optionally NLopt and gsl) have already been installed on

your system (steps 1–4 from the outline in the previous section), unpack the source-code tarball

(im�t-x.x-source.tar.gz) in some convenient location.
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Building with SCons

By default, Im�t uses SCons for the build process. SCons is a Python-based build system that
is somewhat easier to use and more �exible than the traditional make system; it can be down-
loaded from http://www.scons.org/ or installed via your favorite packagemanager, including
Python’s Pip.

If things are simple, you should be able to build Im�t and the companion program makeimage
with the following commands:

$ scons imfit
$ scons imfit-mcmc
$ scons makeimage

�is will produce three binary executable �les: imfit, imfit-mcmc, and makeimage. Copy these
to some convenient place on your path.

If you do not have the NLopt library installed, you will get compilation errors; this can be dealt

with by using:

$ scons --no-nlopt imfit
$ scons --no-nlopt imfit-mcmc
$ scons --no-nlopt makeimage

Similarly, if you do not have gsl installed, you will get compilation errors; use the following

commands instead (note that you cannot build imfit-mcmc without gsl):

$ scons --no-gsl imfit
$ scons --no-gsl makeimage

Various other compilation options may be useful, particularly for telling SCons where to look

for library �les; these are explained in the next subsections (note that all the SCons options can be

combined on the command line).

Tests

Finally, there are three shell scripts –do_imfit_tests, do_mcmc_tests, anddo_makeimage_tests
– which can be run to do some very simple sanity checks (e.g., do the programs �t some simple

images correctly, are common con�g-�le errors caught, etc.). �ey make use of �les and data in

the tests/ subdirectory. Di�erences in output at the level of the least signi�cant digit compared
to the reference �les may occur when running the tests on a Linux system; these should not be

considered problems. (�is sort of thing appears to depend on subtle di�erences in how di�erent

compilers and libraries handle �oating-point computations and rounding.)

For the full set of tests to run, you should have Python version 2.6 or 2.7 installed, along with

the Python libraries numpy8 and either py�ts9 or astropy.10 If these are not available, then the

parts of the tests which compare output images with reference versions will be skipped.

8http://numpy.scipy.org/
9http://www.stsci.edu/institute/software_hardware/pyfits
10http://www.astropy.org
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Telling the Compiler Where to Find Header Files and Libraries

By default, the SConstruct �le (the equivalent of a Make�le for SCons) included in the source

distribution for Im�t tells SCons to look for header �les in/usr/local/include and library �les
in /usr/local/lib. If you have the fftw, cfitsio, and/or (optionally) NLopt and gsl headers
and libraries installed somewhere else, you can tell SCons about this by using the --header-path
and --lib-path options:

$ scons --header-path=/some/path ...
$ scons --lib-path=/some/other/path ...

(note that "..." is meant to stand for the rest of the compilation command, whatever that may be).
�is will add the speci�eddirectories to the header and library search paths (/usr/local/include
and /usr/local/lib will still be searched as well).
Multiple paths can be speci�ed if they are separated by colons, e.g.

$ scons --lib-path=/some/path:/some/other/path ...

Options: CompilingWithout OpenMP Support

By default, imfit and makeimage are compiled to take advantage of OpenMP compiler support,
which speeds up image computation (a lot) by splitting it up across multiple CPUs (and multiple
cores within multi-core CPUs). �e code uses OpenMP 2.5 options, which are available with

versions of gcc 4.2 or higher. (�ough since the code also uses C++11 features, you really need

gcc 4.8.1 or higher.)

If your compiler does not support OpenMP – or you want, for whatever reason, a version

that does not include OpenMP support – you can disable it by compiling with the following com-

mands:

$ scons --no-openmp ...

Peculiarities of Compiling on Mac OS X

�e standard compiler tools for Mac OS X are those which come with Apple’s Xcode. Prior to ver-

sion 5, Xcode included gcc 4.2 (or an LLVM-based equivalent called “llvm-gcc”). Unfortunately,

the command-line compilers which come with Xcode 5 and later are based on Clang instead of

gcc and so do not support OpenMP. (Confusingly, the Clang-based tools include “gcc” and “g++”
links which are wrappers around clang and clang++. To be sure, try gcc -v; if you see some-
thing like “Apple LLVM version”, then you know it’s really the Clang compiler.)

In order to compile Im�t with OpenMP, you will need either an old version of Xcode (e.g.,
from a prior installation) or, more plausibly, a separate installation of gcc 4.2 or later, such as

those available via package managers such as Fink, MacPorts, or Homebrew.

(Current non-Apple-speci�c versions of LLVMandClang includeOpenMP, so future versions

of Xcode might hopefully restore support for OpenMP, though this is just speculation at the mo-
ment.)
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Options: CompilingWithout FFTMultithreading

By default, the Im�t binaries are compiled to take advantage of multi-core CPUs (and other
shared-memory multiple-processor systems) when performing PSF convolutions by using the

multithreaded version of the fftw library. If you do not have (or cannot build) the multithreaded

fftw library, you can remove multithreaded FFT computation by compiling with the following

commands:

$ scons --no-threading imfit
$ scons --no-threading imfit-mcmc
$ scons --no-threading makeimage
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3 Trying It Out

In the examples/ directory are some sample galaxy images, masks, PSF images, and con�gura-
tion �les. To give Im�t a quick spin (and check that it’s working on your system), change to the
examples/ directory and execute the following on the command line (assuming that the imfit
binary is now in your path; if it isn’t you can access it via ../imfit):

$ imfit ic3478rss_256.fits -c config_sersic_ic3478_256.dat --sky=130.14

�is converges to a �t in a few seconds or less (e.g., about 0.5 seconds on a 2011 MacBook Pro

with a 2.3 GHz Core i7 processor). In addition to being printed to the screen, the �nal �t is saved

in a �le called bestfit_parameters_imfit.dat.
�e preceding command told imfit to �t using every pixel in the image and to estimate the

noise assuming an original (previously subtracted) sky level of 130.14, an A/D gain of 1.0, and zero

read noise (the latter two are default values). A better approachwould be to include amask (telling

imfit to ignore, e.g., pixels occupied by bright stars) and to specify more accurate values of the
gain and read noise:

$ im�t ic3478rss_256.�ts -c con�g_sersic_ic3478_256.dat --mask ic3478rss_256_mask.�ts
--gain=4.725 --readnoise=4.3 --sky=130.14

If you want to see what the best-�tting model looks like, you can use the companion program

makeimage on the output �le:

$makeimage best�t_parameters_im�t.dat --re�mage ic3478rss_256.�ts

�is will generate and save the model image in a �le called modelimage.fits. (�e imfit pro-
gramcan itself save the best-�ttingmodel image at the endof the �tting process if the--save-model
option is used.)

You can also �t the image using PSF convolution, by adding the “--psf” option and a valid
fits image for the PSF; the examples/ directory contains a Mo�at PSF image which matches
stars in the original image fairly well:

im�t ic3478rss_256.�ts -c con�g_sersic_ic3478_256.dat --mask ic3478rss_256_mask.�ts
--gain=4.725 --readnoise=4.3 --sky=130.14 --psf psf_mo�at_51.�ts

�e PSF image was generated using makeimage and the con�guration �le
config_makeimage_moffat_psf.dat:

makeimage -o psf_moffat_51.fits config_makeimage_moffat_psf.dat
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4 Using Im�t

Basic use of Im�t from the command line looks like this:

$ imfit -c con�g-�le input-image [options]

where con�g-�le is the name of the con�guration �le which describes the model (the combination
of 2D functions, initial values for parameters, and possible limits on parameter values) and input-
image is the fits image we want to �t with the model.
Note that both con�g-�le and input-image – as well as other �le names speci�ed by options

discussed below – can be plain �lenames in the current working directory, relative paths (e.g.,

data_dir/image.fits), or absolute paths.
�e “options” are a set of command-line �ags and options (use “imfit -h” or “imfit --help”

to see the complete list). Options must be followed by an appropriate value (e.g., a �lename, an

integer, a �oating-point number); this can be separated from the option by a space, or they can be

connected with an equals sign. In other words, both of the following are valid:

imfit --gain 2.5
imfit --gain=2.5

Note that Im�t does not follow the full gnu standard for command-line options and �ags (as
implemented by, e.g., the gnu getopt library): you cannot merge multiple one-character �ags
into a single item (if “-a” and “-b” are �ags, “-a -b” will work, but “-ab” will not), and you
cannot merge a one-character option and its target (“-cfoo.dat” is not a valid substitute for “-c
foo.dat”).

4.1 Command-line Flags and Options

Some notable and useful command-line �ags and options include:

• -c, --config con�g-�le – the only required command-line option, which tells imfit the
name of the con�guration �le. (Actually, if you don’t supply this option, imfit will look
for a �le called “im�t_con�g.dat”, but it’s best to explicitly specify your own con�guration

�les.)

• --psf psf-image – speci�es a fits image to be convolved with the model image.

• --overpsf psf-image – speci�es an oversampled fits image to be convolved with (a subre-
gion of) the model image.

• --overpsf_scale scale – speci�es the oversampling factor of the oversampled PSF image
(an integer > 1). E.g., for a 5 × 5 oversampled PSF image (25 PSF pixels for each data-image

pixel), the scale is 5.

• --overpsf_region x1:x2,y1:y2 – speci�es the subsection of the image where oversampled
PSF convolution will be done. Multiple oversampled regions (each convolved with the same

oversampled PSF) can be speci�ed by repeating this command.
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• --mask mask-image – speci�es a fits image which marks bad pixels to be ignored in the
�tting process. By default, zero values in the mask indicate good pixels, and positive values
indicate bad pixels.

• --mask-zero-is-bad – indicates that zero values (actually, any value < 1.0) in the mask
correspond to bad pixels, with values ≥ 1.0 being good pixels.

• --noise noisemap-image – speci�es a pre-existing noise or error fits image to use in the
χ2 �tting process (by default, pixel values in the noise map are assumed to be Gaussian σ
values).

• --errors-are-variances – indicates that pixel values in the noise map are variances
(σ 2) instead of sigmas.

• --errors-are-weights – indicates that pixel values in the noise map should be inter-
preted as weights (e.g., 1/σ 2), not as sigmas or variances. (None of these three options is
usable with Cash statistic or Poisson-MLR statistic minimization.)

• --sky sky-level – speci�es an original constant sky background level (in counts/pixel) that
was previously subtracted from the image; this is used for internal computation of the noise
map (for χ2 minimization) or for correcting the Cash statistic or Poisson-MLR statistic
computation. (If the units of the pixel values are counts/sec, then the sky level should also be

in those units, and you should use the “--exptime” option to specify the original exposure
time.)

• --gain value – speci�es the A/D gain (in electrons/ADU) of the input image; used for
internal computation of the noise map (for χ2 minimization) or for correcting the Cash
statistic and Poisson-MLR statistic computation.

• --readnoise value – speci�es the read noise (in electrons) of the input image; used for
internal computation of the noise map for χ2 minimization (this is ignored in the case of
Cash statistic or Poisson-MLR statistic minimization).

• --exptime value – speci�es the exposure time of the image; this should only be used if the
image has been divided by the exposure time (i.e., if the pixel units are counts/sec).

• --ncombined value – if values in the input image are the result of averaging (or computing
the median of) two or more original images, then this option should be used to specify the

number of original images; this is used for internal computation of the noise map (for χ2

minimization) or for correcting the Cash statistic and Poisson-MLR statistic computation.

If multiple images were added together with no rescaling, then do not use this option.

• --save-params output-�lename – speci�es that parameters for best-�tting model should
be saved using the speci�ed �lename (the default is for these to be saved in a �le named

bestfit_parameters_imfit.dat).

• --save-model output-�lename – the best-�tting model image will be saved using the spec-
i�ed �lename.

11



• --save-residual output-�lename – the residual image (input image − best-�tting model
image) will be saved using the speci�ed �lename.

• --nm – useNelder-Mead simplex instead of Levenberg-Marquardt as theminimization tech-
nique (Warning: slower)

• --de–useDi�erential Evolution instead of Levenberg-Marquardt as theminimization tech-
nique (Warning: much slower!)

• --nlopt algorithm-name – use one of the “local derivative-free” minimization algorithms
from theNLopt library;11 recognized options are COBYLA, BOBYQA,NEWUOA, PRAXIS,

and SBPLX.�ese are generally slower and/or less robust than the Nelder-Mead simplex

algorithm (which is also part of the NLopt library, and can be speci�ed with --nlopt NM,
though it’s simpler just to use --nm).

• --model-errors –use themodel image pixel values (instead of the data values) to estimate
the individual-pixel dispersions σi for χ2 minimization

• --cashstat – use Cash statistic C instead of χ2 as the �t statistic for minimization. �is
is especially useful in the case of Poisson statistics and low or zero read noise, but it also

provides less biased �ts than the χ2 approach even when count levels are high. Cannot be
used with the (default) Levenberg-Marquardt minimization technique.

• --poisson-mlr or -mlr – like --cashstat, but uses the Poisson Maximum-Likelihood-
Ratio statistic for minimization (this is the same as the “CSTAT” statistic in the X-ray pack-

ages XSPEC and Sherpa); �ts should be essentially identical.�emain di�erence is that this

statistic is always ≥ 0, which means it can be used with the (default) Levenberg-Marquardt
minimization technique.

• --ftol FTOL-value – specify tolerance for fractional improvements in the �t statistic value;
if further iterations do not reduce the �t statistic by more than this, the minimization is

considered a success and halted (default value = 10−8)

• --bootstrap n-iterations – Do n-iterations rounds of bootstrap resampling a�er the �t, to
estimate parameter errors.

• --save-bootstrap �lename – �le to save individual best-�t parameter values from the
bootstrap resampling (one line per iteration).

• --quiet – Suppress printing of intermediate �t-statistic values during the �tting process.

• --loud – Print intermediate parameter values during the �tting process. Currently appli-
cable to L-M �tting (current best-�t parameter values are printed once per iteration) and

N-M simplex �tting (best-�t values printed once per 100 interations).

11See http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms.
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• --chisquare-only or --fitstat-only (these are synonyms) – Evaluate the χ2 value for
the initial input model as a �t to the input image, without doing any minimization to �nd a
better solution. (If --cashstat or --poisson-mlr is also speci�ed, then the appropriate
statistic is evaluated instead.)

• --max-threads n-threads – speci�es the maximum number of CPU cores to use during
computation (the default is to use all available CPU cores); has no e�ect if Im�t was com-
piled without OpenMP or fftwmultithreading support.

• --seedN – speci�es a speci�c integer seed to use with random number generation; applies
to DE �ts and also to bootstrap resampling. �is is mainly for testing purposes, to ensure

that the same sequence of pseudo-random numbers is generated. (By default, the current

system time is used as a seed, ensuring that no two runs have the same random seed.)

• --sample-config – generates and saves a simple example of an Im�t con�guration �le
(named config_imfit_sample.dat).

• --list-functions – list all the functions Im�t can use.

• --list-parameters – list all the individual parameters (in correct order) for each of the
functions that Im�t can use. You can copy and paste pieces of the output of this command
to help construct a con�guration �le.
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5 �e Con�guration File

Im�t always requires a con�guration �le, which speci�es the model which will be �t to the input
image, initial values formodel parameters, any limits on parameter values (optional for �ttingwith

the Levenberg-Marquardt solver, but required for �tting with the Di�erential Evolution solver),

and possibly additional information (e.g, gain and read noise for the input image).

�e con�guration �le should be a plain text �le. Blank lines and lines beginning with “#” are

ignored; in fact, anything on the same line a�er a “#” is ignored, which allows for comments at

the end of lines.

A model for an image is speci�ed by one or more function blocks, each of which is a group
of one or more 2D image functions sharing a common (x , y) spatial position. Each function-
speci�cation consists of a line beginning with “FUNCTION” and containing the function name,

followed by one or more lines with speci�cations for that function’s parameters.

More formally, the format for a con�guration �le is:

1. Optional speci�cations of general parameters and settings (e.g., the input image’s A/D gain

and read noise)

2. One or more function blocks, each of which contains:

a) X-position parameter-speci�cation line

b) Y-position parameter-speci�cation line

c) One or more function + parameters speci�cations, each of which contains:

i. FUNCTION + function-name line

ii. one or more parameter-speci�cation lines

�is probably sounds more complicated than it is in practice. Here is a very bare-bones exam-

ple of a con�guration �le:

X0 150.1
Y0 149.5
FUNCTION Exponential
PA 95.0
ell 0.45
I_0 90.0
h 15.0

�is describes a model consisting of a single elliptical exponential function, with initial values

for the x and y position on the image of the object’s center, the position angle (PA), the ellipticity
(ell), the central intensity (I_0) in counts/pixel, and the exponential scale length in pixels (h). None

of the parameters have limits on their possible values.

Here is the same �le, with some additional annotations and with limits on some of the param-

eters (comments are colored red for clarity):
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# This line is a comment

X0 150.1 148,152
Y0 149.5 148,152 # a note
FUNCTION Exponential # here is a comment
PA 95.0 0,180 # limits on the position angle
ell 0.45 0,1 # ellipticity should always be 0--1
I_0 90.0 fixed # keep central intensity fixed
h 15.0

Here we can see the use of comments (lines or parts of lines beginning with “#”) and the use of

parameter limits in the form of “lower,upper”: the X0 and Y0 parameters are required to remain

≥ 148 and ≤ 152, the position angle is limited to 0–180, the ellipticity must stay ≥ 0 and ≤ 1, and

the central intensity I_0 is held �xed at its initial value.

Finally, here is a more elaborate example, specifying a model that has two function blocks,

with the �rst block having two individual functions (this could be a model for, e.g., simultane-

ously �tting two galaxies in the same image, one as Sérsic + exponential, the other with just an

exponential):

# This line is a comment

GAIN 2.7 # A/D gain for image in e/ADU
READNOISE 4.5 # image read-noise in electrons

# This is the first function block: Sersic + exponential
X0 150.1 148,152
Y0 149.5 148,152
FUNCTION Sersic # A Sersic function
PA 95.0 0,180
ell 0.05 0,1
n 2.5 0.5,4.0 # Sersic index
I_e 20.0 # intensity at the half-light radius
r_e 5.0 # half-light radius in pixels
FUNCTION Exponential
PA 95.0 0,180
ell 0.45 0,1
I_0 90.0 fixed
h 15.0

# This is the second function block: just a single exponential
X0 225.0 224,226
Y0 181.7 180,183
FUNCTION Exponential
PA 22.0 0,180
ell 0.25 0,1
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I_0 10.0
h 20.0

5.1 Parameter Names, Speci�cations, and Values

�e X0/Y0 position lines at the start of each function block and the individual parameter lines for

each function all share a common format:

parameter-name initial-parameter-value optional-limits

�e separation between the individual pieces must consist of one or more spaces and/or tabs.

�e �nal piece specifying the limits is optional (except that �tting in Di�erential Evolution mode

requires that there be limits for each parameter).

Parameter Names: �e X0/Y0 positional parameters for each function block must be labeled
“X0” and “Y0”. Names for the parameters of individual functions can be anything the user desires;

only the order matters.�us, the position-angle parameter could be labeled “PA”, “PosAngle”, “an-

gle”, or any non-space-containing string – though it’s a good idea to have it be something relevant

and understandable.

Important Note: Do not change the order of the parameters for a particular function! Because
the strings giving the parameter names can be anything at all, imfit actually ignores them and
simply assumes that all parameters are in the correct order for each function.

Note that any output which imfit generates will use the default parameter names de�ned in
the individual function code (use “--list-parameters” to see what these are for each function).

Values for Positional Parameter (X0, Y0):�e positional parameters for each function block
are pixel values – X0 for the column number and Y0 for the row number. Im�t uses the iraf pixel-
numbering convention: the center of �rst pixel in the image (the lower le� pixel in a standard

display) is at (1.0, 1.0), with the lower-le� corner of that pixel having the coordinates (0.5, 0.5).

Note that these positions are in the coordinate system of the entire image.�at is, if you specify

a subsection of the image to be �t (e.g., “image.�ts[150:350,425:700]”), the X0 and Y0 values must

still be absolute positions referring to the original image, not relative positions with the subsection.

General Parameter Values for Functions: �e meaning of the individual parameter values
for the various 2D image functions is set by the functions themselves, but in general:

• position angles are measured in degrees counter-clockwise from the image’s vertical (+y)
axis (i.e., degrees E of N if the image has standard astronomical orientation);

• ellipticity = 1 − b/a, where a and b are the semi-major and semi-minor axes of an ellipse;

• intensities are in counts/pixel;

• lengths are in pixels.

If you write your own functions, you are encouraged to stick to these conventions.
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5.2 Parameter Limits

Individual parameters can be limited in two ways:

1. Held �xed;

2. Bounded between lower and upper limits.

To hold a parameter �xed, use the string “�xed” a�er the initial-value speci�cation. E.g.:

X0 442.85 �xed

To specify lower and upper limits for a parameter, include them as a comma-separated pair fol-

lowing the initial-value speci�cation. E.g.:

X0 442.85 441.0,443.5

Note that specifying equal lower and upper limits for a parameter (or a lower limit which is higher
than the upper limit) is not allowed; to specify that a parameter value should remain constant,

used the “�xed” keyword as described above.Warning: there should be no spaces before or a�er
the comma. E.g., use “441.0,443.5”, not “441.0, 443.5” or “441.0 , 443.5”.

5.3 Optional Image-Description Parameters

�e con�guration �le can, optionally, contain one or more speci�cations of parameters describing

the whole image, which take the place of certain command-line options for computing the inter-

nal noise map.�e speci�cations should be placed at the beginning of the con�guration �le, before
the �rst function block is described.�e format is the same as for other parameters in the con�g-

uration �le: the name of the parameter, followed by one or more spaces and/or tabs, followed by

a numerical value. E.g.,

GAIN 2.7
READNOISE 4.5

�e currently available image-description parameters are (see Section 4.1 for more details

about the corresponding command-line options):

• GAIN – same as command-line option --gain (A/D gain in electrons/ADU)

• READNOISE – same as command-line option --readnoise (read noise in electrons)

• EXPTIME – same as command-line option --exptime

• NCOMBINED – same as command-line option --ncombined

• ORIGINAL_SKY – same as command-line option --sky (original background level that
was subtracted from the image)

In situations where a con�guration �le contains one of these speci�cations and the correspond-

ing command-line option is also used, the command-line option always overrides whatever value
is in the con�guration �le.
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6 Standard Image Functions

Im�t comes with the following 2D image functions, each of which can be used as many times as
desired. (As mentioned above, Im�t is designed so that constructing and using new functions is
a relatively simple process.) Most of these functions use a speci�ed radial intensity pro�le (e.g.,

Gaussian, exponential, Sérsic) with elliptical isophote shapes. Note that elliptical functions can

always be made circular by setting the “ellipticity” parameter to 0.0 and specifying that it be held

�xed. See Appendix A for more complete discussions of all functions, including their parameters.

• FlatSky – a uniform sky background.

• Gaussian – an elliptical 2D Gaussian function.

• Mo�at – an elliptical 2D Mo�at function.

• Exponential – an elliptical 2D exponential function.

• Exponential_GenEllipse – an elliptical 2D exponential function using generalized ellipses

(“boxy” to “disky” shapes) for the isophote shapes.

• Sersic – an elliptical 2D Sérsic function.

• Sersic_GenEllipse – an elliptical 2D Sérsic function using generalized ellipses (“boxy” to

“disky” shapes) for the isophotes.

• Core-Sersic – an elliptical 2D Core-Sérsic function [Graham et al., 2003, Trujillo et al.,

2004].

• BrokenExponential – similar to Exponential, but with two exponential radial zones (with
di�erent scalelengths) joined by a transition region at Rbreak of variable sharpness.

• GaussianRing – an elliptical ring with a radial pro�le consisting of a Gaussian centered at

r = Rring.

• GaussianRing2Side – like GaussianRing, but with a radial pro�le consisting of an asymmet-

ric Gaussian (di�erent values of σ for r < Rring and r > Rring).

• EdgeOnDisk – the analytical form for a perfectly edge-on exponential disk, using the Bessel-

function solution of van der Kruit & Searle [1981] for the radial pro�le and the generalized

sech function of van der Kruit [1988] for the vertical pro�le. Note that this function requires

that the gnu Scienti�c Library (gsl) be installed; if the gsl is not installed, Im�t should be
compiled without this function (see Section 2.3).

• EdgeOnRing – a simplisticmodel for an edge-on ring, using aGaussian for the radial pro�le

and another Gaussian (with di�erent σ) for the vertical pro�le.

• EdgeOnRing2Side – like EdgeOnRing, but using an asymmetric Gaussian for the radial

pro�le (see description of GaussianRing2Side).

In addition, four “3D” functions are available. With these, the intensity value for each pixel

comes from line-of-sight integration through a 3D luminosity-density model, generating a pro-

jected 2D model image given input speci�cations of the orientation and inclination to the line of

sight. All of these require the gsl for compilation from source (see Section 2.3).
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• ExponentialDisk3D – uses a 3D luminosity-density model of an axisymmetric exponential

disk (with di�erent radial and vertical scale lengths), observed at an arbitrary inclination,

to generate a projected surface-brightness image.

• BrokenExponentialDisk3D – similar to ExponentialDisk3D, except that the radial pro�le of

the luminosity density is a broken exponential.

• GaussianRing3D – uses a 3D luminosity-density model of an elliptical ring with Gaussian

radial and exponential vertical pro�les.

• FerrersBar3D – uses a 3D luminosity-density model of a triaxial Ferrers [1877] ellipsoid.

A list of the currently available functions can always be obtained by running imfit with the
“--list-functions” option:

$ imfit --list-functions

�e complete list of function parameters for each function (suitable for copying and pasting into

a con�guration �le) can always be obtained by running imfit with the “--list-parameters”
option:

$ imfit --list-parameters
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7 Images

Im�t is designed to �t 2D astronomical images in fits format, where pixel values are some form of
linear surface-brightness (or surface density)measurement.�e default internal error calculations

(see Section 8.2, below) assume that pixel values are integrated counts (e.g., ADUs), which can be

converted to detected photons using the A/D gain (provided by the “--gain” option, or by the
GAIN keyword in a con�guration �le). However, since Im�t can also accept a user-supplied
noise/error image in fits format, you can use any linear pixel values as long as the corresponding

noise image is appropriately scaled to match (and you’re using χ2 statistics).
If your image is in counts/second, you can either multiply it by the exposure time to recover

the integrated counts, or include the actual exposure time via the “--exptime” option (or the
EXPTIME keyword in a con�guration �le).

If the image is an average ofN input images of the same exposure time, you can eithermultiply
the image by N or use the “--ncombined” option to tell Im�t how to adjust the error estimations.
�e latter option is slightly better, because Im�t will also scale the read noise accordingly (if χ2

statistics are being used and the read noise is nonzero).

Im�t does not assume the presence of any particular header keywords in the fits �le.

7.1 Specifying Image Subsections, Compressed Images, etc.

Image Subsections

In many cases, you may want to �t an object which is much smaller than the whole image. You

can always make a smaller cutout image and �t that, but it may be convenient to specify the image

subsection directly. You can do this using a subset of the image-section syntax of cfitsio (which

will be familiar to you if you’ve ever worked with image sections in iraf). An example:

ic3478rss_256.�ts[45:150,200:310]

�is will �t columns 45–150 and rows 200–310 of the image (column and row numbering starts

at 1 and is inclusive, so “[1:10]” means column or row numbers 1 through 10). Pixel coordinates in

the con�guration (and output) �les refer to locations within the full image, not relative positions
within the subsection. Note that this works as-is when running Im�t from within the Bash shell;
for the C shell, you may need to enclose the image name + speci�cation in quotation marks.

�e only kind of image section speci�cation that’s allowed is a simple [x1:x2,y1:y2] format,

though you can specify all of a particular dimension using an asterisk (e.g., [*,y1:y2] to specify the

full range of x values). Exception: you can also specify an image extension number for a multi-

extension fits �le; see below.

Obviously, if you are also using a mask image (and/or a noise image), you should specify the

same subsection in those images!

Image Extensions; Compressed Files

By default, Im�t will try to read the �rst (“primary”) Header Data Unit (HDU) in a fits �le. If
this is not a proper 2D image – e.g, if it is an empty, header-only HUD; if it is a 1D spectrum; if it
is a table; etc. – then Im�t will report an error and quit.
You can specify a particular extension in a multi-extension fits �le using the cfitsio format,

e.g.:
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ic3478rss.�ts[2]

ic3478rss.�ts[2][45:150,200:310]

�is particular numbering scheme is zero-based: the primary HDU is 0, the �rst extension

(which is the second HDU) is 1, etc.

You can also �t (or generate) images which have been compressed with gzip or Unix compress

– e.g., ic3478rss_256.fits.gz. Images, masks, etc., can even be read via http:// or ftp://
URLs which point directly to accessible fits �les; you cannot save �les to URLs, however.
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8 Extras for Fitting Images

8.1 Masks (and automatic masking of certain pixels)

A mask image can be supplied to imfit by using the command-line option --mask. �e mask
image should be an integer-valued fits �le with the same dimensions as the image being �tted
(iraf .pl mask �les are not recognized, but these can be converted to fits format within iraf).
�e default is to treat zero-valued pixels in the mask image as good and pixels with values > 0 as
bad (i.e., to be excluded from the �t); however, you can specify that zero-valued pixels are bad
with the command-line �ag --mask-zero-is-bad.
Any pixels in the data image, the noise/error/weight image (see below), or the mask image

which have non-�nite values (i.e., NaN, ±∞) will automatically be considered part of the mask

(i.e., corresponding pixels in the data image will be excluded from the �t).

8.2 Noise, Variance, or Weight Maps

(See Section 9.1 for background on the di�erent �t statistics.)

By default, imfit uses χ2 as the statistic for minimization. As part of this process, imfit
normally calculates an internal weight map, using the input pixel intensities, the A/D gain, any

previously subtracted background level, and the read noise to estimate Gaussian errors σi for each

pixel i. In formal terms, the error-based weight map is w i = 1/σ 2i , with the dispersion (in ADU)
de�ned as

σ 2i = (Id , i + Isky)/geff + Nc σ 2rdn/g
2
eff , (1)

where Id , i is the data intensity in counts/pixel, Isky is the original subtracted sky background (if
any), σrdn is the read noise (in electrons), Nc is the number of separate images combined (averaged
ormedian) to form the data image, and geff is the “e�ective gain” (the product of the A/D gain, Nc,
and optionally the exposure time, if the pixel units are counts/sec). As an alternative, the model
intensity values Im , i can be used instead of Id , i , by specifying the --model-errors command-
line �ag. �is is marginally slower (since the weights must be recalculated every time the model

image is updated), but can lead to smaller biases in �tted parameters [see Humphrey, Liu, & Buote,

2009, Erwin, 2015].

�e weights are then used in the χ2 calculation:

χ2 =
N

∑
i=0

w i (Im , i − Id , i)2 , (2)

where Im , i and Id , i are the model and data intensities in counts/pixel, respectively. (Masking is
handled by setting w i = 0 for masked pixels.)

If you have a pre-existing error map as a fits image, you can tell imfit to use that instead,
via the --noise command-line option. By default, the pixel values in this image are assumed to
be errors σi in units of ADU/pixel. If the values are variances (σ 2i ), you can specify this with the
--errors-are-variances �ag. You can also tell imfit that the pixel values in the noise map
are actual weights w i (e.g., if the values are inverse variances) via the --errors-are-weights
�ag, if that happens to be the case. (If a mask image is supplied, the weights of masked pixels will

still be set to 0, regardless of their individual values in the weight image.)

Internally, the weight map for χ2 calculations is actually stored using the square root
√
w i of

the weights as de�ned above.�is is because the Levenberg-Marquardt solver relies on access to
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a vector of “deviate” values, which are the square roots of individual terms in the formal χ2 sum:

√
w i (Im , i − Id , i). (3)

ImportantNote: Prior to version 1.3, imfit incorrectly interpreted the--errors-are-weights
�ag as indicating that the pixel values of the input “noisemap”were

√
w i , and the--save-weights

option caused imfit to output a fits �le with
√
w i values. Starting with version 1.3, imfit treats

those two commandline-�ags/options as referring tow i as de�ned above, and conversions to and

from the internal
√
w i values are handled correctly.

In the case of minimizing the Poisson-MLR statistic or the related Cash statistic C, the only
relevant external maps are masks. For the Cash statistic C, the actual minimized quantity is:

C = 2
N

∑
i=0

w i (I′m , i − I′d , i ln I
′
m , i), (4)

where I′m , i and I
′
d , i are the model and data intensities in counts/pixel, multiplied by the e�ective

gain geff as de�ned above. In this case, all weights are automatically = 1, except for masked pixels,
which are still set = 0. (Note that any attempt to specify the read noise is ignored, since Gaussian

noise terms cannot be accommodated in the Cash-statistic or Poisson-MLR statistic computation;

see, e.g., Erwin 2015.)

�e Poisson-MLR statistic includes extra terms based on the data values:

PMLR = 2
N

∑
i=1

w i (I′m , i − I′d , i ln I
′
m , i + I′d , i ln I

′
d , i − I′d , i) . (5)

Note that imfit does not try to obtain information (such as the A/D gain or read noise) from
the fits header of an image.�is is primarily because there is little consistency in header names

across the wide range of astronomical images, so it is di�cult pick one name, or even a small set,

and assume that it will be present in a given image’s header; this is even more true if an image is

the result of a simulation.

8.3 PSF Convolution (Including Oversampled PSFs)

To simulate the e�ects of seeing and other telescope resolution e�ects, model images can be con-

volved with a PSF (point-spread function) image. �is uses an input fits �le which contains

the point spread function.�e actual convolution uses Fast Fourier Transforms of the internally-

generated model image and the PSF image to compute the output convolved model image.

PSF images should be square, ideally with width N = an odd number of pixels, and the PSF
should be centered in the central pixel: x = y = N div 2 + 1, where div is integer division (re-
member that Im�t uses the iraf/DS9 convention for pixel numbering: the center of the �rst pixel
in the image is at (x , y) = (1.0, 1.0), etc.). E.g., for a 25 × 25-pixel PSF, the center should be at

(x , y) = (13.0, 13.0). An o�-center PSF can certainly be used, but the resulting convolved model

images will be shi�ed!�e PSF does not need to be normalized, as imfit will automatically nor-
malize the PSF image internally.

Although Im�t uses a multi-threaded version version of the fftw library, which is itself quite
fast, adding PSF convolution to the image-�tting process does slow things down considerably.
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Convolution with Oversampled PSFs

�e default convolution performed by Im�t uses a PSF image and a model image which have the
same spatial scaling as the data image. While this is adequate for most purposes, it is a somewhat

crude approximation to the true situation, since in reality the PSF convolution process is e�ectively

in�nite-resolution and takes place prior to the sampling of the image in pixel space by the detector.

A better approach would be to construct a model image at higher resolution and convolve it

with a higher-resolution PSF, then downsample the resulting image to the same pixel scale as the

data image. Unfortunately, this can be quite time-consuming (and memory-consuming), due to

the larger images required.

A compromise is to perform a standard convolution on the entire image, and then replace

a small subset of the model image (e.g., around a bright point source where more accurate PSF

convolution is desirable) with the result of a higher-resolution convolution. �is can be done in

Im�t with the “overpsf” command-line options.
To convolve an image region with an oversampled PSF, you need to use three command-line

options:

• --overpsf to specify the FITS �le which holds the oversampled PSF image;

• --overpsf_scale to specify the amount of oversampling corresponding to the PSF image
(i.e., how many oversampled pixels �t into an original pixel along one axis; this must be an

integer);

• --overpsf_region to specify what part of the image should have convolution with the
oversampled PSF applied to the model.

For example,

$ imfit --overpsf psf5.fits --overpsf_scale 5 \
--overpsf_region 490:500,620:630

tells Im�t that you want the region [490:500,620:630] within the image to use oversampled PSF
convolution, that the oversampled PSF is contained in the �le psf5.fits, and that the oversam-
pling scale is a factor of 5 (i.e., one normal pixel in the image corresponds to 5 × 5 pixels in the

oversampled model and the PSF).

As is true for the X0 and Y0 parameter values, the oversampled-region speci�cation refers to

the coordinate system of the entire input image, not relative coordinates within a subsection.
More than one oversampled region can be speci�ed by repeating the --overpsf_region

command; this will use the same oversampled PSF and oversampling scale.

In some cases, one may wish to use di�erent oversampled PSF images for di�erent parts of
the image, particularly if it is known that the PSF varies signi�cantly across the image (and if

one has representative oversampled PSF images). In this case, multiple oversampled PSF images

(with, potentially, di�erent oversampling scales) can be speci�ed, each with its corresponding

image region. To do this, extra invocations of the --overpsf and --overpsf_scale commands
should be given, along with one --overpsf_region per oversampled PSF.
To summarize, one can do the following with imfit-mcmc, imfit-mcmc, or makeimage:

1. Convolve one subsection of the model image with an oversampled PSF image, e.g.

--overpsf=oversampled_psf.fits --overpsf_scale=4 \
--overpsf_region=200:205,260:265
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2. Convolve several subsections of the model image with the same oversampled PSF image,

e.g.

--overpsf=oversampled_psf.fits --overpsf_scale=4 \
--overpsf_region=200:205,260:265 --overpsf_region=310:315,581:590

3. Convolve several subsections of the model image, each with a di�erent oversampled PSF

image.

--overpsf=oversampled_psf1.fits --overpsf_scale=4 \
--overpsf_region=200:205,260:265 \
--overpsf=oversampled_psf2.fits --overpsf_scale=4 \
--overpsf_region=830:835,1010:1015
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9 What Gets Minimized During a Fit, and How to Minimize It

9.1 Fit Statistics: χ2 or Poisson Statistics

(See Erwin [2015] for a more detailed discussion of the statistical background and the e�ects of

minimizing di�erent �t statistics.)

Im�t attempts to �nd the best-�tting model via a maximum-likelihood approach. In practice,
this is done byminimizing a maximum-likelihood statistic de�ned as −2 lnL, where L is the like-
lihood of a given model.�e rest of this section describes the di�erent versions of −2 lnL which

can beminimized to achieve the best �t. Note that this is equivalent to a Bayesian approach which

assumes constant priors on all model parameters.

By default, Im�t uses a Gaussian-based maximum likelihood statistic which is the total χ2 for
the model.�is is de�ned by computing the sum over individual pixels i:

− 2 lnL = χ2 =
N

∑
i=0

w i (Im , i − Id , i)2 , (6)

where N is the total number of pixels, Im , i and Id , i are the model and data intensities for the
individual pixels, and w i are per-pixel weights.�ese weights can be supplied directly by the user

in a weight map, but normally they are derived from the dispersions σi of the per-pixel Gaussian

errors:

w i = 1/σ 2i . (7)

�ere are three possible sources for the σi values. �e default approach is to estimate them

from the data values, assuming that the counts per pixel follow the Gaussian approximation of

Poisson statistics, so that σi =
√
Id , i . An alternate method is to use the model values (via the

--model-errors �ag) instead: σi =
√
Im , i . Finally, the user can supply a “noise” image (via the

--noise option) which speci�es the individual σi (or σ 2i ) values directly.
An arguably more accurate approach – especially in the regime of low counts per pixel, as

is o�en the case for, e.g., X-ray images – is to minimize a maximum likelihood statistic based

directly on Poisson statistics (rather than Gaussian approximation thereof). One way of doing

this involves computing the Cash statistic C:

− 2 lnL = C = 2
N

∑
i=0

w i (Im , i − Id , i ln Im , i). (8)

In this case, all weights are automatically = 1, except for masked pixels, which are still set = 0.

Specifying the Cash statistic is done with the --cashstat command-line �ag.
A drawback of the Cash statistic is that it cannot beminimized with the Levenberg-Marquardt

algorithm, since the latter assumes that all terms in the summation are ≥ 0, which is usually not

true for the Cash statistic. Fortunately, there is also the Poisson-MLR (maximum likelihood ratio)

statistic PMLR, which includes extra terms based on the data values:

− 2 lnL = PMLR = 2
N

∑
i=1

w i (Im , i − Id , i ln Im , i + Id , i ln Id , i − Id , i) . (9)

Since the extra terms do not depend on the model values, they remain unchanged during the

minimization and do not a�ect it. However, they have the key advantage of ensuring that all

individual-pixel values are always ≥ 0, which makes it possible to use the Levenberg-Marquardt
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algorithm tominimize PMLR. Use of PMLR is done via the --poisson-mlr �ag (or its shortened
version --mlr).12

(See Section 8.2 above for more details on how the data and model intensities, σi values, and

weights are actually calculated, including contributions from previously-subtracted backgrounds,

A/D gain, Gaussian read noise, and combination with masks.)

9.2 Minimization Options: Levenberg-Marquardt, Nelder-Mead Simplex,
Di�erential Evolution

�e default method for χ2 (or PMLR) minimization used by Im�t is the Levenberg-Marquardt
algorithm, based on the classic minpack-1 implementation [Moré, 1978] with enhancements by

Craig Markwardt.13 �is is very fast and robust, and is the most extensively tested algorithm in

Im�t, but requires an initial guess for the parameter values and can sometimes become trapped in
localminima in the χ2 landscape. (In addition, it is not appropriate if one is using the Cash statistic
C, since the latter can have both per-pixel and total values < 0, which least-squares algorithms like
Levenberg-Marquardt cannot handle.)

An alternative algorithm, available via the --nm �ag, is a version of the Nelder-Mead simplex,
as implemented by the NLopt library.14 �is is signi�cantly slower than Levenberg-Marquardt

minimization (∼ 5–10 times slower for �ts with one or two components), but signi�cantly faster

than Di�erential Evolution (below). Like the Levenberg-Marquardt method, it requires an initial

guess for the parameter values, but is considered less likely to become trapped in local minima in

the �t-statistic landscape. Unlike the L-M algorithm, it can be used for minimizing C (as well as
χ2 and PMLR). If you compile Im�t from source and want to use this algorithm, you need to have
the NLopt library installed on your system.

�e second alternate algorithm is available via the --de �ag. �is minimizes the �t-statistic
using Di�erential Evolution (DE) [Storn & Price, 1997], a genetic-algorithms approach.15 It has

the drawback of being ∼ an order ofmagnitude slower than theNelder-Mead simplexmethod, and

much slower (∼ two orders of magnitude) than Levenberg-Marquardt minimization. For example,
�tting a single Sérsic function to the 256 × 256 image in the examples/ subdirectory takes ∼ 60
times as long when using Di�erential Evolution as it does when using L-M minimization. It does

has the advantage of being the least likely (at least in principle) of being trapped in local minima

in the �t-statistic landscape; it also does not require or use initial guesses for the parameter values.
�e Di�erential Evolution algorithm does, however, require lower and upper limits for all pa-

rameters in the con�guration �le (see Section 5.2); this is because DE generates parameter-value

“genomes” by random uniform sampling from within the ranges speci�ed by the parameter limits.

�e format of the con�guration �le still requires that initial-guess values be present for all param-

eters as well, but these are actually ignored by the DE algorithm. (�is is to ensure that the same

con�guration �le can be used with all minimization routines.)

(An additional set of minimization algorithms – all of the “local derivative-free” algorithms in

the NLopt library16 – can be invoked with the --nlopt option. Most if not all of these seem to be
slower and/or less robust than the Nelder-Mead simplex algorithm (which is in fact one of these

12PMLR is actually de�ned as −2 ln(L/Lmax); see Section 4.1.3 of Erwin [2015].
13Original C version available at http://www.physics.wisc.edu/~craigm/idl/cmpfit.html
14http://ab-initio.mit.edu/wiki/index.php/NLopt
15http://www.icsi.berkeley.edu/~storn/code.html
16http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms
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NLopt algorithms) for image-�tting purposes, so they are probably not worth using. Nonetheless,

it’s possible that some image-�tting scenarios might bene�t from one of these algorithms. See

Section 4.1 for details on the use of the --nlopt option.)

TBD. [more details of DE implementation]

Note that the N-M simplex and DE algorithms do not produce uncertainty estimates for the
best-�tting parameter values, in contrast to the Levenberg-Marquardt approach. However, the

L-M error estimates are themselves only reliable if the minimum in the χ2 landscape is symmetric
and parabolic, and if the errors for the input image are truly Gaussian and well-determined. See

Sections 10.2 and 13 for an alternative way of estimating the parameter uncertainties.

�e fact that the minimization algorithms are relatively decoupled from the rest of the code

means that future versions of Im�t could include other minimization techniques, or that ambi-
tious users can add such techniques themselves.

9.3 Controlling the Tolerance for Minimization

All three minimization algorithms have stop conditions based on fractional changes in the �t-

statistic (χ2, C, or PMLR) value: if further iterations do not improve the current value by more
than FTOL× the �t statistic, then the algorithmdeclares success and terminates. (In the case ofDE,

the test condition is actually no further improvement a�er 30 generations.) �e default value of

FTOL is 10−8, which seems to do a reasonable job for typical images (in fact, it’s probably overkill).
If you want to experiment with di�erent values of FTOL, you can do this via the command-line

option --ftol.
�ere are also built-in stopping conditions based on a maximum number of iterations for the

L-Malgorithm (1000), amaximumnumber of generations forDE (600), or amaximumnumber of

function evaluations (i.e., computations of model images) for the Nelder-Mead simplex algorithm

(10000 times the number of free parameters).
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10 Outputs

10.1 Main Outputs

Outputs Prior to the Fit

By default, Im�t prints a set of running comments to the command line as it processes the input
parameters.�is includes �le names, command-line options, and general values from the con�g

�le (e.g, image gain). �is is potentially useful for debugging failed �ts: e.g., check the output to

make sure the correct image �le was speci�ed, that any mask �le was recognized (and its pixel

values treated appropriately), etc.

As part of this setup phase, Im�t will make an estimate of the total memory needed for the �t
(including the intermediate arrays used by the fast Fourier transforms if PSF convolution is being

done, etc.). �is should be treated as an order-of-magnitude estimate (and in fact the actually

memory usedwill be slightly larger than the estimate), but is useful to catch caseswhere a proposed

�t might run up against the memory limits of your computer. An extra warning message will be

printed if the estimated memory use is > 1 GB, though Im�t will still go ahead and attempt the
�t. (If the memory use really is too large for the computer, the program will probably be killed by

the operating system, which may or may not print anything useful about why the program was
killed.)

Outputs from the Fit

Assuming that the �tting process converges, Im�t will print a summary of the results, includ-
ing the �nal, best-�tting parameter values. �e output parameter list is in the same format as

the con�guration �le, except that if the L-M algorithm is used, its error estimates are listed a�er

each parameter value.17 �ese error estimates are separated from the parameter values by “#”;

this means that you can copy and paste the parameter list into a text �le and use that �le as an

input con�guration �le for imfit, imfit-mcmc, or makeimage, since those programs will treat
everything a�er “#” on a line in the con�guration �le as a comment.

�e best-�tting parameters will also be written to an output text �le (the default name for this

is bestfit_parameters_imfit.dat; use --save-params to specify a di�erent name). �e
output �le will also include a copy of the original command used to start Im�t and the date and
time it was generated; these are commented out so that the �le can be subsequently used as an

Im�t or makeimage con�guration �le without modi�cation.
�e �nal value of the �t statistic is also printed; if the �t statistic was χ2 or PMLR, then the

“reduced” χ2 or PMLR (which accounts for the total number of unmasked pixels and non-�xed
parameter values)18 is also printed. Finally, two alternate measures of the �t are also printed: the

Akaike Information Criterion (aic) and the Bayesian Information Criterion (bic). �ese two

are, in principle, useful for comparing di�erent models �t to the same data. �ey are de�ned in

the usual sense (for aic, Im�t uses the “corrected” version, which accounts for cases of few data

17No in-line error estimates are produced if the Nelder-Mead simplex or Di�erential Evolution algorithms were used

for the minimization.
18�e reduced values should be interpreted with caution; it is valid in absolute terms only if the noise has been correctly

estimated and if all di�erences between the model and the data are solely due to noise, which is rarely true for galaxies and
other astronomical objects.
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points):

AIC = −2 lnL + 2k +
2k(k + 1)
n − k − 1

(10)

BIC = −2 lnL + k ln n, (11)

where L is the likelihood of the best-�t model, k is the number of free parameters, and n is the
number of data points (i.e., unmasked pixels).�e value of −2 lnL is equal to the best-�t value of

the chosen �t statistic: e.g., −2 lnL = χ2 for �ts that minimize χ2, and = PMLR for �ts using that
statistic.

A short summary of the results of the �tting process – minimization algorithm and its �nal

status, �t-statistic value, etc. – is also included in the output text �le; these lines (like the ones

listing the original command line and the timestamp) are commented out.

By default, no model or residual (image − model) images are saved, but the command-line

options --save-model and --save-residual can be used to specify output names for those
images, and corresponding fits �les will be saved to disk.

10.2 Uncertainties on Parameter Values: L-M Estimates vs. Bootstrap
Resampling

�e (default) Levenberg-Marquardt minimization algorithm used by Im�t automatically gener-
ates a set of (symmetric) uncertainty estimates for each free parameter at the conclusion of the

�tting process; as noted above, these are printed to the terminal as part of the summary output.

�ese values come from the covariance matrix derived from the �nal Hessian matrix corre-

sponding to the best-�t solution, and should be viewed with caution: for example, they assume

that the χ2 landscape in the vicinity of the best-�t solution is parabolic. In practice, they should
probably be seen as lower limits on the uncertainty.

�e other �tting algorithms used by Im�t do not compute gradients in the �t landscape, and
so they do not produce automatic uncertainty estimates. Although one could certainly take the

solution of a χ2 or PMLR �t done with the N-M simplex or DE algorithms and use it as input to
a L-M run of Im�t, thus generating L-M–based uncertainties, this is not possible when using the
Cash statistic C.
As an alternative to the L-M uncertainty estimates, Im�t o�ers the option of bootstrap resam-

pling. �is is done with the “--bootstrap” command-line option, which takes the number of
iterations as its corresponding value; e.g.

imfit someimage.fits -c config.dat [...] --bootstrap=200

Each iteration of bootstrap resampling generates a new data image by sampling pixel values

(with replacement) from the original data image, and then re-runs the �t to generate a new set

of parameter values.19 A�er n iterations, the combined set of bootstrapped parameter values can
be used as a distribution for estimating con�dence intervals; Im�t �nds and outputs the 68.3%
con�dence intervals and the standard deviation for each parameter. While this approach may

produce more plausible uncertainties for the best-�t parameters – and can be used with both χ2

and Cash-statistic or Poisson-MLR statistic minimization and as an adjunct to any of the three

minimization algorithms – it is slow, as one is essentially repeating (a somewhat faster version
19To speed things up, the original best-�t parameters are used as starting values for the new �t.
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of) the �tting process n times. Ideally, one should do at least 200 iterations – 1000 or more is
preferable – to get reasonably consistent con�dence intervals. Since this can take much longer
than the original �tting process, it is probably not a good idea to use bootstrap resampling when

one is engaged in exploratory �tting, but to instead postpone it until one is reasonably certain one

has the �nal �t. To keep things as fast as possible, Im�t automatically chooses L-Mminimization
for the bootstrap process – unless the Cash statistic is being used, in which case the N-M simplex

method is used.20

Using the --save-bootstrap command, one can provide a �lename for saving the best-
�tting parameters from all the individual resampled �ts; these are written as one line per �t.�is

allows more detailed analysis of the parameter distributions, including potential correlations be-

tween parameters.

�e python module imfit.py (in the python subdirectory) contains a function (GetBoot-
strapOutput) which reads in a bootstrap save �le and returns a list of the parameter names and a

Numpy array with the saved bootstrap �ts.

See also Section 13 for how to do Markov Chain Monte Carlo analysis using Im�tmodels.

20If Im�t was compiled without the NLopt library, then the N-M simplex method is not available and Im�t uses DE
instead – which will make the bootstrap estimation very slow.
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11 Miscellaneous Notes

11.1 Memory Usage

As noted above, Im�t will print an estimate of the memory needed for a �t when it is starting up.
In most cases, this will be of merely academic interest, unless you are planning to �t very large

images and/or convolve with very large PSFs.

If you want to have an idea of what the memory usage might be before running Im�t, you can
start by estimating the memory needed (in bytes) for the data image

Ndata = 8NxNy , (12)

where Nx and Ny are the image dimensions in pixels.

In the case of no PSF convolution, the total memory (in bytes) will be a minimum of ∼ 4Ndata.
If Levenberg-Marquardt minimization (the default) is being used, then the total memory needed

will actually be of order (7 + nfree)Ndata, where nfree is the number of free parameters in the
model. (�is is mostly due to the Jacobian matrix and associated arrays used internally by the L-

M minimizer.)�us, �tting a 1000 × 1000 pixel image using Levenberg-Marquardt minimization

and a single elliptical Sérsic model with no �xed parameters (nfree = 7) will require ∼ 106 MB.
If PSF convolution (using a PSF image with dimensions Nx ,PSF × Ny ,PSF) is being done, then

more memory will be needed. In this case, you should also calculate the memory needed for the

internal model image

Nmodel = 8Nx ,mNy ,m , (13)

where Nx ,m = Nx + 2Nx ,PSF and Ny ,m = Ny + 2Ny ,PSF, and the memory needed for the complex

FFT-related arrays

NFFT = 16Nx ,FFTNy ,FFT , (14)

where Nx ,FFT = Nx + 3Nx ,PSF and Ny ,FFT = Ny + 3Ny ,PSF.�e total memory needed will then be

(for non–L-M minimization) of order

Ndata + 3Nmodel + 6NFFT (15)

or

(4 + nfree)Ndata + 3Nmodel + 6NFFT (16)

when doing L-Mminimization. Using the same example as before (�tting a 1000×1000 pixel image

with a single Sérsic model) but including convolution with a 100× 100 pixel PSF image would thus

require ∼ 270 MB, or ∼ 195 MB using a minimization algorithm other than L-M. Fitting, say, a

5000×5000 pixel image using a 1000×1000 pixel PSF imagewould require almost 9GBofmemory!

�e estimation done by Im�twhen starting up is slightlymore accurate, but these notes should
su�ce to help you �gure out whether you’re in the general vicinity of running out of memory with

a particular �t.
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12 Makeimage

Im�t has a companion program called makeimage, which will generate model images using the
same functions (and parameter �les) as Im�t. In fact (as noted above), the output “best-�tting pa-
rameters” �le generated by Im�t can be used as input to makeimage, as can an Im�t con�guration
�le.

Makeimage does require an output image size. �is can be speci�ed via command-line �ags
(“--ncols” and “--nrows”), via speci�cations in the con�guration �le (see below), or by supply-
ing a reference fits image (“--refimage image-�lename”); in the latter case, the output image
will have the same dimensions as the reference image.

Makeimage can also be run in a special mode to estimate the magnitudes and fractional lumi-
nosities of di�erent components in a model.

12.1 Using Makeimage

Basic use of makeimage from the command line looks like this:

$ makeimage [options] con�g-�le

where con�g-�le is the name of the Im�t-style con�guration �le which describes the model.
As for Im�t, the “options” are a set of command-line �ags and options (use “makeimage -h”

or “makeimage --help” to see the complete list). Options must be followed by an appropriate
value (e.g., a �lename, an integer, a �oating-point number); this can be separated from the option

by a space, or they can be connected with an equals sign.

Some notable and useful command-line �ags and options include:

• -o, --output�lename–�lename for the outputmodel image (default = “modelimage.�ts”).

• --refimage �lename – existing reference image to use for determining output image di-
mensions.

• --ncols N_columns – number of columns in output image

• --nrows N_rows – number of rows in output image

• --psf psf-image – speci�es a fits image to be convolved with the model image. (�e “over-
sampled PSF” options that imfit uses can also be used with makeimage.)

• --nosave – do not save the model image (useful for testing purposes, or when estimating
�uxes with makeimage)

• --timingN – generates the speci�edmodel imageN times and computes the average time
taken by the computation (no output image will be saved)

• --list-functions – list all the functions makeimage can use

• --list-parameters – list all the individual parameters (in correct order) for each func-
tions that makeimage can use
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12.2 Con�guration Files for Makeimage

�e con�guration �le for makeimage has essentially the same format as that for Im�t; any param-
eter limits that might be present are ignored.

Optional general parameters like GAIN and READNOISE are ignored, but the following op-

tional general parameters are available:

• NCOLS – number of columns for the output image (x-size)

• NROWS – number of rows for the output image (y-size)

12.3 Generating Single-Function Output Images

Makeimage can also output individual images for each function in the con�guration �le. For
example, if the con�guration �le speci�es a model with one Sérsic function and two exponential

functions, makeimage can generate three separate fits �les, in addition to the (standard) sum of
all three functions.�is is done with the --output-functions option:

--output-functions root-name

where root-name is a string that all output single-function �lenames will start with. �e single-
function �lenames will be sequentially numbered (starting with 1) according to the order of func-

tions in the con�guration �le, and the name of each function will added to the end; the resulting

�lenames will have this format:

root-nameN_function-name.fits

Using the example speci�ed above (a model with one Sérsic and two exponential functions),

one could execute the following command

$ makeimage con�g-�le --output-functions mod

and the result would be three fits �les, named mod1_Sersic.fits, mod2_Exponential.fits,
and mod3_Exponential.fits (in addition to model.fits, which is the sum of all three func-
tions).

12.4 Using Makeimage to Estimate Fluxes and Magnitudes

Given a con�guration �le, you can use makeimage to estimate the total �uxes and magnitudes
of di�erent model components. For some components – e.g., the purely elliptical versions of the

Gaussian, Exponential, and Sérsic functions – there are analytical expressionswhich could be used.

But since Im�t and makeimage are designed to use arbitrary functions, including ones which do
not have analytical expressions for total �ux, makeimage estimates the �ux for each component by
internally constructing a large model image for each component function in the con�guration �le,

with the component centered within this image, and then summing the pixel values of that image.

�e output includes a list of total and relative �uxes for each component in the model image (and

their magnitudes, if a zero point is supplied).

$ makeimage –print-�uxes con�g-�le
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Useful command-line �ags and options:

• --estimation-size N_columns_and_rows – size of the (square) image to construct (the
default size is 5000 pixels on a side)

• --zero-point value – zero point for converting total counts to magnitudes:

m = Z − 2.5 log
10
(counts) (17)

�is enables you to compute things like bulge/total ratios – but it’s up to you to determine

which component(s) should be considered “bulge”, “disk”, etc.

When run in this mode, makeimage will still produce an output image �le – unless you also
specify the --nosave option.
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13 Markov Chain Monte Carlos Analysis with imfit-mcmc

Im�t includes a separate program for doing Markov chain Monte Carlo (MCMC) analysis of
galaxy image models: imfit-mcmc. �is uses the exact same surface-brightness models, statis-
tical options, and input con�guration �les as imfit, but instead of solving for the “best-�tting”
model, it produces an estimate of the posterior-probability (i.e., likelihood) distribution. Although

it certainly can be used to “�t” models to data – if the user is willing to adopt some approach for
identifying “best-�t” values from the posterior distribution21 – it is probably more useful as a way

of determining uncertainty ranges for, and correlations between, model parameters.

�e inputs for imfit-mcmc are the same as for imfit: data image, model con�guration �le,
optional PSF image(s), statistical model (χ2 based on data, model, or input error map; Poisson
MLR statistic), etc.�e outputs are di�erent: instead of a best-�tting parameter �le and optional

outputs such as best-�tmodel image, imfit-mcmc savesmultiple output text �les, each containing
one of theMarkov chains.�ese are meant to be analyzed subsequently by the user. (Some simple

Python code to help with this is provided.)

In essence, you can use the same data and con�guration �le to do both a standard �t with

imfit and MCMC analysis of the model; the latter can then be used to determine con�dence
intervals, look for multiple modes in the posterior distribution, identify correlations between pa-

rameters, etc.

It is important to understand thatMCMCanalysis takesmuch longer than a simple �t, even a �t
done using the Di�erential Evolution (DE) minimizer. For example, the examples/ subdirectory
that comeswith Im�t contains a 256×256-pixel SDSS r-band image of the dE galaxy IC 3478 and a
con�guration �le for a single-Sérsic �t to this image.�e basic �t (without PSF convolution) takes

approximately 115 model-image computations and about 0.3 seconds to �nish22 using the default

Levenberg-Marquardt minimizer. Using DE, the �t takes ∼11,000 model-image computations and

about 20 seconds. AnMCMCanalysis of the samemodel requires several hundred thousandmodel-
image computations and approximately ten minutes to reach convergence.

�e MCMC approach that imfit-mcmc uses is the DREAM (Di�eRential Evolution Adap-
tive Metropolis) algorithm of Vrugt et al. [2009], which is based on the earlier adaptation of DE

to MCMC by ter Braak [2006]; more details can be found in Vrugt [2016]. �e speci�c imple-

mentation used by imfit-mcmc is based on C++ code published by Gabriel Rosenthal.23 �e

algorithm uses multiple separateMarkov chains (by default, a number equal to the number of free

parameters in the model) and a DE-based scheme for generating new proposals for each chain

using di�erences between the current states of other (randomly chosen) chains. A version of the

Gelman-Rubin convergence diagnostic [Gelman & Rubin, 1992] is used to estimate when conver-

gence is reached, by examining the most recent 50% of each chain; the algorithm terminates a�er

a user-speci�ed maximum number of generations if convergence is not achieved before then.

In simpli�ed terms, creating a new proposal for a chain involves scaled o�sets from the current

state of the chain (i.e., the set of parameter values x i , with i = 1, ..,Nparams), with the base o�sets
∆ i taken from the di�erence in parameter values between the current states of two (or more)

other chains. A random subset of the parameter values in the current state are updated, with the

21E.g., using mean, median, or mode from the marginal distribution of each parameter.
22On a MacBook Pro 2012 with a 2.7 GHz Intel i7 quad-core CPU.
23https://github.com/gaberoo/cdream
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remaining parameters le� unchanged.24 For each parameter that is updated, the new value z i is

z i = x i + (1 +U) γ ∆ i + N(0, s), (18)

where U is a uniformly sampled random number between ±u and N(0, s) is a random sample
from a Gaussian with mean of 0 and dispersion s. Both u and s can be speci�ed by the user,
though their default values (0.01 and 10−6, respectively) are probably good starting points. �e
scale parameter γ is

γ = 2.38/
√
2δd′ , (19)

where δ is the number of pairs used to determine the base o�set (δ = 1, 2, or 3; the actual value

used is randomly permuted by the algorithm) and d′ is the number of parameters being updated
for the current proposal. Every �ve generations γ is set = 1, to encourage occasional longer jumps
outside the current location in parameter space.

�e stationary posterior-probability distribution (a�er convergence) is proportional to the like-

lihood of the data given the model, multiplied by an assumed prior probability which is constant

between the parameter limits speci�ed in the con�guration �le and zero outside those limits.

�e usual caveats about “convergence” of MCMC chains apply: the convergence test is not

guaranteed to identify true convergence, and it is always possible that if run long enough, the

composite chain will discover new modes in the posterior distribution. However, since most uses

of MCMC for galaxy image �tting will probably be for purposes of identifying the distribution of

parameter values in the vicinity of the overall “best-�t” state, it’s probably not worth worrying too

much about outlying low-probability alternate modes.

13.1 Using imfit-mcmc

Use of imfit-mcmc on the command line is almost identical to use of imfit (Chapter 4). �e
main di�erence is the optional use of -o/--output to specify the root name for the Markov-
chain output �les (the program defaults to using mcmc_out as the root name if -o is not used),
and some extra options for tweaking the MCMC algorithm.

�e following imfit options are not available with imfit-mcmc:

• Minimizer selection and control: --nm, --nlopt, --de, --ftol

• “Best-�t” output: --save-params, --save-model, --save-residual, --save-weights

• Bootstrap-related: --boostrap, --save-bootstrap

• --chisquare-only, --fitstat-only

Extra options for imfit-mcmc

• -o, --output root-name – the root name for outputMCMC chain �les.�e actual output
�leswill be named<root-name>.1.txt, <root-name>.2.txt, etc.�e default is “mcmc_out”.

• --nchains Nchains – speci�es the number of MCMC chains to calculate (must be at least
3).�is defaults to the number of free parameters in the model, which is the recommended

value.

24�e proposal can thus be seen as a “crossover” between a parameter vector with completely new values and the

current parameter vector; this is part of the general DE algorithm.
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• --append – speci�es that pre-existingMCMC chain �les should be read in and theMCMC
process continued from their �nal states.

• --max-chain-lengthN – themaximumnumber of generations (with one likelihood eval-
uation per generation) per chain. �e program will quit if if reaches this value. �e de-

fault value is 100,000 (which means the total number of likelihood evaluations – i.e., model-

image computations – will be 100,000 ×Nchains).

• --burnin-length N – the number of generations of the initial “burn-in” phase, where
larger jumps are taken to ensure adequate exploration of the posterior landscape. If out-

lier chains are subsequently discovered, burn-in will be re-entered for the same number of

generations. Default value: 5,000.

• --gelman-evals N – Gelman-Rubin convergence tests will be done every N generations
(a�er the burn-in phase has �nished). Default value: 5,000.

• --uniform-offset u – the limit on variations in the multiplicative scaling applied to pro-
posed parameter o�sets, such that o�sets are multiplied by uniformly sampled numbers in

the interval [1 − u, 1 + u]. Default value: 0.01.

• --gaussian-offset s – Gaussian σ value for additive variations applied to proposed pa-
rameter o�sets, such that N(0, s) is added to each o�set (i.e., a Gaussian with mean = 0 and
dispersion = s). Default value: 10−6.

13.2 Con�guration Files for imfit-mcmc

Con�guration �les for imfit-mcmc are identical to those for Im�t, with the restriction that pa-
rameter limits must be supplied for all non-�xed function parameters. (�is is similar to how
Im�t works with the Di�erential Evolution miminizer.)
TBD.

13.3 Analysis of imfit-mcmc output

�e result of running imfit-mcmc is a set of Nchains output text �les, each of which contains one
of theMarkov chains.�e �les contain one column for each of themodel parameters (plus several

additional columns with diagnostics of the MCMC process: the likelihood value for a given set of

parameters, whether the chain was in the burn-in phase, etc.), and one row for each generation in

the chain.

Each individual �le can be inspected to see how the MCMC process evolved, to check for lack

of convergence, etc. To get a proper evaluation of the estimated posterior/likelihood landscape,

all the chains should be combined, excluding the burn-in phase(s). Since the Gelman-Rubin con-

vergence test checks the last half of each chain, you could plausibly use the last half of all the

output chains, assuming that imfit-mcmc terminated because convergence was detected. For
some analyses, this may be overkill, and using the last few thousand generations from each chain

may su�ce.

Some simple Python code for reading in the MCMC output is included in the python/ subdi-
rectory of the distribution, in the �leimfit.py. (�is �le in turndepends on the �leimfit_funcs.py
and the Scipy package, but the MCMC-related functions themselves do not, and can be extracted

into a separate module if that makes things easier.)�ere are two functions of interest:
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• GetSingleChain, which reads in a single output �le;

• MergeChains, which reads in all the output �les and concatenates them into a single com-
posite chain, with user-speci�ed limits (e.g., merge only generations n or later, or merge
only the last n generations).

Some basic examples follow.

Assuming thatimfit-mcmchas run andproduced converged output �les namedmcmc_out.1.txt,
mcmc_out.2.txt, etc., the following Python code will read in the �rst of these �les (note that in ver-

sion 1.4, the output chains were numbered starting with 0 instead of with 1):

>>> import im�t

>>> columnNames, chain1 = im�t.GetSingleChain("mcmc_out.1.txt")

�e result is a list of the parameter names (columnNames) and a Numpy array (chain1) with

shape = (nrows, ncols), where each row is one generation from the chain. �e parameter names
map to the columns in the Numpy array.

�e following bit of Python code reads in the last 5,000 generations from each chain and

merges them together, returning a list and aNumpy arraywith the same formas forGetSingleChain.
It then uses the corner package25 [Foreman-Mackey, 2016] to make a scatterplot matrix (a.k.a.
“corner plot”) of the di�erent parameter distributions:

>>> import im�t, corner

>>> columnNames, allchains = im�t.MergeChains("mcmc_out", last=5000)

>>> corner.corner(allchains, labels=columnNames)

25http://corner.readthedocs.io/en/latest/

39

http://corner.readthedocs.io/en/latest/


14 Rolling Your Own Functions

14.1 Basic Requirements

A new image function should be implemented in C++ as a subclass of the FunctionObject base

class (function_object.h, function_object.cpp). At aminimum, it should provide its own
implementation of the following public methods, which are de�ned as virtual methods in the base

class:

• �e class constructor – inmost cases the code for this can be copied from any of the existing

FunctionObject subclasses, unless some special extra initialization is needed.

• Setup() – this is used by the calling program to supply the current set of function parameters

(including the (x0 , y0) pixel values for the center) prior to determining intensity values
for individual pixels. �is is a convenient place to do any general calculations which don’t

depend on the exact pixel (x , y) values.

• GetValue() – this is used by the calling program to obtain the surface brightness for a given

pixel location (x , y). In existing FunctionObject classes, this method o�en calls other (pri-
vate) methods to handle details of the calculation.

• GetClassShortName() – this is a class function which returns the short version of the class

name as a string.

�e new class should also rede�ne the following internal class constants:

• N_PARAMS – the number of input parameters (excluding the central pixel coordinates);

• PARAM_LABELS – a vector of string labels for the input parameters;

• FUNCTION_NAME – a short string describing the function;

• className – a string (no spaces allowed) giving the o�cial name of the function, as it
would be used in a con�guration �le.

�e add_functions.cpp �le should then be updated by:

1. including the header �le for the new class;

2. adding 2 lines to the PopulateFactoryMap() function to add the ability to create an instance

of the new class.

Finally, the name of the C++ implementation �le for the new class should be added to the

SConstruct �le to ensure it gets included in the compilation; the easiest thing is to add the �le’s
name (without the .cpp su�x) to the functionobject_obj_string multi-line string de�ni-
tion.

Existing examples of FunctionObject subclasses can be found in the “function_objects”
subdirectory of the source-code distribution, and are the best place to look in order to get a better

sense of how to implement new FunctionObject subclasses.
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14.2 A Simple Example

To illustrate, we’ll make a new version of theMo�at function (which already exists, so this is purely

for pedagogical purposes) by copying and modifying the code for the Gaussian function.

We need to make three sets of changes:

• Change the class name from “Gaussian” to our new name (“NewMo�at”);

• Change the relevant code which computes the function;

• Rename, add, or delete variables to accommodate the new algorithm.

Create and Edit the Header File

Change directory to the directory with the Im�t source code, and then to the subdirectory named
“function_objects”. Copy the �le func_gaussian.h and rename it to func_new-moffat.h.
Edit this �le and change the following lines:

#define CLASS_SHORT_NAME "Gaussian"

(replace "Gaussian" with "NewMoffat")

class Gaussian : public FunctionObject

(replace Gaussian with NewMoffat)

Gaussian( );

(replace Gaussian with NewMoffat)
And �nally edit the list of class data members, changing this:

private:
double x0, y0, PA, ell, I_0, sigma; // parameters
double q, PA_rad, cosPA, sinPA; // other useful (shape-related) quantities

to this:

private:
double x0, y0, PA, ell, I_0, fwhm, beta; // parameters
double alpha;
double q, PA_rad, cosPA, sinPA; // other useful (shape-related) quantities

Create and Edit the Class File

Copy the �le func_gaussian.cpp and rename it to func_new-moffat.cpp.

Initial changes, including parameter number and names:

Edit this �le and change the following lines (changed text indicated in red):
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#include "func_new-moffat.h"

const int N_PARAMS = 5;

const char PARAM_LABELS[][20] = {"PA", "ell", "I_0", "fwhm", "beta"};

const char FUNCTION_NAME[] = "Mo�at function";

Change references to class name:

Change all class references from“Gaussian” to “NewMo�at” (e.g., Gaussian::Setupbecomes
NewMoffat::Setup).

Changes to Setup method:

In the Setup method, you need to change how the input is converted into parameters, and do

any useful pre-computations. So the initial processing of the “params” input changes from this:

PA = params[0 + offsetIndex];
ell = params[1 + offsetIndex];
I_0 = params[2 + offsetIndex];
sigma = params[3 + offsetIndex];

to this:

PA = params[0 + offsetIndex];
ell = params[1 + offsetIndex];
I_0 = params[2 + offsetIndex];
fwhm = params[3 + offsetIndex];
beta = params[4 + offsetIndex];

and at the end we replace this:

twosigma_squared = 2.0 * sigma*sigma;

with this:

// compute alpha:
double exponent = pow(2.0, 1.0/beta);
alpha = 0.5*fwhm/sqrt(exponent - 1.0);

Changes to CalculateIntensity method:

Although it is the public method GetValue which is called by other parts of the program, we

don’t actually need to change the current version of that method in this example.�e code in the

original Gaussian version of GetValue converts pixel positions to a scaled radius value, given input

values for the center, ellipticity, and position angle, and then calls the private method CalculateIn-

tensity to determine the intensity as a function of the radius. Since we’re still assuming a perfectly

elliptical shape, we can keep the existing code. (GetValue also includes possible pixel subsampling,
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which is useful for cases where intensity changes rapidly one scales of a single pixel; we’ll apply a

simple modi�cation for the Mo�at function later on.)

So in this case we actually implement the details of the new function’s algorithm inCalculateIn-

tensity. Replace the original version of that method with the following:

double NewMoffat::CalculateIntensity( double r )
{

double scaledR, denominator;

scaledR = r / alpha;
denominator = pow((1.0 + scaledR*scaledR), beta);
return (I_0 / denominator);

}

Changes to CalculateSubsamples method:

Although pixel subsampling is performed in the GetValues method, the determination of

whether or not to actually do the subsampling – and how much of it to do – is determined in
CalcualteSubsamples.

For the Gaussian function, subsampling can be useful happen when r < 1 and σ < 1.�e equiv-

alent for the Mo�at function would be r < 1 and α < 1, so change the line in CalculateSubsamples

that says

if ((sigma <= 1.0) && (r <= 1.0))

to say

if ((alpha <= 1.0) && (r <= 1.0))

At this point, most of the work is done. We only need to update add_functions.cpp so it
knows about the new function and update the SConstruct �le so that the new function is included

in the compilation.

Edit add_functions.cpp

We need to do two simple things here:

1. Include the header �le for our new function. Add the following line near the top of the �le,

where the other header �les are included:

#include "func_new-moffat.h"

2. Add code to generate an instance of our new class as part of the function-factorymap. Inside

the function PopulateFactoryMap, add the following lines:

NewMoffat::GetClassShortName(classFuncName);
input_factory_map[classFuncName] = new funcobj_factory<NewMoffat>();
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Edit the SConstruct File

In the SConstruct �le, locate the place where the variable “functionobject_obj_string” is de�ned

(e.g., search for the string "functionobject_obj_string ="). �is variable is bound to a string con-

taining a compact list of all the �lenames containing function-object code. Insert our new func-

tion’s name (“func_new-mo�at”) into the list.

�at’s it! You should now be able to recompile Im�t and makeimage (see Section 2.3) to use
the new function. (Assuming there aren’t any bugs in your new code. . . .)

14.3 Further Notes onWriting Your Own Functions

TBD.

44



15 Acknowledging Use of Im�t

A paper describing Im�t [Erwin, 2015] has been published in�e Astrophysical Journal (http://
adsabs.harvard.edu/abs/2015ApJ...799..226E) and can be found on the arXiv at http:
//arxiv.org/abs/1408.1097; you can also reference the current URL (https://www.mpe.
mpg.de/~erwin/code/imfit/) and/or theGithubURL (https://github.com/perwin/imfit/)
if Im�t has been useful in your research.
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A Standard Functions in Detail

Unless otherwise noted, all “intensity” parameters (I_sky, I_0, I_e, etc.) are in units of counts
per pixel, and all lengths are in pixels.

A sample function speci�cation (giving the parameters in their proper order), as you would

use in a con�guration �le, is listed for each function description.

“Elliptical” functions are de�ned to have an intensity which is constant on concentric, similar

ellipses (with speci�ed ellipticity and major-axis position angle); the intensity pro�le is de�ned as

a function of the semi-major axis a.

A.1 2D Functions

�e main set of image functions provided create 2D intensity distributions directly.�ese include

most of the usual suspects used in 2D image �tting: constant background, Gaussian, exponential,

Sérsic, etc.

Common parameters:

• PA = position angle (e.g., of the major axis), measured in degrees CCW from the image +y
axis.�is is equivalent to standard astronomical position angles if your image has standard
astronomical orientation (N up, E to the le�).

• ell = ellipticity (1− b/a, where a and b are semi-major and semi-minor axes of the ellipse,
respectively).

FlatSky

A uniform background: I(x , y) = Isky everywhere.

FUNCTION FlatSky
I_sky

Gaussian

�is is an elliptical 2D Gaussian function, with the major-axis intensity pro�le given by

I(a) = I0 exp(−a2/(2σ 2)). (20)

FUNCTION Gaussian
PA
ell
I_0
sigma

Mo�at

�is is an elliptical 2D Mo�at [1969] function, with the major-axis intensity pro�le given by

I(a) =
I0

(1 + (a/α)2)β , (21)
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where α is de�ned as
α =

FWHM

2
√
21/β − 1

. (22)

In practice, FWHM describes the overall width of the pro�le, while β describes that strength of
the wings: lower values of β mean more intensity in the wings than is the case for a Gaussian (as
β →∞, the Mo�at pro�le approaches a Gaussian).

�e Mo�at function is o�en a good approximation to typical telescope PSFs (see, e.g., Trujillo

et al. 2001), and makeimage can easily be used to generate Mo�at PSF images.

FUNCTION Moffat
PA
ell
I_0
fwhm
beta

PointSource

�is function approximates a point source (e.g., star, AGN, etc.) by taking the user-input PSF

image and generating an interpolated, intensity-scaled copy of it at theX0,Y0 position of the parent

function block. It has only one free parameter: Itot, which is the factor that the PSF image is
multiplied by, and which will usually correspond to the total �ux of the point source. Of course,

it also requires that a PSF image be supplied!
For standardmodel-image generation, themain user-supplied PSF image is used. If PSF ovser-

sampling is speci�ed, then any PointSource objects which fall within an oversampling region (spec-

i�ed via --overpsf_region) will interpolate the corresponding oversampled PSF image (speci-
�ed via --overpsf) instead.

�e interpolation is done using the 2D bicubic function (gsl_interp2d_bicubic) from the
GNU Scienti�c Library.

FUNCTION PointSource
I_tot

Modi�edKing

�is is an elliptical 2D function with the intensity pro�le given by a “modi�ed King” function

[Elson, 1999, Peng et al., 2010], which is a generalization of the original King pro�le [King, 1962]:

I(a) = I0 [1 −
1

(1 + (rt/rc)2)1/α
]

−α

× [
1

(1 + (r/rc)2)1/α
−

1

(1 + (rt/rc)2)1/α
]

α

, (23)

where I0 is the central intensiy, rc is the “core” radius, and rt is the “tidal” or “truncation” radius
(outside of which the intensity is 0).�is reduces to the original King pro�le when α = 2.

FUNCTION ModifiedKing
PA
ell
I_0
r_c
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r_t
alpha

Modi�edKing2

�is is an alternate interface for the Modi�edKing pro�le. It produces exactly the same surface-

brightness model, but uses the “concentration” c = rt/rc as a free parameter (in place of the
tidal/truncation radius rt , which can be recovered as rt = crc).

FUNCTION ModifiedKing2
PA
ell
I_0
r_c
c
alpha

Exponential

�is is an elliptical 2D exponential function, with the major-axis intensity pro�le given by

I(a) = I0 exp(−a/h), (24)

where I0 is the central surface brightness and h is the scale length.

FUNCTION Exponential
PA
ell
I_0
h

Exponential_GenEllipse

Similar to the Exponential function, but using generalized ellipses (“boxy” to “disky” shapes) in-

stead of pure ellipses for the isophote shapes. FollowingAthanassoula et al. [1990], the shape of the

elliptical isophotes is controlled by the c0 parameter, such that a generalized ellipse with ellipticity
= 1 − b/a is described by

(
∣x∣
a

)

c0+2
+ (

∣y∣
b

)

c0+2
= 1, (25)

where ∣x∣ and ∣y∣ are distances from the ellipse center in the coordinate system aligned with the
ellipse major axis (c0 corresponds to c−2 in the original formulation of Athanassoula et al).�us,
values of c0 < 0 correspond to disky isophotes, while values > 0 describe boxy isophotes; c0 = 0
corresponds to a perfect ellipse.

FUNCTION Exponential_GenEllipse
PA
ell
c0
I_0
h
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Sersic

�is is an elliptical 2D Sérsic function with the major-axis intensity pro�le given by

I(a) = Ie exp{−bn [(
a
re

)
1/n
− 1]} , (26)

where Ie is the surface brightness at the e�ective (half-light) radius re and n is the Sérsic index
controlling the shape of the intensity pro�le. �e value of bn is formally given by the solution to
the transcendental equation

Γ(2n) = 2γ(2n, bn), (27)

where Γ(a) is the gamma function and γ(a, x) is the incomplete gamma function. However, in
the current implementation bn is calculated via the polynomial approximation of Ciotti & Bertin
[1999] when n > 0.36 and the approximation of MacArthur, Courteau, & Holtzman [2003] when

n ≤ 0.36.
Note that the Sérsic function is equivalent to the de Vaucouleurs “r1/4” pro�le when n = 4, to

an exponential when n = 1, and to a Gaussian when n = 0.5.

FUNCTION Sersic
PA
ell
n
I_e
r_e

Sersic_GenEllipse

Similar to the Sersic function, but using generalized ellipses (“boxy” to “disky” shapes) instead

of pure ellipses for the isophote shapes. See the discussion of the Exponential_GenEllipse
function above for details of the isophote shapes.

FUNCTION Sersic_GenEllipse
PA
ell
c0
n
I_e
r_e

Core-Sersic

�is generates an elliptical 2D function with the major-axis intensity pro�le given by the Core-

Sérsic model [Graham et al., 2003, Trujillo et al., 2004]. �is has a Sérsic pro�le (parameterized

by n and re) for radii > the break radius rb and a single power law with index −γ for radii < rb .
�e transition between the two regimes is mediated by the parameter α: for low values of α, the
transition is very gradual and smooth, while for high values of α the transition becomes very
abrupt (a perfectly sharp transition can be approximated by setting α = some large number, such

as 100).�e overall intensity scaling is set by Ib , the intensity at the break radius rb .
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FUNCTION Core-Sersic
PA
ell
n
I_b
r_e
r_b
alpha
gamma

BrokenExponential

Similar to Exponential, but with two exponential radial zones (with di�erent scalelengths) joined
by a transition region at Rb of variable sharpness:

I(a) = S I0 e
− a

h1 [1 + eα(a − Rb)]
1
α ( 1h1 −

1
h2
)
, (28)

where I0 is the central intensity of the inner exponential, h1 and h2 are the inner and outer expo-
nential scale lengths, Rb is the break radius, and α parameterizes the sharpness of the break. (See
Erwin, Pohlen, & Beckman [2008].) Low values of α mean very smooth, gradual breaks, while
high values correspond to abrupt transitions. S is a scaling factor, given by

S = (1 + e−αRb)
− 1

α ( 1h1 −
1
h2
)
. (29)

Note that the parameter α has units of length−1 (i.e., pixels−1).

FUNCTION BrokenExponential
PA
ell
I_0
h1
h2
r_break
alpha

GaussianRing

An elliptical ring with a radial pro�le consisting of a Gaussian centered at r = Rring.

FUNCTION GaussianRing
PA
ell
A
R_ring
sigma_r
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GaussianRing2Side

Similar toGaussianRing, but nowusing an asymmetricGaussian (di�erent values of σ for r < Rring
and r > Rring).

FUNCTION GaussianRing2Side
PA
ell
A
R_ring
sigma_r_in
sigma_r_out

EdgeOnDisk

�is function provides the analytical form for a perfectly edge-on disk with a radial exponential

pro�le, using the Bessel-function solution of van der Kruit & Searle [1981] for the radial pro�le

and the generalized sech function of van der Kruit [1988] for the vertical pro�le.26 �e position

angle parameter (PA) describes the angle of the disk major axis; there is no ellipticity parameter.

In a coordinate system aligned with the edge-on disk, r is the distance from the minor axis
(parallel to the major axis) and z is the perpendicular direction, with z = 0 on the major axis. (�e
latter corresponds to height z from the galaxy midplane.)�e intensity at (r, z) is given by

I(r, z) = µ(0, 0) (r/h) K1(r/h) sech2/n(n z/(2 z0)) (30)

where h is the exponential scale length in the disk plane, z0 is the vertical scale height, and K1 is
the modi�ed Bessel function.�e central surface brightness µ(0, 0) is given by

µ(0, 0) = 2 h L0 , (31)

where L0 is the central luminosity density (see van der Kruit & Searle 1981). Note that L0 is the
actual parameter required by the function; µ(0, 0) is calculated internally.
When n = 1, this becomes the familiar sech2 model for the vertical distribution of a disk (with

z0 corresponding to 1/2 of the z0 in the original de�nition of van der Kruit & Searle [1981]). As
n → ∞, the vertical distribution approaches an exponential with exp(−z/z0). In practice, the
code substitutes a pure exponential function for the sech

2/n
term whenever

n
2

z
z0

> 100. (32)

Note that this particular function requires that the gnu Scienti�c Library (gsl) be installed; if

the gsl is not installed, Im�t should be compiled without this function. (�e pre-compiled binary
versions include the necessary code from the gsl.)

FUNCTION EdgeOnDisk
PA
L_0
h
n
z_0

26�is model was used by Yoachim & Dalcanton [2006] for 2D modeling of thin and thick disks in edge-on galaxies,

though typically with n �xed to values of 1 or 2.
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EdgeOnRing

A simplistic model for an edge-on ring, using two o�set components located at distance ±r from
the center of the function block. Each component (i.e., each side of the ring) is a symmetric

Gaussian with size sigma_r for the radial pro�le and a symmetric Gaussian with size sigma_z
for the vertical pro�le. (See GaussianRing3D for a similar component which does line-of-sight

integration through a 3D luminosity-density model of a ring.)

FUNCTION EdgeOnRing
PA
I_0
r
sigma_r
sigma_z

EdgeOnRing2Side

Similar to EdgeOnRing, but now the radial pro�le for the two components is asymmetric: the

inner (∣R∣ < Rring) side of each component is a Gaussian with radial size sigma_r_in, while the
outer side has radial size sigma_r_out.

FUNCTION EdgeOnRing2Side
PA
I_0
r
sigma_r_in
sigma_r_out
sigma_z

A.2 3D Functions

�e following are image functions which use line-of-sight integration through a 3D luminosity-

density model to create a projected 2D image.

�e functions are de�ned so as to have a primary plane (e.g., the equatorial plane for a disk

galaxy); the orientation of this plane is de�ned by the PA and inc parameters, which specify the
angle of the line of nodes (in degrees CCWwith respect to the image +y axis) and the inclination

to the line of sight (also in degrees), respectively.�us, PA = 0 will align the line of nodes vertically,
while PA = 90 will make it horizontal (parallel to the image x-axis).27 �e inclination is de�ned
in the usual astronomical sense: i = 0 for a face-on system and i = 90 for an edge-on system. See
Section 6.2 of Erwin [2015] for details of how the line-of-sight integration is handled.

For the GaussianRing3D and FerrersBar3D functions, which are not axisymmetric, there is

an additional “position angle” parameter (PA_ring or PA_bar), which de�nes the position of the
ring’s or bar’s major axis in the primary plane (i.e., prior to any projection) with respect to the
primary plane’s +x axis. (�e logic behind this is that when the primary plane’s line of nodes is

horizontal – i.e., PA = 90 – the orientation of the ring’s major axis follows the usual orientation

27�e goal is to ensure that the orientation of the component’s line of nodes follows the same conventions as for the

2D functions, so that an inclined ExponentialDisk3D function with PA = 30 will have the same orientation as an elliptical

2D Exponential function with PA = 30.
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conventions with respect to the image +y axis. You are, of course, free to change this if you write

3D components of your own, though I will probably continue to follow it in the future.)

�ese functions use integration routines from the gnu Scienti�c Library (gsl); if the gsl is

not installed, Im�t should be compiled without them. (�e pre-compiled binary versions include
the necessary code from the gsl.)

ExponentialDisk3D

�is function implements a 3D luminosity density model for an axisymmetric disk with an expo-

nential radial pro�le and a sech
2/n
vertical pro�le (as for the EdgeOnDisk function), using line-

of-sight integration to create the projected surface-brightness pro�le for arbitrary inclinations.

In a cylindrical coordinate system (r, z) aligned with the disk (where the disk midplane has
z = 0), the luminosity density at radius r from the central axis and at height z from the midplane
is given by

j(r, z) = J0 exp(−r/h) sech2/n(n z/(2 z0)) (33)

where h is the exponential scale length in the disk plane, z0 is the vertical scale height, and J0 is
the central luminosity density.

When n = 1, the vertical distribution is the familiar sech
2
model (with z0 corresponding to

1/2 of the z0 in the original de�nition of van der Kruit & Searle [1981]). As n → ∞, the vertical

distribution approaches an exponential with exp(−z/z0); in practice, the can be approximated by
setting n equal to some �xed, large number.

FUNCTION ExponentialDisk3D
PA
inc
J_0
h
n
z_0

Because this function performs numerical integration for each pixel value, it will be slower

than the analytic EdgeOnDisk function (though the latter is correct only in the i = 90○ case), and
even slower than the standard Exponential function.

BrokenExponentialDisk3D

�is function is identical to the ExponentialDisk3D function, except that the radial pro�le of the

luminosity density follows a broken-exponential function (e.g., Section A.1) instead of a simple

exponential. Consequently, it has the following parameters:

FUNCTION BrokenExponentialDisk3D
PA
inc
J_0
h1
h2
r_break
alpha
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n
z_0

GaussianRing3D

�is function does line-of-sight integration through an elliptical ring. �e ring is de�ned as hav-

ing luminosity density with a radial Gaussian pro�le (centered at a_ring along ring’s major axis,
with in-plane width σ) and a vertical exponential pro�le (with scale height h_z).�e ring can be
envisioned as residing in an (invisible) plane which has a line of nodes at angle PA and inclination
inc (as for the ExponentialDisk3D function, above); within this plane, the ring’s major axis is
at position angle PA_ring relative to the perpendicular to the line of nodes, and the ring has an
ellipticity given by ell.

FUNCTION GaussianRing3D
PA
inc
PA_ring
ell
J_0
a_ring
sigma
h_z

FerrersBar3D

�is function does line-of-sight integration through a Ferrers [1877] ellipsoid, where the luminos-

ity density is constant on concentric, strati�ed ellipsoidal shells, with the density going to zero

outside a speci�ed ellipsoidal radius (= Rbar along the major axis). �e potential corresponding
to the mass-density version of this function has commonly been used to represent galactic bars in

theoretical studies of orbits in barred galaxies.

As with the GaussianRing3D component, the ellipsoid can be imagined as lying in an (invis-

ible) “equatorial” plane – de�ned by the �rst two axes of the ellipsoid – with a line of nodes at

angle PA and inclination inc (as for the ExponentialDisk3D function, above); within this plane,
the ellipsoid’s major axis is at position angle barPA relative to the perpendicular to the line of nodes
(i.e., at 90+barPA degrees relative to the line of nodes). �e shape of the ellipsoid is de�ned by
the axis ratios q = b/a and qz = c/a, where a (= Rbar) and b are the semi-major and semi-minor
axes in the equatorial plane and c is in the direction perpendicular to the equatorial plane. For
simplicity, it is assumed that q ≤ 1 and qz ≤ 1; however, it is not required that qz must be ≤ q.

�e luminosity density function is

j(m) =

⎧⎪⎪
⎨
⎪⎪⎩

J0 (1 −m2)n if m < 1

0 otherwise
(34)

where m is the ellipsoidal radius:

m2 =
x2

a2
+
y2

b2
+
z2

c2
, (35)

with a = Rbar, b = qRbar, and c = qzRbar. Typical values of n used in theoretical studies are 1 and
2.
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Note that this is related to but di�erent from the “Ferrers” component in GALFIT, which de-

�nes a 2D surface-brightness function using Eqn. 34.

FUNCTION FerrersBar3D
PA
inc
barPA
J_0
R_bar
q
q_z
n
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