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Abstract. We present a measure of the power spectrum on scales from 15 to 800 h−1 Mpc using the ROSAT-
ESO Flux-Limited X-Ray (REFLEX) galaxy cluster catalogue. The REFLEX survey provides a sample of the
452 X-ray brightest southern clusters of galaxies with the nominal flux limit S = 3.0 10−12 erg s−1 cm−2 for
the ROSAT energy band (0.1 − 2.4) keV. Several tests are performed showing no significant incompletenesses
of the REFLEX clusters with X-ray luminosities brighter than 1043 erg s−1 up to scales of about 800 h−1 Mpc.
They also indicate that cosmic variance might be more important than previous studies suggest. We regard
this as a warning not to draw general cosmological conclusions from cluster samples with a size smaller than
REFLEX. Power spectra, P (k), of comoving cluster number densities are estimated for flux- and volume-limited
subsamples. The most important result is the detection of a broad maximum within the comoving wavenum-
ber range 0.022 ≤ k ≤ 0.030 h Mpc−1. The data suggest an increase of the power spectral amplitude with
X-ray luminosity. Compared to optically selected cluster samples the REFLEX P (k) is flatter for wavenumbers
k ≤ 0.05 h Mpc−1 thus shifting the maximum of P (k) to larger scales. The smooth maximum is not consis-
tent with the narrow peak detected at k = 0.05 h Mpc−1 using the Abell/ACO richness ≥0 data. In the range
0.02 ≤ k ≤ 0.4 h Mpc−1 general agreement is found between the slope of the REFLEX P (k) and those obtained
with optically selected galaxies. A semi-analytic description of the biased nonlinear power spectrum in redshift
space gives the best agreement for low-density Cold Dark Matter models with or without a cosmological constant.
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1. Introduction

The fluctuation power spectrum, P (k), of the comoving
density contrast, δ(r), is a powerful summary statistic
to explore the second-order clustering properties of cos-
mic structures. Its direct relation to theoretical quantities
makes it an ideal tool for the discrimination between dif-
ferent scenarios of cosmic structure formation and cosmo-
logical models in general. However, measurements give the
spatial distribution of “light” and not the fluctuations of
the underlying matter field. For galaxies the connection
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between mass and the presence of a stellar system is com-
plicated because nonlinear gravitational, dissipative, and
radiative processes could lead to a nonlinear biasing up
to rather large scales (e.g., Bertschinger et al. 1997 and
references given therein). For rich clusters the relation be-
tween mass and the presence of such systems is expected
to be governed by comparatively simple biasing schemes
(e.g., Kaiser 1984; Bardeen et al. 1986; Mo & White 1996),
mainly driven by gravitation, and only slightly modified
by dissipative processes. In this sense rich clusters of galax-
ies are much easier to model and thus “better” tracers of
the large-scale distribution of matter.

Power spectra obtained from optically selected clus-
ter surveys (Peacock & West 1992; Einasto et al. 1993;
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Jing & Valdarnini 1993; Einasto et al. 1997; Retzlaff et al.
1998; Tadros et al. 1998) are found to have slopes of about
−1.8 for k > 0.05h Mpc−1 and a turnover or some indica-
tions for a turnover at k ≈ 0.03− 0.05h Mpc−1. Contrary
to this, Miller & Batuski (2000) find no indication of a
turnover in the distribution of Abell richness ≥1 clus-
ters for k ≥ 0.009h Mpc−1 1. Measurements on scales
>500h−1 Mpc or k < 0.013h Mpc−1 where the cluster
fluctuation signal is expected to be smaller than 1 percent
are, however, extremely sensitive to errors in the sample
selection. The resulting artificial fluctuations increase the
measured power spectral densities and thus prevent any
detection of a decreasing P (k) on these large scales.

The current situation regarding the detection and the
location of a turnover in the cluster power spectra ap-
pears to be very controversal with partially contradict-
ing results. Physically, the scale of the expected turnover
is closely linked to the horizon scale at matter-radiation
equality. This introduces a specific scale into an other-
wise almost scale-invariant primordial power spectrum
and thus helps to discriminate between the different sce-
narios of cosmic structure formation discussed today. The
narrow peak found for Abell/ACO clusters by Einasto
et al. (1997) and Retzlaff et al. (1998) suggests a period-
icity in the cluster distribution on scales of 120h−1 Mpc
and, if representative for the whole cluster population, is
very difficult to reconcile with current structure formation
models. The undoubted identification of the location and
shape of this important spectral feature must, however, in-
clude a clear documentation of the quality of the sample
from which it was derived.

Although the quality of optically selected large-area
cluster samples has been improved during the past years
by the introduction of, e.g., automatic cluster searches
(e.g., Dalton et al. 1992; Lumsden et al. 1992; Collins et al.
1995) a major step towards precise fluctuation measure-
ments on very large scales is offered by the use of X-ray
selected cluster samples where also poor systems can be
reliably identified and characterized within the global net-
work of filaments or other large-scale structures. This is
due to several facts.

First, the relation between X-ray luminosity and to-
tal cluster mass as observed (see Eq. (10), Reiprich &
Böhringer 1999; Borgani & Guzzo 2000) and as indicated
to first order from the modeling of clusters as a homol-
ogous group of objects scaling with mass (Kaiser 1986),
convincingly demonstrates the possibility to select clus-
ters basically by their mass, although the 1σ scatter for
the determination of the gravitational mass from X-ray
luminosity is still quite large (about 50 percent). This is
clearly preferable compared to a selection of clusters by
their optical richness, as indicated for example by the re-
sults obtained within the ENACS (Katgert et al. 1996)

1 The Hubble constant H0 is given in units of h =
H0/(100 km s−1 Mpc−1) and the X-ray source properties (lu-
minosities, etc.) for h = 0.5, the cosmic density parameter is
Ω0 = 1, and the normalized cosmological constant ΩΛ = 0.

where about 10 percent of the Abell et al. (1989) clus-
ters with z ≤ 0.1 (located in the southern hemisphere) do
not show any significant concentration along the redshift
direction and must thus be regarded as spurious.

Second, although the spatial galaxy number density
profiles are more concentrated towards the cluster cen-
tres compared to the gas density profiles, it is the much
more centrally peaked X-ray emissivity profile (∼ρ2

gas)
which increases the contrast to the background distribu-
tion and enhances the angular resolution of an X-ray clus-
ter survey. This decreases the probability of “projection
effects” known to contaminate, e.g., the optically selected
Abell/ACO cluster sample (Lucey 1983; Sutherland 1988;
Dekel et al. 1989).

Third, the large-scale variation of galactic extinction
modifies the local sensitivity of cluster detection (for the
optical passband see Nichol & Connolly 1996). In addition
to galactic obscuration galaxies can be confused with faint
stars which reduces the contrast of a cluster above the
background so that the system appears less rich (Postman
et al. 1986). The resulting artificial distortions must be re-
duced because they easily dominate any measured fluctu-
ation on large scales (e.g., Vogeley 1998). In the following
it will be shown that in X-rays the local survey sensitivity
can be readily computed using the local exposure time of
the X-ray satellite and the local column density of neutral
galactic hydrogen, NHI.

First results of a power spectrum analysis using
X-ray selected subsamples of the 291 clusters of the
ROSAT Bright Survey (Schwope et al. 2000) are presented
in Retzlaff (1999) and Retzlaff & Hasinger (2000). For the
count rate-limited subsample indications for a turnover of
P (k) at k = 0.05h−1 Mpc are found. For the volume-
limited subsample the statistical significance of this spe-
cific feature is very weak or almost absent.

In this paper we present the results of a power spec-
trum analysis obtained with a sample of 452 ROSAT ESO
Flux-Limited (REFLEX) clusters of galaxies. A related
study of the large-scale distribution of REFLEX clus-
ters using the spatial two-point correlation function can
be found in Collins et al. (2000). Section 2 gives a brief
overview of the selection of the cluster sample. Section 3
concentrates on the discussion of the overall completeness
of the REFLEX sample, drawing special attention to those
selection effects which might limit the fluctuation mea-
surements on large scales. In Sect. 4 standard methods
of power spectral analyses are applied to estimate P (k).
The systematic and random errors are computed using a
set of N -body simulations of an open Cold Dark Matter
(OCDM) model which is shown to give a good though not
optimal representation of the REFLEX sample (Sect. 5).
The results are shown in Sect. 6 and compared with opti-
cally selected cluster and galaxy samples. In Sect. 7 a semi-
analytic model is derived and compared with the observed
power spectra of flux- and of volume-limited subsamples.
Section 8 summarizes and discusses the main results.
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2. The REFLEX cluster sample

In the following a brief overview of the sample construc-
tion is given. A detailed description of the various reduc-
tion steps, the resulting sample sizes, the methods for the
X-ray flux, S, and luminosity, LX, computations, the de-
termination of temperature- and redshift-dependent flux
corrections, as well as the correlation with optical galaxy
catalogues, and the computation of the local survey flux
limits (survey sensitivity) can be found in Böhringer et al.
(2000a,b).

The REFLEX clusters are detected in the ROSAT All-
Sky Survey (Trümper 1993; Voges et al. 1999). They are
distributed over an area of 4.24 sr (13 924 deg2) in the
southern hemisphere below +2.5 deg Declination. To re-
duce incompleteness caused by galactic obscuration and
crowded stellar fields the sample excludes the area±20 deg
around the galactic plane and 0.0987 sr at the Small
and the Large Magellanic Clouds, basically following the
boundaries of the corresponding UK Schmidt plates (e.g.,
Heydon-Dumbleton et al. 1989).

The sample is based on an MPE internal source cat-
alogue extracted with a detection likelihood ≥7 from
the ROSAT All-Sky Survey (RASS II). 54 076 southern
sources have been re-analysed with the growth curve anal-
ysis method (Böhringer et al. 2000b) which is especially
suited to the processing of extended sources. Although
the data were analysed in all three ROSAT energy bands
most weight is given to the hard band (0.5–2.0 keV) where
60 to 100 percent of the cluster emission is detected, the
soft X-ray background is reduced by a factor of approx-
imately 4, and the contamination through the majority
of RASS II sources is lowest, so that the signal-to-noise
for the detection of clusters is highest. As expected the
new count rates are systematically higher (up to an order
of magnitude) compared to the count rates given by the
standard ROSAT analysis software which is optimized for
the processing of point-like sources.

The low source counts of many RASS sources as well
as the limited spectral resolution of the PSPC do not
give enough information for a proper identification of
the sources based only on the X-ray properties so that
additional reduction steps are necessary. Optical cluster
counterparts are found using counts of COSMOS galaxies
(Heydon-Dumbleton et al. 1989) in concentric rings with
different apertures centered around the X-ray source po-
sitions. The probability thresholds used for the different
rings are set low to select also weak excesses of galaxy
surface number densities above background, introducing
a formal sample incompleteness of less than 10 percent.

The cluster candidates are screened using the X-ray,
optical, and literature data. Obvious multiple detections,
and candidates with a strong point-like contamination
(e.g., active galactic nuclei AGN) of the X-ray flux where
the residual flux from the cluster is estimated to be
smaller than the nominal REFLEX flux limit, are re-
moved. Double sources are deblended, and count rates
measured in the hard band are converted to unabsorbed

fluxes in the ROSAT band (0.1− 2.4) keV using standard
radiation codes for a thermal spectrum with temperature
kBT = 5.0 keV, redshift z = 0, metal abundance 0.3 so-
lar units, and local NHI (Dickey & Lockman 1990; Stark
et al. 1992). The internal errors of the measured fluxes
range between 10 and 20 percent. The effects of a possi-
ble systematic underestimation of the total fluxes, mainly
caused by the incomplete sampling of the outer parts of
the cluster X-ray emission, are presently investigated (H.
Böhringer et al., in preparation). For the present investi-
gation the measured fluxes (not the total fluxes) are used.

A complete identification of all cluster candidates and
a measure of their redshifts has been performed in the
framework of an ESO Key Programme (Böhringer et al.
1998; Guzzo et al. 1999). During this campaign, 431 X-ray
targets were observed with an average of about 5 spectra
per target.

The iterative computation of the X-ray luminosity uses
in the first step the redshift and the unabsorbed X-ray
flux to give a first estimate of LX. This luminosity and
the luminosity-temperature relation of Markevitch (1998,
without correction for cooling flows) is used to improve the
initial temperature estimate (5 keV). In the next step the
count rate-flux conversion factor is recomputed including
now the effects of z. The cluster restframe luminosity is
calculated by taking into account the equivalent to the
cosmic K-correction. The X-ray luminosities are given for
the (0.1− 2.4) keV energy band (h = 0.5). For this band
and for clusters with redshifts z ≤ 0.3 and the temperature
T = 5 keV the K-corrections are less than 12 percent.
Note that the iterative calculation does not introduce any
uncertainty in the selection function, since each value of
LX has a unique correspondence to the first calculated
unabsorbed flux and thus to a uniquely determined survey
volume.

Adding to the above mentioned selection crite-
ria the nominal flux limit of the REFLEX sample,
3 10−12 erg s−1 cm−2 within the ROSAT energy band
(0.1 − 2.4) keV, we find 452 clusters. Of these 449 have
measured redshifts, 1 object is clearly a cluster while 2
are unconfirmed candidates. 65 percent of the sample are
Abell/ACO/Supplement clusters. However, note the diffi-
culty to compare X-ray flux-limited and richness-limited
cluster samples (see Böhringer et al. 2000a for more de-
tails). 81 percent of these clusters show a significant
X-ray extent (determined with the growth curve analysis
method). This shows how a selection based solely on X-ray
extent would have missed, given the quality of the RASS II
data, a significant percentage of true clusters. Less than
10 percent of the REFLEX sources are expected to be
significantly contaminated by unidentified AGN.

Figure 1 shows the spatial distribution of the REFLEX
clusters for redshifts z ≤ 0.35. Galactic extinction par-
tially obscures the regions 6h−10h and 16h−20h. The cone
diagrams – although averaged over a large Declination
range – illustrate the comparatively high sampling rates
obtained with the REFLEX survey. Inhomogeneities in
the spatial distribution of clusters on scales of the
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Fig. 1. Spatial distribution of the REFLEX clusters of galaxies. Radial axes are given in units of [km s−1]. Plotted are all clusters
with z ≤ 0.35. Galactic extinction partially obscures the regions 6h − 10h and 16h − 20h. Note the Shapley concentration at
RA = 13h and cz ≈ 14 000 km s−1 surrounded by a filament of galaxy clusters

order of 100 h−1 Mpc are thus easily recognized. A detailed
analysis of the behaviour of the mean density and of the
topology using Minkowski functionals will be presented in
forthcoming papers. However, the combined effect of the
X-ray flux-limit and the steep X-ray luminosity function
(Böhringer et al., in preparation) introduces a systematic
dilution of the sample for larger redshifts. This is an im-
portant difference to traditional optical cluster samples
which are up to a certain redshift almost volume-limited
(for given richness). In the following section the REFLEX
data are tested for artifical number density fluctuations
which could bias fluctuation measurements on large scales.

3. Tests for artificial density fluctuations

3.1. Variation of the local X-ray flux limit across
the survey area (survey sensitivity variations)

The local flux limit is determined by the nominal flux
limit, the minimum number of source counts required for
a safe detection, the local exposure time in the RASS II,
and the local NHI value. According to the resulting sur-
vey sensitivity map for ≥10 source counts the nominal
flux limit 3 10−12 erg s−1 cm−2 is reached on 97 percent of
the total survey area. For ≥30 source counts the fraction
drops to 78 percent. For precise fluctuation measurements
it is thus necessary to take into account the local survey
sensitivity.

In order to use as many clusters as possible for the fluc-
tuation measurements all sources with at least 10 source
counts in the hard band are included. Generally, the com-
paratively low background of the ROSAT PSPC especially
in the hard band allows the detection and the character-
ization of sources even with low source counts. In fact,
the number of clusters with 10 to 29 source counts as
observed (Ncl = 26) and as predicted from the subsam-
ple of the clusters with at least 30 source counts (Ncl =
37) suggests a formal incompleteness of 11 ± 5 clusters

(1σ Poisson error, no cosmic variance) for the subsample
with at least 10 source counts. Assuming that the subsam-
ple with at least 30 source counts is complete this gives
a formal overall incompleteness smaller than 3 percent.
The corresponding local incompletenesses are expected to
be highest in the areas where the ROSAT satellite passed
the radiation belts in the South Atlantic Anomaly of the
Earth’s magnetic field.

Random samples are used for the power spectrum anal-
ysis giving Monte-Carlo estimates of the actual REFLEX
survey windows (Sect. 4). They can also be used to test
the quality of the survey selection model. In the follow-
ing we describe their construction. The sensitivity map
is computed for approximately 1◦ × 1◦ tiles covering the
complete sky area ≤2.5 deg Declination. Each of the re-
sulting 21 529 local selection functions, φ(r), gives the
fraction of the X-ray luminosity function at the comov-
ing distance r, and thus the number of expected clusters,
∆N(r) = n̄φ(r)∆V (r), down to the local flux limit of
the given tile, Slim(α, δ), assuming complete randomness.
Here, n̄ is the mean comoving cluster number density,
∆V (r) the comoving volume element at r, and for the
given angular coordinate (α, δ) of the tile,

φ(r) =

∫∞
LX(Slim(α,δ),z) Φ(LX) dLX∫∞

Lmin
X

Φ(LX) dLX

, (1)

where Lmin
X is the minimum X-ray luminosity of the sam-

ple. For the X-ray luminosity function, Φ(LX), we plug
in the empirical estimate of the global REFLEX luminos-
ity function as determined in Böhringer et al. (in prepa-
ration). The shape of this function can be described by
a Schechter function with the characteristic luminosity
L∗ = 6.04 1044 erg s−1 (h = 0.5), and the faint-end slope
α = −1.61 (for a minimum of 10 source counts, no decon-
volution of measurement error, see also de Grandi et al.
1999). The transformation of the cluster restframe lumi-
nosities into the observer restframe fluxes corresponds to
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Fig. 2. Number of REFLEX clusters of galaxies as a function
of galactic longitude lII and latitude bII (steps) compared with
the number of clusters expected for a random realisation of the
REFLEX selection function (area and sensitivity), computed
for the nominal flux limit 3 10−12 erg s−1 cm−2 and the mini-
mum of 10 source counts (continuous lines). Narrow count bins
are chosen to show the effects of large-scale clustering

the reverse of the S → LX transformation described in
Sect. 2. This prescription gives a good representation of
the redshift histogram for Lmin

X = 1.0 1043 erg s−1 (com-
parable to the luminosity of bright Hickson groups).

Figure 2 compares the observed cluster surface num-
ber densities as a function of galactic coordinates with
the surface number densities obtained from Monte-Carlo
simulations of a random distribution of clusters in the
REFLEX survey area with at least 10 X-ray source counts,
and modulated by the local variation of the satellite expo-
sure time and galactic NHI (survey sensitivity map). The
overall agreement is encouraging. The good statistical co-
incidence between observed and expected cluster counts
close to the bII = ±20◦ survey boundaries suggests that
the effects of galactic extinction are well represented in the
survey selection model. The remaining local deviations are
caused by large-scale clustering.

3.2. Variation of the average comoving cluster number
density along the radial direction

To test the variation of the average cluster number density
along the radial direction, mean densities are computed for
different volume-limited subsamples taking into account
the local survey sensitivity map by weighting each cluster
with the X-ray flux S using the inverse of the fraction of
the survey area with a flux limit below S (effective area).

For each subsample the comoving number densities are
normalized to their respective mean density.

Figure 3 shows the normalized comoving number den-
sity computed along the redshift direction for comoving
radial distances of R ≤ 400h−1 Mpc corresponding to
z ≤ 0.15. Maximum fluctuations of the order of 3 are found
on small scales. They are successively smoothed out with
increasing R. The quasi-periodic density variations have
a wavelength of about 150 h−1 Mpc. No related feature is
seen in the power spectrum at this scale (see Sect. 6). The
essentially constant mean comoving cluster density im-
plies the absence of selection effects discriminating against
the more distant clusters. Note that the REFLEX survey
covers the southern hemisphere so that a volume with a
radius of R = 400h−1 Mpc gives a maximum comoving
scale length of about λ = 2R = 800h−1 Mpc. Comoving
number densities on Giga parsec scales will be discussed
in detail in Böhringer et al. (in preparation).

The huge nearby underdensity centered at z = 0.03 is
also present in the ESO Slice Project data (Vettolani et al.
1997) as shown in Zucca et al. (1997) and might be the
origin of the observed deficit of “bright” galaxies in the
magnitude number counts as discussed in Guzzo (1997).
The large overdensity region at z = 0.05 is partially caused
by the Shapley concentration (Fig. 1 – right cone, see also
Scaramella et al. 1989; Bardelli et al. 1997) and by some
isolated nearby structures located at that distance in the
direction of the South Galactic Pole (Fig. 1 – left cone).

3.3. Flux-dependent incompletenesses

Flux-dependent incompletenesses might also lead to sys-
tematic errors in the fluctuation measurements. This sec-
tion investigates the presence of this type of incomplete-
ness and its relation to cosmic variance.

For the REFLEX flux range the shape of the cumu-
lative cluster number counts as a function of X-ray flux
is mainly sensitive to flux-dependent incompleteness and
to the K-correction, weakly dependent on evolutionary
effects, and almost independent of the shape of a non-
evolving X-ray luminosity function (completely indepen-
dent for an Euclidean space), the chosen cosmological
background model, and the type of dark matter used in the
simulations. The comparison of the slopes of observed and
simulated distributions provides a robust though model-
dependent measure of the relative incompleteness of a sur-
vey (the N -body simulations are described in Sect. 5.2).

The individual cumulative flux-number counts ob-
tained with 10 statistically independent simulations are
shown in Fig. 4. Cosmic variance modulates the sim-
ulated cluster counts especially for X-ray fluxes S >
5.0 10−12 erg s−1 cm−2 yielding slopes between −1.2 and
−1.6. The fluctuations are caused by the large-scale varia-
tions of comoving cluster number density at small redshifts
similar to those shown in Figs. 1 and 3. At fainter fluxes
the fluctuations decrease and the slopes of the cumula-
tive distributions converge to values of about −1.3 (note
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Fig. 3. Normalized comoving cluster number densities as a function of redshift, z, and comoving radial distance, R, computed
with Ω0 = 1. Vertical bars represent the formal 1σ Poisson errors. Note the quasi-periodic density fluctuations around an
essentially constant mean

Fig. 4. Cumulative distributions as a function of X-ray flux for
a REFLEX subsample (thick continuous line) and for 10 simu-
lated OCDM samples (thin continuous, broken, dotted, dashed
lines) convolved with the REFLEX survey sensitivity and nor-
malized to the same number of clusters. The large scatter of the
number counts at high fluxes is significantly above the formal
Poisson expectation and reflects the effects of cosmic variance

that the plotted cumulative distributions still contain the
effects of the effective survey area) which is close to the
observed slope of −1.35 (Böhringer et al. 2000a). At this
limit the REFLEX sample appears to be deep and large
enough so that the resulting number counts should be re-
garded as statistically representative for the local Universe
and not dominated by chance fluctuations. The similarity
of observed and simulated slopes suggests a high overall
completeness of REFLEX.

As a second measure of the overall sample incomplete-
ness the V/Vmax test (e.g., Schmidt 1968; Avni & Bahcall
1980) is applied as a function of the flux limit. Figure 5

Fig. 5. Mean V/Vmax values for REFLEX clusters as a func-
tion of X-ray flux. Error bars are the formal 1σ Poisson errors
(no cosmic variance). To illustrate the sensitivity of the test
we have computed V/Vmax also below the nominal flux limit of
3.0 10−12 erg s−1 cm−2 where no REFLEX clusters are present
to mimic a simple kind of incompleteness. Note that the test
is performed with all clusters brighter than a given flux limit
S(0.1−2.4 keV) introducing a statistical dependency of the aver-
aged V/Vmax values for different S

shows the averaged V/Vmax values for different X-ray flux
limits. Towards fainter flux limits the scatter decreases
because sample sizes and volumes increase. At the nominal
flux limit, the mean V/Vmax value is 0.512± 0.014 where
the formal error does not include fluctuations caused by
large-scale clustering. We take this convergence to the
ideal case < V/Vmax > = 0.5 for a non-expanding
Euclidian universe as a clear sign that at the nominal flux
limit the REFLEX survey volume and sample size is large
enough to cover a representative part of the local Universe
with a high sample completeness and a small sample
variance.

To summarize, although it is not the basic aim of the
present investigation to assess the absolute completeness
and statistical representativeness of the REFLEX sample
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Table 1. REFLEX flux-limited (F) and volume-limited (L) subsamples used for the power spectral analyses of the clusters
with ≥10 source counts and the nominal flux limit 3.0 10−12 erg s−1 cm−2, and LX ≥ 1043 erg s−1. The X-ray luminositities LX

are given for h = 0.5, box length L used for the Fourier transformation, averaged comoving cluster number densities n, and
mean cluster-cluster distances, s̄, in units of h. NCL is the number of clusters in the subsample and z the redshift. Fluxes and
luminosities are given for the ROSAT energy band (0.1− 2.4) keV

Sample LX ≥ z ≤ NCL L n s̄
[1044 erg s−1] [h−1 Mpc] [h3 Mpc−3] [h−1 Mpc]

F0 0.1 0.460 428 - - -
F300 0.1 0.460 133 300 - -
F400 0.1 0.460 188 400 - -
F500 0.1 0.460 248 500 - -
F600 0.1 0.460 292 600 - -
F700 0.1 0.460 326 700 - -
F800 0.1 0.460 341 800 - -
L050 0.5 0.063 75 400 9.0403 10−6 48.0
L120 1.2 0.093 96 400 3.8312 10−6 63.9

(see Böhringer et al. 2000a), several indications are given
that the REFLEX survey is large enough so that in gen-
eral the values of statistical quantities derived from the
sample are expected to be not dominated by the effect
of the limited REFLEX survey volume (e.g., Figs. 3, 4),
and should thus give a useful characterization of the local
Universe. The fluctuation measurements investigated here
will not be dominated by survey incompleteness (Fig. 5) or
other artifical large-scale variations out to radial distances
of 400h−1 Mpc (Fig. 3).

For the following power spectrum analyses we use dif-
ferent subsamples which are either flux-limited (abbrevi-
ated by F) or volume-limited (abbreviated by L). Note
that the flux limit of the F subsamples is the nominal
flux limit of REFLEX and that most of the F subsam-
ples are also restricted to different volumes smaller than
the total survey volume (see below). The characteristics of
the subsamples are given in Table 1. The F0 sample con-
tains all clusters with LX ≥ 1043 erg s−1, (h = 0.5), and
source counts ≥ 10. It serves as a reference sample from
which the following subsamples are derived. The subsam-
ples F300 to F800 differ by the chosen box length, L, used
for the computation of the Fourier transforms, varying
between L = 300h−1 Mpc and L = 800h−1 Mpc. With
these subsamples volume-dependent effects are tested.
The volume-limited subsamples L050 and L120 have lu-
minosity LX ≥ 0.5 1044 erg s−1 and LX ≥ 1.2 1044 erg s−1

(h = 0.5), respectively, and are used to analyse the ampli-
tude and shape of P (k) for clusters with different masses.
For the given flux limit, subsamples with a lower X-ray
luminosity cut as used in L050 are surely fluctuation-
dominated and can thus not be regarded as statistically
representative. L120 has the largest sample size attainable
for volume-limited REFLEX subsamples. Table 1 gives co-
moving cluster number densities and mean cluster-cluster
distances only for the volume-limited subsamples because
of the strong dilution of the flux-limited subsamples and
the corresponding large change of these quantities with
increasing redshift.

4. Spectral analyses

4.1. Formal background

In the following the spatial distribution of clusters is re-
garded as a realisation of a formal point process. The
corresponding Fourier transforms are well-defined in the
strict mathematical sense if the related count measures
are approximated by suitably smoothed versions, allowing
the application of the classic Bochner-Khinchin theorem
(e.g., Shiryaev 1995, p. 287) also for point processes. The
subsequent definition of the classical Bartlett or power
spectrum of point processes via the Fourier transform of
reduced second-order stationary random measures (Ripley
1977), which are closely related to the two-point (spatial)
correlation function, does not cause any greater difficul-
ties. More details can be found in, e.g., Daley & Vere-Jones
(1988, Chap. 11).

4.2. Spectral estimators

Problems arise to find unbiased spectral estimators with
small variance and no correlations between power spec-
tral densities obtained at different wavenumbers k. As an
example, naive estimators of the general form (statistical
estimates are indicated by the hat symbol)

P̂ (k) ∼

∣∣∣∣∣∣ 1
N

N∑
j=1

eik·rj − Wk

∣∣∣∣∣∣
2

, (2)

where N is the number of points which are located at
the comoving positions rj , and Wk the discrete Fourier
transform of the survey window, are basically applied in all
investigations mentioned in Sect. 1. Even for cubic survey
volumes it leads after the subtraction of the shot noise to
the expectations (abbreviated by the letter E)

E{P̂(k)} =
∫

F (k − k′) P(k′) d3k′ , (3)

where F (·) is known (in the one-dimensional case) as
the Fejér’s or Dirichlet’s kernel (Percival & Walten 1993,
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Chap. 6). The resulting systematic distortions of P̂ (k)
caused by the sidelobes of F increase with the dynamic
range of P (k) and for small data volumes. Tapering is
one method to reduce this type of leakage (Blackman &
Tukey 1958, p. 93) but would increase the variance of P̂ (k)
as well. Another method is to estimate the power spec-
tral densities only for those k values where the Fourier
transforms of F (·) are almost zero, namely at the mul-
tiples of the fundamental mode, k0 = 2π/L, where L is
the length of the Fourier box. In order to increase the
signal-to-noise the power spectral densities are averaged
over shells in k-space with the thickness ∆k = k0, cen-
tered on the multiples of the fundamental mode. In a sim-
ilar way smoothing of P̂ (k) with, e.g., Bartlett, Parzen, or
other standard spectral smoothing windows as described
in reference books on Fast Fourier transform would re-
duce the variance of P̂ (k). However, as shown in Percival
& Walten (1993), either type of smoothing is critical be-
cause especially the central lobe of the smoothing window
introduces a bias ∼ γ2 ∂

2P (k)
∂k2 which is proportional to the

squared bandwidth, γ2 (a reasonable estimate of γ is given
by the fundamental mode k0), and to the local curvature
of P (k).

The leakage introduced by the survey window increases
even further for asymmetric survey volumes because in
this case a unique fundamental mode does not exist.
For almost symmetric windows the effects are small and
might be corrected using the formulae given in Peacock
& Nicholson (1991) and Lin et al. (1996). For highly
asymmetric windows the whole concept of plane wave ap-
proximation fails. In this case the deconvolution of the
survey window function becomes unreliable below a cer-
tain wavenumber, and the best solution is to resort to
survey- and clustering- specific eigenfunctions as those
provided by the Karhunen-Loeve transform (Vogeley &
Szalay 1996). Moreover, the survey volume under consid-
eration might not be large enough to cover a representa-
tive part of the Universe so that the resulting “cosmic
variance” adds to the technical effects described above.

Here, for the determination of the power spectrum, two
methods are compared. The first method uses the estima-
tor (Schuecker et al. 1996a,b)

P̂ (k) =
V∑

k′ |Wk′ |2

〈
|δ̂k|2 − D̂

1− |Wk|2

〉
|k|

, (4)

where the fluctuation amplitudes are corrected for the ef-
fects of the survey window by

δ̂k =
1∑

i[φ̂(ri)]−1

N∑
i=1

[φ̂(ri)]−1 eik·ri

− 1∑
j [φ̂(rj)]−1

M∑
j=1

[φ̂(rj)]−1 eik·rj . (5)

The estimator of the discreteness noise is

D̂ =
∑N
i=1(φ̂(ri))−2[∑N
i=1(φ̂(ri))−1

]2 +

∑M
j=1(φ̂(rj))−2[∑M
j=1(φ̂(rj))−1

]2 · (6)

The squared differences of the discrete Fourier transforms
of the observed (inhomogeneous) and of the random distri-
butions, both corrected for shot noise, are averaged over
different directions and weighted by (1 − |Wk|2) reduc-
ing the effects of the errors in the mean number density
(Peacock & Nicholson 1991). The power spectral densities
must be normalized by the volume V used to compute the
Fourier transforms and by the total power of the Fourier
transformed survey window. Whereas the number of ob-
served objects N is fixed by the sample, the number of
points used for the random sample M should be large
enough so that their shot noise contributions can be sub-
tracted with high accuracy. Both the observed and the
random samples have the same position-dependent selec-
tion function, φ(r).

The second method to determine the power spectrum
averages the fluctuation power over Nk modes per k shell
(Feldman et al. 1994),

P̂ (k) =
1
Nk

∑
k

|F̂(k)|2 − D̂ , (7)

where the window-corrected Fourier-transformed density
contrasts are given in a similar way as before,

F̂(k) =
N∑
i=1

w(ri) eik·ri − α
M∑
j=1

w(rj) eik·rj . (8)

The total shot noise is estimated by

D̂ = α(1 + α)
M∑
j=1

w2(rj) e−k·rj , (9)

where α = N/M . For Gaussian fluctuations the weights
w(r) = 1

1 +n(r)P (k) minimize the variance of the estima-
tor, however, they require the a priori knowledge of P (k),
that is, the quantity one wants to measure, in addition to a
fair estimate of the mean density, n(r). Reasonable results
are attainable if n(r) is estimated by the observed lumi-
nosity function or by smoothed empirical z histograms
(Sect. 3.1) and the sensitivity map of the survey, and
if P (k) is approximated by a constant power spectrum,
P (k) = P0 = const.

5. Test of the spectral analyses

5.1. General tests

The first test concerns the choice of the spectral estima-
tor used for the analyses of the REFLEX data. Figure 6
compares the estimates obtained with Eqs. (4) and (7).
The power spectral densities are computed for a flux-
limited REFLEX subsample in a cubic box with a length
of L = 400h−1 Mpc using a standard FFT algorithm
on a 1283 grid for N = 188 REFLEX clusters and for
M = 2.0 106 random particles. The differences between
the power spectral densities obtained with Eqs. (4) and (7)
and the differences between the power spectra obtained
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Fig. 6. Power spectral densities obtained with Eq. (4) (“stan-
dard method” STD) and with Eq. (7) (“Feldman, Kaiser,
Peacock method” FKP) for a flux-limited REFLEX subsam-
ple with N = 188 clusters within a cubic volume V =
(400 h−1 Mpc)3. The radial parts of the random samples used
to estimate the survey window are computed with smoothed
empirical z histograms

with (7) for different P0 are small compared to the er-
rors introduced by the sample itself (see Sect. 5.2). We
choose (4) for the spectral analyses because the explo-
ration of the REFLEX data should start with a minimum
of pre-assumptions about P (k). Moreover, the REFLEX
survey volume is comparatively symmetric so that in ad-
dition to the window correction term in Eq. (4) no specific
deconvolutions are performed. The remaining effects of the
window functions are checked using the results obtained
with N -body simulations (see Sect. 5.2).

To test the robustness of the method applied for the
computation of the radial parts of the random samples
(see Sect. 3.1) the empirical z histogram is determined
for different flux limits and smoothed with the biweight
kernel (corrected for edge effects) using the standard de-
viation σz = 0.03 to reduce the large-scale fluctuations.
The filtered redshift distributions give an alternative rep-
resentation of the radial selection functions (after proper
normalization with the comoving volume elements and the
survey sensitivity map). The local redshift distribution of
the random sample as well as the local radial selection
function is then estimated by the Monte-Carlo method.

As an example, the power spectral densities shown
as open symbols in Fig. 7 are computed with random
samples based on smoothed empirical z distributions,
the filled symbols with random samples based on the
REFLEX X-ray luminosity function. It is seen that the
power spectral densities obtained with the smoothing
method are systematically smaller up to factors reach-
ing 1.6 at the largest scales. The differences at small
scales are mainly caused by the poor sampling of den-
sity waves by the REFLEX clusters. We regard the

Fig. 7. Fluctuation power spectral densities, P (k), as a func-
tion of comoving wavenumber, k, corresponding to the wave-
length λ = 2π/k. Compared are REFLEX P (k) obtained with
two different methods to compute the radial part of the refer-
ence random sample. Filled symbols are obtained with random
samples based on the X-ray luminosity function (XLF), open
symbols are based on smoothed redshift histograms of observed
samples (SMOOTH)

luminosity function method to be more reliable, espe-
cially on large scales (and for small sample sizes): smooth-
ing out all fluctuations is almost impossible, especially on
large scales, so that the resulting spectra have systemati-
cally smaller amplitudes as illustrated by Fig. 7. In the
following all REFLEX power spectra excluding those
shown in Fig. 6 are obtained by using the luminosity func-
tion to compute the radial part of the random samples.

5.2. N-body simulations

Systematic and random errors of P̂ (k) are investigated
using a set of statistically independent cluster distribu-
tions obtained from realistic N -body simulations, trans-
formed into redshift space, and modified according to the
REFLEX survey selection as summarized by the survey
sensitivity map. In the following a brief overview of some
technical aspects of the simulations are given. A more de-
tailed description will be presented in the second paper on
the REFLEX power spectrum.

The simulations are performed using a standard PM
code (Hockney & Eastwood 1988) with 2563 particles in a
(500h−1 Mpc)3 box on a 5123 grid giving the force resolu-
tion ∆x ≈ 1h−1 Mpc. Ten OCDM models are simulated
with the parameters h = 0.60, cosmic density parame-
ter of matter, Ω0 = 0.40, cosmological constant ΩΛ = 0,
cosmic density parameter of baryons, Ωb = 0.05 (this cor-
responds to an estimate of Burbles & Tytler 1998) and
σ8 = 0.80. The transfer function was calculated with
the Boltzmann code CMBFAST of Seljak & Zaldamiaga
(1996). The normalization is so as to provide the correct
cluster abundance satisfying both the relation given in
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Fig. 8. REFLEX (continuous) and simulated (dashed-dotted)
cluster redshift histograms

Eke et al. (1996) and in Viana & Liddle (1996). We chose
this model because it gives a good representation of the
REFLEX data and thus realistic error estimates. However,
any other model with a similar power spectrum could do
the job as well. The mass resolution is 8.4 1011 h−1M�.
Each simulation starts at the redshift z = 50 (initial per-
turbations imposed on the “glass-like” initial load using
the Zel’dovich approximation) and ends after 245 time
steps (increment of the scale factor ∆a = 0.004). Several
replicants of the same simulation are combined using pe-
riodic boundary conditions to compare results on larger
scales. However, only for scales≤500h−1 Mpc statistically
independent measurements can be obtained.

For the identification of the clusters the friend-of-friend
method (Davis et al. 1985) is used with the linking pa-
rameter b = 0.16 to pick up virialized structures. The to-
tal cluster masses are computed within the radius where
the average density ratio is ρ̄(r500)/ρcritical = 500 using
only those clusters with at least 10 particles. The masses
are transformed into luminosities with the empirical mass
– X-ray luminosity relation for r500 from (Reiprich &
Böhringer 1999),

M

h−1M�
= 2.52 1014

(
Lx

1044 h−2 erg s−1

)0.81

· (10)

The individual cluster masses used to derive (10) show a
1σ scatter of about 50 percent. The r500 radius and the
OCDM model parameters mentioned above lead to real-
istic spatial cluster distributions, especially redshift his-
tograms (Fig. 8) and sample sizes, and thus to realistic
error estimates for P̂ (k). Whereas in the present investi-
gation the model parameters taken from the literature are
not changed, studies are in preparation using the “stan-
dard” radius r200 (see Sect. 7.1) and different types of
structure formation models to adjust the parameter val-
ues in order to reconcile the models with the observations.
We apply the above equation assuming no intrinsic scat-
ter of the mass-luminosity relation. A simulated cluster is
rejected if its flux is below the local flux limit given by
the survey sensitivity map (for 10 source counts). In this
way the simulated cluster sample follows the same sensi-
tivity pattern as the observed REFLEX sample. Finally,

sample sizes are adjusted using the additional lower lumi-
nosity limit LX = 3 1043 erg s−1 (h = 0.5), corresponding
to a minimum of 46 particles per cluster. This approxi-
mate modeling gives realistic spatial cluster distributions
and is enough for the error estimation of P̂ (k).

As a brief overview, Fig. 8 illustrate the similarity of
the observed and simulated cluster samples (see also the
cumulative flux-number counts in Fig. 4). The model pa-
rameters are not yet fully optimized to fit the observed
data in detail. A more quantitative comparison is given in
Sect. 7.

Figure 9 shows the power spectra obtained from (a)
simulated data under realistic REFLEX survey conditions
(filled symbols), and (b) simulated all-sky cluster surveys
with uniform survey sensitivities and no obscuration due
to galactic extinction (continuous lines). The error bars of
the latter measurements are omitted. The X-ray luminos-
ity functions of the two sets of simulations are identical so
that it is straightforward to test whether the power spec-
tral estimator gives the correct power spectrum: after the
correct elimination of the effects of the REFLEX survey
window (see Eq. (5)) the resulting power spectra (shape
and amplitude) of realistic and all-sky simulations should
be the same. The simulations correspond to the F300 to
F500 REFLEX subsamples (Table 1). The errors shown in
Fig. 9 represent the 1σ standard deviations obtained from
a set of 10 different OCDM realizations. For these simula-
tions a maximum of P̂ (k) is expected at k ≈ 0.02hMpc−1.
Note that the shape and amplitude of the ideal power
spectrum can be recovered under REFLEX conditions in
all volumes analyzed. Some extra power is seen at the fun-
damental mode in the 400 and 500h−1 Mpc results, how-
ever within the 1σ range. Note that the (500h−1 Mpc)3

simulations do not give a good representation of the fun-
damental mode at k = 2π/500hMpc−1 – only 3 modes
are realized per simulation – and do not include any fluc-
tuations on larger scales, so that one should take the er-
ror bars obtained at the simulation limit with caution.
Nevertheless, the overall agreement of the power spec-
tra obtained under REFLEX and ideal survey conditions
suggests that no significant systematic errors of P̂ (k) are
expected.

6. Observed power spectra

6.1. Exploring the general shape of P̂(k)

Many variants of cosmic structure formation models dis-
cussed today predict an almost linear slope of the power
spectrum on scales <40h−1 Mpc and a turnover into the
primordial regime between 100 and 300h−1 Mpc. To sum-
marize our measurements in this interesting scale range,
Fig. 10 shows the power spectral densities obtained with
the flux-limited REFLEX subsamples F300 to F800. The
volumes differ by a factor 19, enabling tests of possible
volume-dependent effects (Sect. 6.2). The superposed con-
tinuous and dashed lines in this and the following figures
of this section are always the same. Their computation
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Fig. 9. Power spectra for simulated (OCDM) flux-limited sub-
samples in different volumes. Filled symbols give the average
power spectral densities obtained by imposing the REFLEX
survey conditions, continuous lines the average power spectral
densities obtained for all-sky cluster surveys with uniform sur-
vey sensitivities and no galactic extinction, but with the same
X-ray luminosity function as the corresponding REFLEX sub-
samples (error bars omitted). The error bars are the 1σ stan-
dard deviations of the power spectral densities obtained with
10 REFLEX-like simulations. Error bars exceeding the plotted
P (k) range are shown by arrows. The size of the Fourier box
and the average number of simulated clusters located in the
box is given in the lower left of each panel

and interpretation is described in Sect. 6.2. In the follow-
ing they may serve as a mere reference to compare the
power spectra obtained with the different REFLEX sub-
samples listed in Table 1. Figure 11 gives a more detailed
view of the spectra obtained with the subsamples F300
to F500 in volumes which are monitored by our N -body
simulations. Figure 12 compares the spectra obtained for
the volume-limited subsamples L120 and L050 with the
spectrum obtained for the flux-limited subsample F400,
all spectra are estimated within the same Fourier volume.
Finally, Fig. 13 shows the combined power spectrum ob-
tained with the subsamples F300 to F500 which we regard
as the basic result of the REFLEX power spectrum anal-
yses. The values of the power spectral densities obtained
with the subsamples F300-F500, L050, and L120 with the

Fig. 10. REFLEX power spectra of the flux-limited subsam-
ples F300 to F500 (filled symbols, monitored by the N-body
simulations) and F600 to F800 (open symbols) in volumes with
box lengths between 300 and 800 h−1 Mpc (no corrections for
differences in effective biasing). For reference, the spectral fits
obtained with the phenomenological model (continuous line)
and with the CDM-like model (dashed line) using the subsam-
ples F300 to F800 are superposed

errors estimated with the N -body simulations are given
in Table 2. In the following a few more detailed remarks
are given.

Figure 10 shows the superposition of the power spectra
obtained with the flux-limited subsamples F300 to F800
in the comoving volumes ranging from (300h−1 Mpc)3 to
(800h−1 Mpc)3. The data are not corrected for sample-
to-sample variations of the effective biasing (see Sect. 7)
so that the effective variance among the estimates is pos-
sibly smaller than that displayed by the figure. The point
distribution outlines a corridor which can be separated
into three parts. For k > 0.1h Mpc−1 the power spec-
tral densities decrease approximately as k−2. Between
0.02 ≤ k ≤ 0.1h Mpc−1 the spectra bend into a flat
distribution. The N -body simulations give 1σ standard
deviations between 30 and 80 percent (including cosmic
variance) in this scale range as shown in Figs. 11–13.
For k < 0.02h Mpc−1 a second maximum is seen at
k ≈ 0.01h Mpc−1. We did not perform N -body simula-
tions for such large scales. However, the delete-d jackknife
resampling method (a variant of the boostrap method
where the creation of artifical point pairs is avoided; see,
e.g., Efron & Tibshirani 1993, see also the critical remarks
on the use of the bootstrap method in point process statis-
tics given in Snethlage 2000) gives 1σ error estimates of
the order of 80 percent (cosmic variance not included).
The detection of the second maximum in the power spec-
trum on such large scales, if real, would have very im-
portant implications on current structure formation mod-
els. However, as pointed out in the Introduction, mea-
surements on such large scales are easily biased by very
small systematic errors of the survey detection model.
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Table 2. REFLEX power spectral densities obtained for different REFLEX subsamples, indicated by the index (see Table 1)
of the power spectral densities, P in units of h−3 Mpc3. The errors are the formal 1σ standard deviations as adapted from 10
OCDM simulations

k PF300(k) σ(P ) k PF400(k) σ(P ) k PF500(k) σ(P ) k PL050(k) σ(P ) PL120(k) σ(P )

0.0209 225005 165087 0.0157 75312 65600 0.0126 573540 301495 0.0157 208388 122391 392794 301752
0.0419 295582 166814 0.0314 203050 119346 0.0251 261792 114413 0.0314 283215 203881 453834 346729
0.0628 130385 73346 0.0471 180709 100744 0.0377 355915 274882 0.0471 423245 227117 482384 366700
0.0838 75460 24608 0.0628 143612 75696 0.0503 156029 59838 0.0628 218190 82455 428681 230770
0.1047 71151 26249 0.0785 96808 57489 0.0628 50935 23333 0.0785 187649 97309 355547 293808
0.1257 54969 27508 0.0942 75444 41117 0.0754 123809 80121 0.0942 105025 68010 281954 268664
0.1466 54289 31769 0.1100 83073 30014 0.0880 82749 40760 0.1100 101841 65454 223302 172965
0.1676 47469 12606 0.1257 31639 8920 0.1005 82533 18233 0.1257 70705 30683 131183 95468
0.1885 34690 24804 0.1414 39688 21014 0.1131 48720 20268 0.1414 63820 36793 100848 62951
0.2094 33145 24350 0.1571 40994 20666 0.1257 35619 17539 0.1571 51805 30448 121818 90020
0.2304 33044 19821 0.1728 34105 13942 0.1382 68543 23563 0.1728 62935 60617 110103 60398
0.2513 23607 16395 0.1885 22950 15291 0.1508 45761 19363 0.1885 51164 34999 93618 77630
0.2723 15823 13983 0.2042 24635 8116 0.1634 30936 14519 0.2042 47937 25678 70140 28187
0.2932 16462 12553 0.2199 19413 8452 0.1759 48897 32916 0.2199 55192 41352 84617 38806
0.3142 19420 11962 0.2356 21710 12222 0.1885 20998 7960 0.2356 48857 33925 81083 70289
0.3351 19051 16859 0.2513 21041 11528 0.2011 26694 11482 0.2513 41602 20935 75968 79354
0.3560 6133 2189 0.2670 6694 5141 0.2136 10775 2504 0.2670 38002 21234 65442 51403
0.3770 11933 13125 0.2827 10279 8592 0.2262 7637 4614 0.2827 42094 28279 81393 68258
0.3979 7290 3426 0.2985 15554 11277 0.2388 10707 6913 0.2985 36277 17070 70096 53046

0.3142 10472 7294 0.2513 10938 5870 0.3142 35870 19565 61827 60854
0.2639 9894 5652 0.3300 33286 17785 49837 18589
0.2765 10248 8046 0.3456 20573 16773 32071 40253
0.2890 8869 4518 0.3613 21151 15062 34525 25173
0.3267 8259 4428 0.3770 19253 19786 43460 30951

0.3927 20295 20823 29257 21929

We postpone a detailed study of this very questionable
feature to a subsequent paper. The present investigation
concentrates more conservatively on the range 0.013 ≤
k ≤ 0.4hMpc−1 which is found to be free from any sig-
nificant artifical fluctuations (Sect. 3), which can be easily
monitored by the availableN -body simulations, and which
contains density waves well sampled by the REFLEX
clusters.

Individual spectra obtained with the three flux-limited
subsamples F300 to F500 are shown in Fig. 11, now includ-
ing the 1σ errors adapted from the N -body simulations.
Whereas the spectra obtained with F300 and F400 (upper
and middle panel) show a maximum at k ≈ 0.03h Mpc−1,
the F500 data (lower panel) suggest only a flattening of
the spectral densities. Especially the power spectral den-
sity obtained at the fundamental mode seems to indicate a
still rising power spectrum for smaller k values. A similar
effect is seen in the simulations (see Fig. 9) suggesting a
statistically not very significant but noticable leakage of
fluctuation power especially from the second to the first
fundamental mode. The reference to Fig. 10 reveals that
the fundamental mode of F500 is already part of the sec-
ond probably not real maximum in the power spectrum at
k ≈ 0.01h Mpc−1. Hence the fundamental mode of F500
should not necessarily get the highest weight in the eval-
uation of the maximum of the power spectrum on smaller
scales. We test the possibility that the location of the

maximum increases with volume but could not find any
systematic effect (see Sect. 6.2).

The spectra shown in Fig. 12 obtained with the
volume-limited subsamples L050 and L120 (upper and
middle panel) show a broad maximum at k ≈
0.03h Mpc−1. A weak indication is found for a positive
slope on larger scales. The second maximum of the power
spectrum seen in Fig. 10 is not sampled by L050 and
L120 because their sample volumes do not reach such
large scales. The Fourier volumes are therefore restricted
in both cases to (400 h Mpc−1)3. For comparison the lower
panel shows the power spectrum obtained with the flux-
limited subsample F400 estimated within the same vol-
ume as used for L050 and L120. In general, the overall
shapes of the spectra obtained with the volume- and flux-
limited subsamples are found to be similar, although mi-
nor differences might be seen on smaller scales (see below).
The three spectra also show that the amplitude increases
with increasing lower X-ray luminosity of the subsample.
However, larger sample sizes are needed to confirm the
effect.

To summarize, basically all REFLEX spectra are con-
sistent with a broad maximum of the cluster power spec-
trum at comoving wavenumbers around k ≈ 0.03h Mpc−1

corresponding to wavelengths of about 200h−1 Mpc.
A second maximum is found at k = 0.01h−1 Mpc cor-
responding to 600h−1 Mpc, but appears questionable
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Fig. 11. REFLEX power spectra of the flux-limited subsam-
ples F300 to F500. The box lengths and the number of clusters
used for the power spectrum estimation are given in each panel
in the lower left. The bars represent the 1σ errors adapted from
N-body simulations. The fits of a linear power spectrum model
(dashed lines) and of the phenomenological model (continuous
line) using the subsamples F300 to F800 are superposed

(see Sect. 8). These findings are summarized in Fig. 13,
showing the combined spectra obtained with the subsam-
ples F300 to F500, and illustrating the stability of the
results obtained within different volumes. We regard this
as a representative REFLEX power spectrum.

6.2. First cosmological implications

In the following we want to characterize the overall shape
of the observed power spectra as well as specific spec-
tral features like the location of the maximum and the
local slope of P (k) in specific k ranges, restricting the dis-
cussion mainly to the conservative k range 0.013 ≤ k ≤
0.4h Mpc−1 mentioned above. This will enable us to de-
rive our first cosmological implications.

The REFLEX power spectral densities shown in the
last sections are sampled strictly following the rules of
standard Fourier analysis. As a consequence we have to
work with uncomfortably large but statistically almost
independent k bins which complicates the analyses even
of the maximum of P̂ (k) in the conservative k range.

N-body

Fig. 12. REFLEX power spectra of the volume-limited sub-
samples L120 (upper panel), and L050 (middle panel), and of
the flux-limited subsample F400 (lower panel). L120 contains
clusters with a brighter lower X-ray luminosity compared to
L050 (and F400). The bars represent the 1σ errors adapted
from N-body simulations. For reference the fits obtained with
the phenomenological model (continuous lines) and with the
CDM-like model (dashed lines) using the subsamples F300 to
F800 are superposed. The amplitudes of P (k) increase with in-
creasing lower luminosity limit as expected by standard biasing
schemes

To improve the “eye ball” estimates of the location of
the maximum of the power spectra given in Sect. 6.1 and
to get a handle of the expected errors, the spectra are pa-
rameterized in two different ways. The first method applies
a purely phenomenological fitting function which gives an
almost model-independent description of the data (see also
Peacock 1999, p. 530):

P (k) = Ak−i10 ki1−3

[
1 +

(
kc

k

)i2]−1

· (11)

The location of the maximum of the power spectrum is

kmax = kc

(
−n
ns

) 1
n−ns

· (12)

The slope on large scales, n = i1 + i2 − 3, is set to “1”
because no statistically reliable information is attainable
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Fig. 13. Combined REFLEX power spectrum obtained with the flux-limited subsamples F300 (open squares), F400 (filled
hexagons), F500 (open hexagons), and their standard 1σ deviations adapted from N-body simulations. Not shown are the
power spectral densities with wavenumbers k ≥ 0.4 hMpc−1 because the corresponding density waves are only sparsely sampled
by REFLEX. The continuous line is a fit of the phenomenological model, the dashed line the CDM-like model fit using the
flux-limited subsamples F300 to F800. The power spectral density at 500 h−1 Mpc is part of the extra power detected at
k ≈ 0.01 hMpc−1 and might already be biased

from the REFLEX data in this scale range. The slope on
small scales is ns = i1 − 3. The characteristic scale, kmax,
is comparable to the wavenumber corresponding to the
horizon length at the epoch of matter-radiation equality,
keq = 0.195 Ω0 h

2 Mpc−1 (see Peebles 1993, p. 164, and
Peacock 1999, p. 459), and thus yields an estimate of the
cosmic mass density (assuming that 3 relativistic neutrino
families are left over from high redshift, and that neutrino
masses are small compared to the temperature of the cos-
mic microwave background radiation),

Ω0 h = 5.13
kmax

hMpc−1 · (13)

In contrast to the first method which allows a variable
slope at small scales and a narrow maximum, the second
method is less flexible, but physically better defined. The
fitting function is based on the CDM linear transfer func-
tion, T (k), as given in Bardeen et al. (1986), where the
power spectrum, P (k) = AkT 2(k), again is assumed to
have n = 1 on very large scales. The shape of the power
spectrum is characterized by the shape parameter, Γ, de-
fined in the standard way (Eq. 19), giving the approximate
relation between Γ and kmax

kmax = 0.114 ΓhMpc−1 . (14)

For CDM-like models with low baryon density, Γ is mainly
determined by Ω0, h, and Ωb (see Eq. 19). This equation
offers another way to approximate the cosmic mass density
via

Ω0 h ≈ Γ. (15)

A standard SIMPLEX χ2 minimization method is ap-
plied separately to the spectra obtained with the subsam-
ples F300 to F800 to perform numerical fits from which
the values of kmax and Γ are deduced. This assumes that
the power spectral densities of each individual spectrum
are statistically independent. For the given REFLEX sur-
vey window (|Wk|2 ≤ 0.082 for all k and volumes studied),
and for the given spacing of the k values of the measured
P (k) data at the multiples of the fundamental mode this
is approximately the case. The values of kmax and Γ ob-
tained from the fits are independent of the volumes used to
perform the Fourier analyses as shown in Fig. 14, strongly
supporting the detection of a real maximum of P (k) in
the given k range. Averages and their formal 1σ standard
deviations of kmax and Γ using the subsamples F300 to
F800 give for the two fit functions, respectively,

kmax = 0.030± 0.005 , Γ = 0.195± 0.055 . (16)

The Γ estimate corresponds to kmax = 0.022 ± 0.006.
Similar numbers are obtained when only the subsamples
F300 to F500 are used. Note that the subsamples F300
to F800 are statistically dependent so that the error esti-
mates given in (16) must be regarded as lower limits. The
phenomenological and the CDM-like model based on these
mean values are shown as continuous and dashed lines, re-
spectively, in the Figs. 10–13, and 16. They both give a
good description of the shape of all power spectra obtained
with the flux- and with the volume-limited REFLEX sub-
samples. In Fig. 13 we show this for the combined power
spectrum obtained with the flux-limited subsamples F300
to F500. The two methods give consistent results for the
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Fig. 14. Upper panel: values of the shape parameter, Γ, as a
function of the box length, L, of the Fourier volume, obtained
from fits of the linear CDM model to the flux limited subsam-
ples F300 to F800 (from left to right). Lower panel: values of
the wavenumber of the maximum of the power spectrum, kmax,
as a function of L obtained from fits of the phenomenological
model. The sample averages are indicated by dashed lines

location of the maximum of the REFLEX power spectra
in the range

0.022± 0.006 ≤ kmax ≤ 0.030± 0.005h Mpc−1 . (17)

Similarily, the values of the cosmic density parameter ob-
tained with Eq. (13) and kmax from (16), and with Eq. (15)
and Γ from (16) give the range

0.15± 0.03 ≤ Ω0 h ≤ 0.20± 0.06 . (18)

It is interesting to note that the spectral slopes on small
scales of the volume-limited subsamples L050 and L120
estimated by fitting (11) are found to be slightly flatter,
ns = −1.6 ± 0.4, compared to ns = −1.8 ± 0.4 obtained
with the flux-limited subsamples (1σ error estimates from
N -body simulations). However, the differences are statisti-
cally perhaps not very significant and might be attributed
to cosmic variance.

Figure 15 compares the REFLEX power spectrum with
the Abell/ACO (Retzlaff et al. 1998, see also Einasto
et al. 1997) and the APM (Tadros et al. 1998) spec-
tra. The respective amplitudes of the power spectra of
the Abell/ACO and APM samples are 1.7 and 2.2 be-
low REFLEX. This might be attributed to the differ-
ent cluster luminosities contained in the samples. For
k ≥ 0.08h Mpc−1 the spectra give consistent slopes
of approximately −1.8 although both the REFLEX and
the Abell/ACO sample do not show the minimum at
k ≈ 0.1h Mpc−1 found with the APM sample. Regarding
the maximum of P (k) the Abell/ACO data suggest a com-
paratively narrow peak at kmax = 0.05hMpc−1 consistent

Fig. 15. Combined REFLEX power spectrum obtained with
the subsamples F300 to F500 (filled symbols) compared to
the power spectrum obtained from Abell/ACO clusters (open
hexagons) by Retzlaff et al. (1998) and from APM clusters
(open squares) by Tadros et al. (1998)

with the estimate of Einasto et al. (1997). Contrary to
this the REFLEX spectrum has a broad maximum which
peaks in the range 0.022 ≤ kmax ≤ 0.030h Mpc−1. Note
that the exact evaluation of the statistical significance of
this difference is difficult to assess because the REFLEX
and Abell/ACO power spectra are sampled in different
ways. The broad maximum of the REFLEX spectrum ap-
pears to be more consistent with the APM sample if the
REFLEX measurement at 500 h−1 Mpc is excluded.

Figure 16 compares the combined REFLEX power
spectrum obtained with the flux-limited subsamples F300
to F500 with the spectrum obtained with a magnitude-
limited sample of Durham/UKST galaxies (Hoyle et al.
1999). We chose this sample because of the comparatively
large samples size (2501 galaxies, 1 in 3 sampling rate),
the large volume (1450 square degrees, z ≤ 0.1), and the
small effects of the survey window. Recall that the upper
continuous line is the fit of the phenomenological model
to the REFLEX data, the upper dashed line the fit of the
CDM-like model; the lower lines are the same fits shifted
by the factor 6.8. For wavelengths 20 < λ < 300h−1 Mpc
the overall shapes of the cluster and galaxy power spec-
tra are very similar. The ratio of the linear biasing factors
for the given REFLEX cluster subsample and the galaxy
sample as deduced from the shift factor is b = 2.6.

7. Comparison with CDM models

7.1. Semi-analytic model

To make a first comparison with cosmological models and
an attempt to differentiate between their presently dis-
cussed variants, an outline of a semi-analytic model is
given for biased nonlinear power spectra in redshift space
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Fig. 16. Combined power spectrum obtained with the
REFLEX cluster subsamples F300 to F500 (filled symbols,
measurements on scales <20h−1 Mpc omitted) compared with
the power spectrum of Durham/UKST galaxies (open symbols)
obtained by Hoyle et al. (1999). The upper lines give the fit to
the REFLEX cluster power spectra, the lower lines the same
fits divided by the squared “biasing factor” b2 = 2.62. The
continuous line is a fit of the phenomenological model (Par),
the dashed line the CDM-like model fit (CDM) as described in
Fig. 13

for clusters of galaxies. The model gives a good overview
of the effects of different model parameters and is used
to narrow the parameter ranges needed for a more de-
tailed comparison with N -body simulations. Notice that
a significant number of N -body simulations has to be per-
formed for each parameter set in order to derive statistical
meaningful error estimates which is planned for the sec-
ond paper on the REFLEX power spectrum. The model
spectra are computed with parameter values taken from
the literature and are compared with the REFLEX power
spectra. No evolution of structures is assumed within the
redshift range covered by the REFLEX subsamples ana-
lyzed (z < 0.15, for an exact treatment see also Magira
et al. 2000). The linear power spectrum P (k) ∼ kn T 2(k)
is normalized by the standard deviation of the density
contrast, σ8, obtained with the spherical top hat filter
function with the filter radius R = 8h−1 Mpc. The fit-
ting formula for the linear transfer function, T (k), from
Bardeen et al. (1986) is applied with the shape parameter
(Sugiyama 1995)

Γ = Ω0 h exp

(
−Ωb −

√
h

0.5
Ωb

Ω0

)
, (19)

appropriate for models with low present baryon densi-
ties, Ωb. The mapping between evolved and non-evolved

real-space power spectra can be deduced from fits to the
results obtained with N -body simulations (Hamilton et al.
1991; Peacock & Dodds 1994). We apply the prescription
in the form presented in Mo et al. (1997, and references
given therein). The approximation of the linear growth
factor at redshift zero is taken from Carroll et al. (1992).
It was shown that this mapping is almost independent of
the slope of the linear power spectrum. Moreover, as long
as the strongly non-linear clustering regime is excluded
the formalism reproduces the power spectra obtained from
N -body simulations quite well.

To compute the observed or effective biasing values
Moscardini et al. (2000, see also Matarrese et al. 1997;
Borgani et al. 1999) assumed a linear biasing between mat-
ter and object number density fluctuations, a reasonable
assumption in the linear regime. They derived an exact
relation between the observed and the matter two-point
spatial correlation function (their Eq. 7) which we repro-
duce in k-space, ignoring any redshift-dependence of the
correlation function. The real-space (evolved) power spec-
trum thus reads

Preal(k) = P (k)
[∫

Z

dz1N(z1)r−1(z1)
]−2

(20)∫
Z

dz1 dz2N(z1) r−1(z1) beff(z1) beff(z2) r−1(z2)N(z2) .

where N(z)dz is the number of clusters expected in the
redshift interval [z, z + dz],

beff(z) =
1

N(z)

∫
M

dM b(M)N(M, z) , (21)

the effective biasing at redshift z,N(M, z)dM dz the num-
ber of clusters expected in the mass range [M,M + dM ]
and in the redshift range [z, z+dz], and r(z) the comoving
distance of the redshift shell z. Note that N(M, z)dM =
Ñ(L, z)dL so that (21) can also be used for luminosi-
ties once the M − L conversion is performed (see below).
We evaluate the integrals at the redshifts and luminosi-
ties given by the observed subsample for which the effec-
tive biasing factor should be determined (for each cluster
we compute from the luminosity the mass and the corre-
sponding biasing factor and plug the result into the two
equations given above). This circumvents the introduc-
tion of additional Press-Schechter-like models for the cos-
mic mass function which we do not intend to test in the
present context (probably introducing some inconsistency
between the observed and the model luminosity function),
but guarantees a one-to-one correspondence between the
clusters used to measure the power spectrum and the clus-
ters used to estimate the effective biasing for the subsam-
ple under consideration. This, however, increases the vari-
ances but reduces the systematic errors to a minimum.

For clusters of galaxies simple biasing schemes are ex-
pected (Sect. 1). In this respect the model of Mo & White
(1996) is of special interest. They combine (a) conditional
probability densities derived by Bond et al. (1991) for
Gaussian random fields within the general framework of
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Markovian diffusion processes with an “absorbing barrier”
at the critical density contrast, with (b) gravitationally in-
duced motions as predicted by a spherical collapse model.
We use the fitting formula given in Sheth & Tormen (1999)
which is found to give a better agreement with N -body
models on small scales. The critical overdensity, δc, is de-
termined by the cosmological background model as de-
scribed in Kitayama & Suto (1996). The relation between
mass and radius is M = Ω0 H

2
0 R

3

2G ·
For the M − LX conversion the empirical relation be-

tween the total mass M and X-ray luminosity within r200

is used (Reiprich & Böhringer 2000):

M

h−1M�
= 4.7 1014

(
LX

1044 h−2 erg s−1

) 1
1.243

· (22)

The systematic effects caused by using the relation ob-
tained with r500 are investigated below (Fig. 18). We as-
sume that the masses deduced from (22) closely resemble
the virial masses.

The transformation of the real-space power spectrum
into redshift space is determined by the effects of peculiar
velocities and redshift measurement errors. If the max-
imum distances are large compared to k−1 (distant ob-
server approximation) only the linear flow of the velocity
field makes an additional contribution to the fluctuation
field in redshift space (Kaiser 1987). On small scales the
peculiar velocities and the redshift measurement errors of
the clusters smooth the fluctuation field which can be de-
scribed by a Lorentzian distribution in k-space. The two
effects can be integrated over the cosine, µ, of the angle
between the normal vector of the density wave in k-space
and the line-of-sight, and give

Pobs(k) = Preal(k)
∫ 1

0

dµ
(1 + βµ2)2

(1 + k2µ2 σ2

2H2 )2
, (23)

σ =

√
σ2

P

2
+ σ2

z , β =
Ω0.6

0

beff
· (24)

Here, σP is the pairwise velocity dispersion of the dark
matter haloes and σz the average error of the cluster red-
shifts. The effects of ΩΛ are not important (see Lahav
et al. 1991). For the computation of σP we concentrate on
the effects on scales (pair separations) larger 5 h−1 Mpc
and neglect correlated motions so that σP can be approx-
imated by (Peebles 1980, Sect. 72)

σ2
P =

2
3
< v2

1 > . (25)

It is thus expected that the cluster motion inherit a ran-
dom velocity from the random motion of the overall mat-
ter distribution. The density-weighted mean square pecu-
liar velocity is determined by the integral over the evolved
power variance, ∆E, as derived in the BBGKY hierarchy
(e.g., Peebles 1980, Sect. 74, Mo et al. 1997):

< v2
1 >=

3
2

Ω0H
2
0

∫ ∞
0

dk
k3

∆2
E(k) . (26)

The cluster redshift errors can be deduced from the red-
shift errors of the individual galaxies (σg = 200 kms−1,
Guzzo et al., in preparation), the number of cluster
galaxies used to estimate the cluster redshift (Nz = 5)
and the line-of-sight cluster velocity dispersion (σLOS =
700 kms−1, see Zabludoff et al. 1993). Although the lat-
ter quantity depends on the specific structure formation
model we take the empirical estimate because in the
present case we are only interested in a redshift error esti-
mate where the effects of the structure formation models
are of second-order. Following Danese et al. (1980) the
squared error of the cluster redshift is

σ2
z =

1
Nz

[
1.178 σ2

LOS + σ2
g

]
, (27)

where the factor 1.178 results from the 68 percent confi-
dence interval of the Student’s t-distribution with 4 de-
grees of freedom (for Nz = 4, 3, 2 we computed the factors
1.242, 1.391 and 2.057, respectively). Typical redshift er-
rors of the REFLEX clusters of galaxies are thus expected
to be σz = 350 kms−1.

7.2. Test of the model

We test (25) and (26) with the available OCDM N -
body simulations (parameters are given in Table 3),
yielding the mean cluster peculiar velocity

√
< v2

1 > =
516 km s−1 (the standard deviation of this quantity for
different simulations is 3 percent), and for pair separa-
tions > 10h−1 Mpc the approximately constant (within
about 3 percent) pairwise cluster velocity dispersion σP =
430 km s−1. Within the given errors the relation be-
tween these quantities is reproduced by (25). The simula-
tions give a maximum at 3 h−1 Mpc of σP = 500 km s−1

and values of about 200 kms−1 on smaller scales. The
semi-analytic model neglects the small-scale dependency
because the REFLEX power spectrum does not sam-
ple the corresponding k range. On the other hand us-
ing (25) and (26) the semi-analytic model predicts σP =
360 km s−1, which is about 15 percent too small com-
pared to the simulations. We found this approximation
good enough for the real-redshift space transformation.

An important assumption implicitely used for the
derivation of (20) is that the averaged biasing factor is in-
dependent of pair separation, r. For flux-limited samples
one might expect that at large r the fraction of pairs con-
sisting preferentially of at least 1 luminous cluster could
artifically increase the effective biasing factor. This would
increase the measured power spectral densities at small
k and thus steepen the slope compared to the volume-
limited case. To test this, the number of pairs with sepa-
ration r are weighted with the individual biasing factors
of the pair members, yielding the average squared biasing
factors,

< b2(r) >=

∑
{(i,j)|r≤|ri−rj |<r+∆r} b(Mi) b(Mj)

NP(r)
, (28)
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Table 3. Model parameters of CDM variants used for the semi-
analytic model

Model Ω0 ΩΛ h n Ωb Γ σ8

SCDM 1.00 0.00 0.50 1.0 0.050 0.45 1.37
OCDM 0.40 0.00 0.60 1.0 0.050 0.20 0.80
ΛCDM 0.30 0.70 0.65 1.0 0.036 0.21 0.93
TCDM 1.00 0.00 0.50 0.8 0.100 0.41 0.58
τCDM 1.00 0.00 0.50 1.0 0.050 0.21 0.60

where NP(r) is the number of cluster pairs with sepa-
rations within [r, r + ∆r]. The mass variances, σ2(M),
used for the computation of b(Mi) are derived assum-
ing a scale-invariant power spectrum with the spectral
index −2. Figure 17 shows the average squared biasing
factors as a function of pair separation for the REFLEX
subsample F0. For pair separations r < 150h−1 Mpc no
scale-dependent correlations between the individual bias-
ing factors are seen. For larger separations the system-
atic increase of the average squared biasing factor sug-
gests that the treatment of effective biasing as described
above must be modified. The maximum pair separation,
r, corresponds to the minimum wavenumber k ≈ π/2r =
0.010h Mpc−1. For wavenumbers larger than this limit no
systematic errors are expected. It will be seen that the ob-
served REFLEX power spectra which are compared with
the biasing model do not reach this limit. Note that this
refers only to REFLEX and must be re-evaluated for other
surveys.

The semi-analytic model is tested against the 10 N -
body simulations (OCDM) of ideal cluster samples de-
scribed in Sect. 5. In Fig. 18 the lines give the theoretical
spectra obtained under the different model assumptions,
the filled symbols the average power spectral densities ob-
tained from the N -body simulations, and the error bars
their 1σ standard deviations. The overall agreement be-
tween model and simulation is good enough to separate
between different scenarios of cosmic structure formation.
The largest ambiguity is introduced by the specific choice
of the mass-luminosity relation. In the following the the-
oretical spectra obtained with r200 are shown because the
corresponding cluster masses are expected to give better
estimates of the virial masses.

7.3. Results

As an example, in Fig. 19 the REFLEX power spectrum
obtained with the F400 subsample is compared with dif-
ferent variants of CDM models (the data obtained with
F300 and F500 give similar results). The values of the
model parameters are given in Table 3. The standard
Cold Dark Matter (SCDM) model with the COBE nor-
malization as given in Bennett et al. (1994) is shown
for reference. The open CDM (OCDM) model is cluster-
normalized (see Sect. 5). For the low-density flat (ΛCDM)
model see Liddle et al. (1996a,b). The tilted (TCDM)

Fig. 17. Squared biasing factors computed with Eq. (28) for
the F0 subsample as a function of pair separation r. The 1σ
error bars include the effects of the errors introduced by the
50 percent uncertainty of the X-ray mass-luminosity relation

model is described in Moscardini et al. (2000) and the
references given therein. The τCDM model is cluster-
normalized according to Viana & Liddle (1996).

The measured power spectra discriminate between the
models, SCDM and TCDM are excluded, τCDM fits
marginal the lower 1σ range, the open and ΛCDM models
slightly underpredict the fluctuation amplitude but within
the 1σ significance range.

To test the biasing trends we changed the ΛCDM nor-
malization from σ8 = 0.93 to σ8 = 0.70 (similarly we could
also change σ8 = 0.80 to σ8 = 0.60 for the OCDM model)
yielding an acceptable fit to the flux-limited REFLEX
power spectrum (open symbols and continuous line in
Fig. 20). The ΛCDM spectra are then computed for the
same volume-limited subsamples as used for the deter-
mination of the empirical spectra. The increase of the
amplitude with the increasing lower X-ray luminosity –
although at the detection limit of REFLEX – is well re-
produced by the model, but not the apparent flattening
of the slope on scales <100h−1 Mpc. However, the er-
rors of the slope measurements as deduced from the sim-
ulations are quite large so that the apparent difference
might not be statistically significant. Moreover, neither
the scale-independency of the effective biasing parameter
in this range (see Fig. 17) nor the analyses of the OCDM
simulations suggest such an effect.

8. Discussion and conclusions

The most important result of the present investigation
is the detection of a broad maximum of the power spec-
trum of the fluctuations of comoving number density of
X-ray selected cluster galaxies in the range 0.022 ≤ k ≤
0.030h Mpc−1 (Fig. 13). The maximum is flatter and
peaks at a smaller wavenumber compared to optically se-
lected cluster samples. On scales 0.02 ≤ k ≤ 0.4h Mpc−1

the similiarity to the spectra obtained from optically se-
lected galaxy samples is striking (Fig. 16). In this range
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Fig. 18. Test of the semi-analytic model with N-body simula-
tions. Shown is the power spectrum averaged over 10 OCDM
N-body simulations (filled symbols) of ideal clusters samples
(Sect. 5) and their 1σ standard deviations (error bars). The
lines represent the power spectra obtained with the semi-
analytic model for the same model parameters as the N-body
simulations (Ω0 = 0.40, ΩΛ = 0, Ωb = 0.05, h = 0.60, Γ = 0.20,
n = 1, σ8 = 0.80, i.e., cluster-normalized). Dashed-dotted line:
linear matter power spectrum. Long-dashed line: evolved mat-
ter power spectrum. Short-dashed lines: evolved power spec-
trum including effective biasing. Continuous lines: last spec-
trum transformed into redshift space. The two types of spectra
are shown for the mass-luminosity relation obtained with r200

and r500

the REFLEX data rule out galaxy formation models with
strongly nonlinear biasing schemes.

Within the course of the exploration of the REFLEX
data and the results of the N -body simulations we found
that for surveys smaller than REFLEX cosmic variance
might be more important than previous studies suggest.
For example, the variation of the comoving cluster num-
ber density along the redshift direction shows a huge un-
derdense region located between z ≈ 0.015 and 0.045 in
the southern hemisphere where the comoving cluster num-
ber density drops by a factor of 3 below the mean level
(Fig. 3). This complicates the determination of the local
cluster luminosity function, at least for the less rich sys-
tems (Böhringer et al., in preparation). Another example
is the variation of the linear slope of the cumulative flux-
cluster number counts between −1.6 and −1.2 as found
in the N -body simulations (Fig. 4). We regard this as a
warning not to draw general cosmological conclusions from
cluster samples with a size smaller than REFLEX.

The REFLEX data show extra fluctuation power on
scales k ≈ 0.01h Mpc−1 (Fig. 10). From our simulations
we found that artifical power spectral densities of an or-
der of magnitude can be easily produced on 500h−1 Mpc
scales if, e.g., the lower X-ray luminosity limit of
Lmin

X = 1.0 1043 erg s−1, which is used in the present

Fig. 19. Comparison of observed power spectral densities and
expectations of variants of CDM semi-analytic models for the
flux-limited subsample F400. The model parameters are given
in Table 2

Fig. 20. Comparison of observed power spectral densities and
predictions of the ΛCDM semi-analytic model for the flux-
limited subsample F400 (open hexagons) and for the volume-
limited subsamples: stars for LX > 0.5 1044 erg s−1 (subsample
L050), filled symbols for LX > 1.2 1044 erg s−1 (subsample
L120), h = 0.5. The Λ model is renormalized to σ8 = 0.70 to
give a good fit to the flux-limited subsample

investigation to get almost complete REFLEX subsam-
ples, would be erroneously underestimated by a factor of
about 1.5. Similarily, already on scales of 400h−1 Mpc
small changes in the method to estimate the radial part
of the selection function (compare the results obtained
with smoothed redshift distributions and X-ray luminos-
ity functions, Fig. 7) change the power spectral densities
by a factor 1.6. These two examples illustrate the difficulty
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measuring fluctuations on scales >400h−1 Mpc which is
the basic motivation for restricting the present investiga-
tions more conservatively to the small wavelength range.

Extra fluctuation power on 800h−1 Mpc scales is also
found for the Abell/ACO richness ≥1 clusters by Miller
& Batuski (2000). In addition to the fact that they over-
sample the cluster power spectrum which mimic a more
significant effect than the data can provide, it is difficult
to understand how gradients in comoving cluster number
density by a factor of 2, corrected with crude step-like ra-
dial selection functions, and the neglection of any correc-
tions for galactic extinction can lead to precise fluctuation
measurements at 800 h−1 Mpc. It is surely insufficient to
use cluster quadrant counts showing a scatter of 16 per-
cent to justify fluctuation measurements aiming to detect
fluctuations below the 1 percent level.

The REFLEX power spectra do not show any indica-
tion for a narrow peak at k = 0.05h Mpc−1. The report
of such a feature in the power spectrum of Abell/ACO
clusters and the interpretation as evidence for a regu-
lar distribution of galaxy clusters with a periodicity of
120h−1 Mpc by Einasto et al. (1997) implies substan-
tial difficulties for current models of structure formation.
Retzlaff et al. (1998) who have found a similar but less
peaked feature in the Abell/ACO cluster P (k) used a
large set of N -body simulations to demonstrate the po-
tential importance of cosmic variance in this context.
The discrepancy between REFLEX and Abell/ACO clus-
ter results might be attributed to the additional 35 per-
cent non-Abell/ACO/Supplement clusters included in the
REFLEX catalogue. Unfortunately, the subtle selection ef-
fects imposed by optical cluster selection (Sect. 1) makes
a quantitative discussion of this point almost impossible.
In any case, due to current sample depths, cluster power
spectrum analyses are restricted in general to volumes
< (500h−1 Mpc)3, and this imposes a spectral resolu-
tion ∆k = 0.013 (fundamental mode) at best. Therefore,
a significant detection of a feature such as a peak of width
∆k ≈ 0.02 is arguable at all.

The REFLEX spectra are compared with semi-
analytic models describing the biased nonlinear power
spectrum in redshift space. Most of the equations applied
are calibrated with N -body simulations. We found that
structure formation models with a low cosmic mass den-
sity (OCDM, ΛCDM) give the best representation of the
REFLEX data (Fig. 19). Although the models could re-
produce the observed changes of the amplitudes with sam-
ples of different luminosities, we regard the results are
tendatively. Larger sample sizes are necessary to confirm
this finding.
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