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Abstract. For the first time the large-scale clustering and the mean abundance of galaxy clusters are analysed simultaneously
to get precise constraints on the normalized cosmic matter density Ωm and the linear theory RMS fluctuations in mass σ8.
A self-consistent likelihood analysis is described which combines, in a natural and optimal manner, a battery of sensitive
cosmological tests where observational data are represented by the (Karhunen-Loéve) eigenvectors of the sample correlation
matrix. This method breaks the degeneracy between Ωm and σ8. The cosmological tests are performed with the ROSAT ESO
Flux-Limited X-ray (REFLEX) cluster sample. The computations assume cosmologically flat geometries and a non-evolving
cluster population mainly over the redshift range 0 < z < 0.3. The REFLEX sample gives the cosmological constraints and
their 1σ random errors of Ωm = 0.341 +0.031

−0.029 and σ8 = 0.711 +0.039
−0.031. Possible systematic errors are evaluated by estimating the

effects of uncertainties in the value of the Hubble constant, the baryon density, the spectral slope of the initial scalar fluctuations,
the mass/X-ray luminosity relation and its intrinsic scatter, the biasing scheme, and the cluster mass density profile. All these
contributions sum up to total systematic errors of σΩm =

+0.087
−0.071 and σσ8 =

+0.120
−0.162.
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1. Introduction

Several observational arguments suggest that we live in a geo-
metrically flat Universe in a phase of accelerated cosmic expan-
sion (Riess et al. 1998; Perlmutter et al. 1999; Stompor et al.
2001; Netterfield et al. 2002; Pryke et al. 2002; Sievers et al.
2002). Strong indications for a low cosmic matter density come
from, e.g., the abundance of galaxy clusters (e.g., Carlberg et al.
1996; Viana & Liddle 1996; Bahcall & Fan 1998; Eke et al.
1998; Henry 2000; Borgani et al. 2001; Reiprich & Böhringer
2002, hereafter RB02), and from the large-scale distribution of
clusters (e.g. Collins et al. 2000; Schuecker et al. 2001, here-
after Paper I) and galaxies (e.g., Percival et al. 2001; Szalay
et al. 2001). A recent overview including also new results on
gravitational dynamics, weak lensing and the baryon mass frac-
tion in clusters of galaxies can be found in Peebles & Ratra
(2002).

With the present investigation we are improving the con-
straints on the matter density Ωm and the linear theory rms
matter fluctuations σ8 in comoving spheres with 8 h−1 Mpc
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radius. We base our approach on observational estimates
of spatial clustering and abundance of galaxy clusters.
Simultaneous constraints on Ωm and σ8 are derived under the
assumption of a flat geometry of the Universe. Cluster abun-
dances although almost insensitive to the cosmological con-
stantΩΛ are known to be quite sensitive toΩm and actually one
of the best ways of measuring σ8 (White et al. 1993; Eke et al.
1996; Kitayama & Suto 1997; Borgani et al. 1997; Mathiesen
& Evrard 1998). Our method uses the statistical information
of the present epoch large-scale structure to characterize the
cosmological model. In comparison to other methods of the
assessment of the large-scale structure e.g. through the galaxy
distribution, the analysis of the galaxy cluster distribution has
the advantage that it relies on astrophysics mostly governed by
gravitation, so that cluster masses and biasing factors can be
obtained from first principles, especially when the clusters are
selected in X-rays (e.g., Borgani & Guzzo 2001).

We use the ROSAT ESO Flux-Limited X-ray (REFLEX)
galaxy cluster sample. In the REFLEX survey special care was
taken to get a well-controlled sample selection and a high com-
pleteness (Böhringer et al. 2001). The sample consists of the
452 X-ray brightest southern clusters with redshifts mainly
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below z = 0.3, selected in X-rays from the ROSAT All-Sky
Survey (RASS, Voges et al. 1999) and is confirmed by exten-
sive optical follow-up observations within a large ESO Key
Programme (Böhringer et al. 1998; Guzzo et al. 1999). The
sample has been used to measure with unrivalled accuracy
the cluster X-ray luminosity function (Böhringer et al. 2002),
the spatial cluster-cluster correlation function (Collins et al.
2000), and its power spectrum (Paper I).

In order to get accurate constraints on Ωm and σ8 we use
several independent cosmological tests based on the depen-
dence of the cosmic matter power spectrum and the volume
on the values of the cosmological parameters. On the one side
we measure the spatial fluctuations of galaxy clusters. This
test is known to be especially sensitive to the shape of the
matter power spectrum on large scales. On the other side we
measure the average abundance of clusters. This test is known
to be especially sensitive to the normalization of the matter
power spectrum on small scales. Finally and independent from
the matter power spectrum, we count clusters to measure their
abundance as a function of redshift and thus to measure the
volume which again strongly depends on cosmology (redshift-
volume test, e.g., Robertson & Noonan 1968).

A natural way to combine the different tests is offered by
the Karhunen-Loéve (KL) eigenvector analysis. The method
was first applied by Bond (1995) to analyse cosmic mi-
crowave background (CMB) temperature maps and translated
by Vogeley & Szalay (1996) to the case of the spatial analysis
of galaxies. The KL eigenvectors Ψ are constructed in a way
to obey orthogonality properties which allow unbiased stud-
ies of fluctuations up to the largest scales covered by a sur-
vey. The method avoids artifical correlations introduced by the
survey window between different fluctuation modes, affecting
under realistic conditions all power spectral analyses based on
plane-wave expansions on large scales. Applications of the KL
method to galaxy surveys can be found in Matsubara et al.
(2000) and Szalay et al. (2001). Their KL tests are, however,
still restricted to the analysis of the clustering properties of
galaxies.

To determine a precise eigenvector base Ψ which does
not bias the final results, a more refined fiducial cosmologi-
cal model has to be assumed which is already close to our
best model fits (the construction of the fiducial model is de-
scribed in Sect. 4): a pressure-less spatially flat Friedmann-
Lemaı̂tre model, the cosmic matter density Ωm = 0.3, the cos-
mological constant ΩΛ = 0.7, the Hubble constant in the form
h = H0/100 km s−1 Mpc−1 = 0.7, the linear rms normaliza-
tion σ8 = 0.75, the spectral index of initial scalar fluctuations
nS = 1.0, the baryon density Ωbh2 = 0.020, and the CMB tem-
perature TCMB = 2.728 K.

In our first KL study of the REFLEX sample we followed
the approach of A. Szalay and collaborators, applying the KL
method to the analysis of three-dimensional spatial fluctuations
(Schuecker et al. 2002, hereafter Paper II). The resulting con-
straints on the matter density, 0.03 < Ωmh2 < 0.19 (95% con-
fidence interval), were found to be quite robust against major
changes in the model assumptions.

The present investigation completes our previous KL
study by utilizing now both the spatial fluctuations of galaxy

clusters and their mean abundance to get constraints on Ωm

and σ8. Some general features of the KL method relevant
for the present work are outlined in Sect. 2. In Sect. 3 we
briefly describe a model for the matter and cluster power
spectrum already developed in Paper II. We further introduce
a new theoretical model for the average cluster abundance
which replaces the more phenomenological prescription used
in Paper II. The REFLEX sample and the values of important
model parameters are discussed in Sect. 4. Section 5 summa-
rizes the cosmological constraints obtained with the REFLEX
sample. In Sect. 6 we discuss the results and draw our basic
conclusions. In the Appendix we derive equations used to re-
late cluster masses defined for different density contrast and
background levels.

2. General method

Clusters of galaxies are counted in cells. The results are sum-
marized in a vector D with elements containing the counts ob-
tained within the individual cells. Similarily, a second vector N
is introduced which contains the average (expected) model
counts. The latter are the diagonal elements of a noise matrix N.
After the equalization of the different noise in the cells by N−1/2

(whitening) and the KL transformation into the Ψ vectorbase,
the values of the cosmological parameters are estimated by
minimizing the differences ∆B = B− < B > between the
KL coefficients B = ΨT N−1/2 D determined by the observed
sample, and the expected KL coefficients < B >= ΨT N+1/2

determined by a cosmological model (see Paper II), where T
denotes the transpose of a matrix.

More specifically, the columns of the unitary matrix Ψ are
the KL eigenvectors of the so-called whitened correlation ma-
trix R′ = N−1/2 R N−1/2, with the elements of R given by Ri j =

Ni Njξi j + δi jNi and ξi j =
1

Vi V j

∫
Vi

d3ri

∫
V j

d3r j ξ(|ri−r j|). Here,
ξ is the cluster correlation function, and Vi the volume of the
ith count cell centered at the comoving coordinate ri.

The elements of ∆B show random cell-to-cell fluctuations
caused by both the Poisson count noise and the large-scale dis-
tribution of the clusters. For the correct weighting of ∆B these
fluctuations are taken into account. Note that the analysis of
the fluctuations alone already gives useful cosmological con-
straints as described in our first KL analysis (Paper II).

A simple way to perform the minimization which also uti-
lizes the cosmological information contained in the random
fluctuations between the cells is suggested by the observed fre-
quency distribution of the KL coefficients. For the REFLEX
cluster survey we found (Paper II) that for large cell sizes, B
follows a Gaussian distribution with high statistical signifi-
cance (new results are given in Fig. 6 of the present paper). A
multivariate sample likelihood function of an assumed cosmo-
logical model should thus have the form

L(B|x) =
exp

[
− 1

2 trace
(
C−1Z

)]
√

(2π)M|detC|
, (1)

with the sample covariance matrix Z = ∆B(∆B)T, the model
covariance matrix of the KL coefficients C = ΨT R′modelΨ,
and the parameter vector x specifying the cosmological model.
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We assume as usual that the maximum of (1) determines the
values of the model parameters which yield the highest proba-
bility of obtaining cluster abundances and fluctuations as large
as observed. Note that in Paper II, Z was fixed by a phenomeno-
logical background model (independent from any cosmological
parameter) and only C was regarded as a free model-dependent
variable. In the present investigation both Z and C are com-
puted with observed and modelled data in a consistent manner
(see Sect. 3).

3. Model specifications

We briefly outline the model for the observed cluster power
spectrum Pobs(k) described in more detail in Paper II and a new
model for the average cluster abundance N which replaces the
empirical approach used in Paper II.

The Gaussianity of the KL coefficients B measured with
the REFLEX clusters on large scales together with the linearity
of the KL transform suggest that the large-scale cosmic mat-
ter distribution is Gaussian as well and can thus be charac-
terized by a (linear theory) matter power spectrum P(k). We
assume adiabatic scalar perturbations and a cold dark matter
(CDM) plus baryon fluid as suggested by the observed power
spectrum of CMB anisotropies (see recent CMB measurements
mentioned in Sect. 1). The resulting P(k) is determined by the
transfer function Tx(k), the spectral index nS of the initial scalar
fluctuations, and the normalization parameter σ8. The corre-
sponding transfer functions of Eisenstein & Hu (1998) are
used, providing a more accurate description of the linear the-
ory power spectrum than fitting equations of the kind given in
Bardeen et al. (1986). Note that the σ8 as introduced here re-
flects the amplitude of the power spectrum without any non-
linear corrections.

Generally, Pobs(k) is an average over evolving matter power
spectra and clusters with different values of the biasing param-
eter b. We summarize this using the prescription of Matarrese
et al. (1997) and Moscardini et al. (2000). Note that the pre-
scription implies that the observed mass and redshift-averaged
cluster power spectrum has the same shape, i.e., functional
form as the underlying matter power spectrum. In order to illus-
trate the sensitivity of the results to the biasing model we use
for b alternatively the model of Sheth & Tormen (1999) and
Kaiser (1984). We verified the model of Pobs(k) (see Paper II)
with a large set of cluster samples extracted from the Hubble
Volume Simulations (e.g., Evrard et al. 2002 and the references
given therein).

For the average cluster abundances the following model is
used. For an unclustered distribution, the average number of
clusters expected in a small cell centered at Right Ascension α,
Declination δ, and redshift z, per unit redshift and solid an-
gle ω is

dN(α, δ, z)
dz dω

=
c r2(z)
H(z)

∫ ∞

Mlim(α,δ,z)
dM

dn(M, z)
dM

, (2)

with the usual notation H(z) = H0 E(z) and r(z) =

c/H0

∫ z

0
E−1(z′)dz′. The average number of clusters expected

in a KL cell thus is Ni =
∫

Vi
dN. Recent CMB measure-

ments strongly suggest a flat space (see Sect. 1) so that

E2(z) = Ωm(1 + z)3 + ΩΛ. The mass limit Mlim is obtained
from the X-ray luminosity limit Lmin at a given (α, δ, z) and the
empirical mass/X-ray luminosity relation of RB02 including its
intrinsic scatter (see Sect. 4). They measured the masses within
a radius with the average density contrast 200 related to the
zero-redshift critical density ρc, assuming an Einstein-de Sitter
(EdS) geometry.

For cosmological tests a mass function dn/dM is needed
which is form-invariant under different cosmologies. Jenkins
et al. (2001) found from numerical simulations that

dn(M, z)
dM

= −0.315
ρ̄(z)
M

1
σ(M)

×
∣∣∣∣∣dσ(M)

dM

∣∣∣∣∣ exp
{
− |0.61 − ln [σ(M, z)]|3.8

}
(3)

obeys this invariance property when the masses M are defined
by a spherical overdensity of 18π2 related to the background
matter density ρ̄ = Ωm ρc. The growth of cosmic structures
introduces a redshift-dependent σ in the mass function, giving
the standard deviation of the matter density field smoothed by
a spherical top-hat filter with the radius R = [2GM/ΩmH2]1/3.

In order to combine the empirical mass/X-ray luminosity
relation and the mass function, two transformations of clus-
ter masses are necessary which are described in Sect. 4 and
Appendix A. Any change of the values of cosmological param-
eters thus changes both the observed mass/X-ray luminosity
relation and the theoretical mass function. Note that the cos-
mology dependence of the observed mass/X-ray luminosity
relation of RB02 results mainly in a change to the model-
dependent virial radius, whereas for a fixed radius the depen-
dence is significantly smaller.

4. The REFLEX sample and the values
of important model parameters

The KL analysis is performed with a subsample of 426 clusters
of the 452 REFLEX clusters. The clusters of the subsample
are selected according to the following criteria. They are lo-
cated within comoving distances r ≤ 1.0 h−1 Gpc (z ≤ 0.365).
The clusters have at least 10 X-ray source counts detected
in the ROSAT energy band 0.5–2.0 keV, X-ray luminosities
LX ≥ 2.5 × 1042 h−2 erg s−1 and X-ray fluxes S X ≥ 3.0 ×
10−12 erg s−1 cm−2 in the energy band 0.1–2.4 keV. The clusters
are located in an area of 4.24 sr in the southern hemisphere with
Declination ≤2.5 deg, excluding galactic latitudes |b| ≤ 20 deg
and some additional crowded fields like the Magellanic Clouds.
More information about the sample construction can be found
in Böhringer et al. (2001).

Several tests with observed and simulated data suggest that
the REFLEX sample is at least 90% complete up to the lower
X-ray luminosity limit given above (Böhringer et al. 2001;
Schuecker et al. 2001). In the computation of the X-ray lumi-
nosities a β-model based correction is applied to correct the
observed flux for the missing flux outside the observational ap-
perature radius. The correction is on average about 10% and the
correction procedure has been tested with Monte-Carlo simula-
tions (Böhringer et al. 2002). For the cosmic K-corrections we
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Fig. 1. Likelihood contours (1–3σ levels for two degrees of freedom) for models with h = 0.64 (left) and h = 0.80 (right). The remaining
values of the cosmological parameters and model assumptions are the same as for the reference KL solution described in the main text (see
also Table 1). Small stars mark the parameter values with the highest likelihoods.

Fig. 2. Likelihood contours for models with nS = 0.9 (left) and nS = 1.1 (right). The values of the other parameters are given in Table 1.

Fig. 3. Likelihood contours for models with Ωbh2 = 0.018 (left) and Ωbh2 = 0.026 (right). The values of the other parameters are given in
Table 1.

use a refined Raymond-Smith code, where the X-ray tempera-
tures TX are estimated with the LX-TX relation of Markevitch
(1998) without “cooling flow” corrections (ignoring higher-
order effects caused by the fact that the latter relation was ob-
tained for non-total X-ray luminosities).

For the transformation of the X-ray luminosity limit Lmin(z)
to the corresponding mass limit defined within an EdS geome-
try (see Sect. 3) the empirical mass/X-ray luminosity relation of
RB02 is used with the particular parameter values A = −20.055

and α = 1.652 (following their notation). They measured the
masses of 106 galaxy clusters with redshifts generally below
z = 0.1 mainly with ROSAT PSPC pointed observations and
gas temperatures as published mainly from ASCA observations
(assuming spherical symmetry, isothermality and hydrostatic
equilibrium). The sample is large enough to give a statistically
representative summary of the local mass/X-ray luminosity re-
lation of massive clusters and a rough but useful estimate of its
intrinsic scatter (see below). In order to test the sensitivity of
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Fig. 4. Likelihood contours for biasing models of Sheth & Tormen (1999, left) and of Kaiser (1984, right). The former model yields the adopted
reference solution. The values of the other parameters are given in Table 1.

Fig. 5. Likelihood contours for mass/X-ray luminosity relations with A = −20.055, α = 1.652, σeff = 19% (left) and A = −18.320, α = 1.538,
σeff = 25% (right); definition of A and α as in RB02. The values of the other parameters are given in Table 1.

the cosmological results on the representativity of the sample
used to derive the mass/X-ray luminosity relation, we alterna-
tively work with an empirical relation derived from a smaller
subsample of 63 clusters of RB02 which is, though strictly flux-
limited, significantly dominated by clusters with cooling flow
signatures.

Having converted the X-ray luminosity limit in the way
described above, the resulting mass limit is transformed with
Eq. (A.7) in Appendix A into a mass system which is consis-
tent with the actual values of the cosmological parameters.
This transformation is necessary because the average density
contrast used to define the maximum radius for the mass inte-
gration depends on the values of the cosmological parameters
(see, e.g., Lahav et al. 1991). After a further transformation us-
ing (Eq. (A.8)) these masses are in the system introduced by
Jenkins et al. (2001) so that Eq. (2) can be integrated to give
the expected average number of clusters.

To be more specific, the computations of the two transfor-
mations are based on a general relation between cluster mass
and density threshold (see Eq. (A.3)). We further assume that
the redshift-dependency of the critical density contrast might
introduce a possible redshift-dependency of the cluster masses
virialized at z (see, e.g., Eq. (A.7)) which is of the form M(z) ∼
M(0)/E(z) with the E(z) function already introduced in Sect. 3
(see also Mohr et al. 2000). Finally, the Jenkins et al. mass

function is defined relative to the Ωm-dependent average mass
density. The transformation of the masses (still defined relative
to the critical – though cosmology-dependent – average density
contrast) to the masses used for the Jenkins et al. mass func-
tion is accomplished via (A.8). For a given mass density profile
(see below) all these mass transformations can be computed in
a straightforward way, and they have to be re-computed every
time when a new cosmological model is tested in the likelihood
analysis.

The integration of the mass function includes a convolu-
tion which takes into account (i) the intrinsic scatter of the
mass/X-ray luminosity relation (possibly caused by “cooling
flows” and cluster mergers) estimated to be about σM = 20%
in mass (see below), and (ii) the random flux (luminosity) er-
rors of σL = 10–20% of the REFLEX clusters (Böhringer et al.
2001) where the different error components are assumed to add
quadratically. The intrinsic scatter is computed with the ob-
served total mass scatter of about 50% of the empirical mass/X-
ray luminosity relation and the individual mass measurement
errors of about 30% (times a factor 1.5 described below) ob-
tained with the total sample of 106 clusters of RB02.

However, the mass measurement error of about 30% is
formal and assumes, e.g., a constant cluster temperature pro-
file and a symmetric mass distribution, which is likely not the
case. For example, Evrard et al. (1996) studied the accuracy
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Fig. 6. Histogram of the KL coefficients of the REFLEX cluster sam-
ple obtained with the reference solution (Eq. (4)), and superposed unit-
variance Gaussian profile shifted by −0.14σ in order to get a better
representation of the observed data. The coefficients are normalized
by the eigenvalues of the REFLEX sample correlation matrix.

of X-ray mass estimates using gasdynamic simulations and
found for Ωm = 1 and a critical density contrast of 250 a ratio
of 1.15 for the isothermal to the non-isothermal mass estimates
and a related 1σ random mass error of 36%. Moreover, the
Chandra observation of the elliptical cluster RBS797 (Jetzer
et al. 2002) give differences between the masses derived under
the assumption of spherical and ellipsoidal cluster shapes rang-
ing from 10% (oblate) to 17% (prolate). More realistic mass
errors could thus easily be larger than the given formal error
by a factor of 1.5. Taking this factor into account we get the
above-mentioned maximum estimate of the intrinsic scatter of
σM = 20%.

The effective scatter in mass, σeff =

√
σ2

M + (σL/α)2, in-
cludes also the scatter introduced by the flux errors of the
REFLEX clusters. The range of expected σL values from 10
and 20% yields, for σM = 20%, values between σeff = 21%
and 23%. In order to estimate the effects related to our incom-
plete knowledge ofσM contributing toσeff on the cosmological
constraints, we finally assumed in our tests σeff values ranging
from 19% to 28% with a default value of 25%.

For all mass transformations the Navarro et al. (1997) mass
density profile is used with a redshift and mass-independent
concentration parameter of c = 5 typical for X-ray clusters
of galaxies (see simulations of Navarro et al. 1997 and, e.g.,
the observed average value c = 5.2 obtained by Allen et al.
2002). The sensitivity of this specific choice on the final re-
sults is tested by using alternatively c = 4 and c = 6. We
thus assume that the REFLEX clusters do not show any sig-
nificant evolution up to z = 0.3 as suggested by the redshift-
independent distribution of the comoving number densities of

the REFLEX clusters (Paper I, see also Gioia et al. 2001 and
Rosati et al. 2002). Therefore, all mass transformations derived
in Appendix A and model mass functions are evaluated at the
formal redshift z̄ = 0.0 where the empirical mass/X-ray lumi-
nosity relation was referred to, or alternatively z̄ = 0.05, that is
the mean redshift of the cluster sample used to determine the
relation.

The REFLEX clusters are counted in 360 cells (spheri-
cal coordinates): 6 angular bins in Right Ascension, 6 bins
in Declination, and 10 bins along the comoving radial axis.
With standard linear algebra codes (Press et al. 1989) we com-
pute the eigenvectors and eigenvalues of the whitened correla-
tion matrix R′. Tests of the KL method based on 27 indepen-
dent REFLEX-like cluster samples extracted from the Hubble
Volume Simulation ensure the correct handling of the data (see
Appendix of Paper II). The higher order KL modes obtained for
the present investigation show an increasing number of zero-
crossings and a decreasing amplitude (by definition). The same
behaviour is found in our previous KL analysis (see Figs. 1
and 2 in Paper II) and is thus not illustrated again.

Finally, it should be noted that the model covariance
matrix C is not diagonal unless the fiducial model used to com-
pute the KL eigenvectors is identical to the model used to com-
pute R′. However, we found that a change to another cosmol-
ogy (e.g., EdS) has a small effect on the eigenvectors, slightly
broadening the likelihood contours, but leaving the location
of the likelihood maximum almost unchanged, as first noted
in Vogeley & Szalay (1996). Tests show that for different ini-
tial values of Ωm and σ8, the KL solutions converge to similar
Ωm and σ8 values which we then adopted as our fiducial cos-
mology (see Sect. 1). Hence, the fiducial cosmology is close to
our final result (Sect. 5) so that the effects mentioned above are
negligible.

5. Results

Table 1 summarizes the basic results for Ωm and σ8 including
their formal 1σ standard deviations obtained with the REFLEX
cluster sample for different priors under the general assump-
tion of a non-evolving cluster population and geometrically flat
cosmologies. Typical likelihood contours are shown in Figs. 1
to 5. They illustrate the sensitivity of the analysis on impor-
tant cosmological parameters. For the comparison of differ-
ent KL solutions we use as reference the results obtained with
h = 0.70, Ωbh2 = 0.020, nS = 1.0, z̄ = 0.0, σeff = 25%, an
empirical mass/X-ray luminosity relation with the parameters
A = −20.055, α = 1.652 (denoted by M106), and the biasing
model of Sheth & Tormen (1999), yielding (Fig. 4 left and the
8th row in Table 1)

Ωm = 0.341 +0.031
−0.028 , σ8 = 0.711 +0.039

−0.031 . (4)

The 1σ random errors do not include cosmic variance.
Compared to the results obtained by utilizing the cluster fluc-
tuations only (Paper II), the present random errors are a fac-
tor of 2.0 smaller for Ωm and a factor of 8.6 smaller for σ8.
This illustrates the importance of including the cluster abun-
dance as a second criterion because it appears to be the main
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Table 1. Constraints on Ωm and σ8 and their 1σ errors (without cosmic variance) obtained with the KL method for the REFLEX cluster sample
assuming a flat space. h Hubble constant. Ωbh2: baryon density. nS spectral index of initial scalar fluctuations. b biasing model: ST Sheth &
Tormen (1999); KA Kaiser (1984). σeff relative effective scatter of mass of the empirical mass/X-ray luminosity relation given in percent. M/L
empirical mass luminosity relation: M/L = 106 corresponding to A = −20.055, α = 1.652 (obtained in RB02 with 106 clusters); M/L = 63
corresponding to A = −18.320, α = 1.538 (obtained with 63 clusters). Ωm, σ8 and their ±1σ errors (no cosmic variance); c concentration
parameter of the NFW profile. ∆Ωm and ∆σ8: systematic differences in Ωm and σ8 between actual KL solution and reference solution.

h nS Ωbh2 b σeff M/L c Ωm +1σ −1σ σ8 +1σ −1σ ∆Ωm ∆σ8

0.64 1.0 0.020 ST 25% 106 5 0.360 0.030 0.030 0.686 0.034 0.036 +0.019 −0.025

0.80 1.0 0.020 ST 25% 106 5 0.319 0.027 0.027 0.744 0.041 0.034 −0.022 +0.033

0.70 0.9 0.020 ST 25% 106 5 0.368 0.032 0.031 0.676 0.036 0.030 +0.027 −0.035

0.70 1.1 0.020 ST 25% 106 5 0.318 0.028 0.025 0.745 0.040 0.039 −0.023 +0.034

0.70 1.0 0.018 ST 25% 106 5 0.341 0.029 0.029 0.711 0.042 0.029 ±0.000 ±0.000

0.70 1.1 0.026 ST 25% 106 5 0.352 0.028 0.030 0.695 0.041 0.035 +0.011 −0.016

0.70 1.0 0.020 KA 25% 106 5 0.336 0.034 0.026 0.746 0.034 0.036 −0.005 +0.035

0.70 1.0 0.020 ST 25% 106 5 0.341 0.031 0.028 0.711 0.039 0.031 ±0.000 ±0.000

0.70 1.0 0.020 ST 25% 63 5 0.281 0.025 0.021 0.767 0.035 0.037 −0.060 +0.056

0.70 1.0 0.020 ST 19% 106 5 0.320 0.019 0.026 0.798 0.030 0.035 −0.021 +0.087

0.70 1.0 0.020 ST 28% 106 5 0.420 0.050 0.050 0.556 0.054 0.040 +0.079 −0.155

0.70 1.0 0.020 ST 25% 106 4 0.348 0.036 0.020 0.725 0.029 0.046 +0.007 +0.014

0.70 1.0 0.020 ST 25% 106 6 0.339 0.024 0.034 0.699 0.041 0.027 −0.002 −0.012

driver of the high accuracies reached in the present investiga-
tion. However, the results (4) are more sensitive to systematic
errors compared to those solely obtained with the fluctuation
analysis. Therefore, we have to evaluate the systematic errors
introduced by the specific values of the priors and model as-
sumptions in more detail.

As expected, small systematic differences (∆Ωm,∆σ8) are
found when the Hubble constant h (Freedman et al. 2001)
and the spectral index of the initial scalar fluctuations nS (see
references given in Sect. 1) are changed within their respec-
tive 1σ ranges around the priors of the reference solution (see
Figs. 1, 2). They are of the order of the 1σ random errors given
in (4).

The systematics introduced by the Ωbh2 ranges of, e.g.,
Pryke et al. (2002) appear comparatively small (see Fig. 3).
A larger effect is expected when the full range 0.0095 ≤
Ωbh2 ≤ 0.023 obtained with standard Big Bang nucleosyn-
thesis would have been used. However, the measurements of
deuterium in quasar absorption systems if primordial gives
Ωbh2 = 0.020 ± 0.0015, which is quite consistent with recent
CMB estimates (see review of Sarkar 2002) and thus provides
a good argument for the smaller confidence range adopted in
the present investigation.

In order to test the stability of the results with respect to the
biasing model two extreme cases are selected (see Fig. 4). The
model of Sheth & Tormen (ST, 1999) although motivated by a
Press-Schechter like prescription is calibrated with dark matter
simulations. The pure statistical biasing model of Kaiser (KA,
1984) is mainly based on the Gaussianity of the cosmic matter
field. On the large scales studied in the present investigation
we do not expect large differences between the two models,
as supported by the results obtained with the KL analysis (see
Fig. 4 and Table 1).

More technically, we measured the systematics introduced
by the assumption that the empirical mass/X-ray luminosity re-
lation of RB02 is determined alternatively at the formal sample
mean z̄ = 0.05 and not at z̄ = 0.0 yielding ∆Ωm = −0.004
and ∆σ8 = +0.007 (no figure). We further tested the sensitiv-
ity of the cosmological parameters on the effective scatter of
the mass/X-ray luminosity relation by alternatively assuming
instead of σeff = 25% the effective scatter of σeff = 19% and
28% yielding ∆Ωm = −0.021, ∆σ8 = +0.087 (compare Fig. 4
left (25%) with Fig. 5 left (19%)) and ∆Ωm = +0.079, ∆σ8 =

−0.155, respectively (no figure). We also tested the sensitivity
of the cosmological parameters on the chosen mass/X-ray lu-
minosity relation using instead of the default relation obtained
with the extended RB02 sample of 106 clusters (denoted M106:
A = −20.055, α = 1.652) a relation obtained with a strict flux-
limited sample of 63 clusters (denoted M63: A = −18.320,
α = 1.538) yielding ∆Ωm = −0.060 and ∆σ8 = +0.056 (com-
pare Fig. 4 left (M106) with Fig. 5 right (M63)). Finally, we
tested the effect of a value of the concentration parameter of
the NFW mass density profile different from the default value
c = 5. For c = 4 and c = 6 we obtained ∆Ωm = +0.007,
∆σ8 = +0.014 and ∆Ωm = −0.002, ∆σ8 = −0.012, respec-
tively (no figure).

For the correct determination of the confidence ranges
caused by the combined effect of all uncertainties of the pri-
ors and model assumptions one has to analyse the complete
8-dimensional parameter space. The KL method is, however,
quite computer-intensive so that the errors could only be evalu-
ated in the following simplified manner. The approximate com-
bined effect (conservative upper limit) is estimated by summing
up the individual systematic errors. We obtain the maxi-
mum systematic errors of ∆Ωm =

+0.143
−0.137 and ∆σ8 =

+0.266
−0.243. A

correlation of the systematics evaluated above is, however,
quite unlikely. More realistic error estimates assume that the
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Fig. 7. Likelihood contours obtained with the REFLEX cluster abun-
dances only (center at Ωm = 0.32 and σ8 = 0.71). The comparison
with Fig. 4 (left) obtained by using both cluster abundance and fluctu-
ations shows that the KL method breaks the degeneracy between σ8

and Ωm. Note the different scales of the diagrams.

systematics are uncorrelated and that the squared ∆’s can be
regarded as the variances of error distributions assumed to be
Gaussian. In this case the errors add quadratically and we ob-
tain the final systematic errors

σΩm =
+0.087
−0.071 , σσ8 =

+0.120
−0.162 . (5)

Finally, we tested whether the Gaussianity assumed through-
out the likelihood analysis is supported by the present mea-
surements. Although the histogram of the normalized KL coef-
ficients (Fig. 6) shows a small systematic shift of 0.14σ and
some excess at large positive fluctuations relative to a zero-
mean, unit-variance Gaussian profile, the latter distribution and
the un-shifted observed distribution must be regarded as se-
lected from the same parent distribution when tested on the 3σ
confidence level (KS-test). The present measurements thus sup-
port the fundamental assumption of Gaussianity, although less
significant compared to our first findings (see Paper II).

6. Discussion and conclusions

In the present investigation cluster number counts and their spa-
tial fluctuations are analysed for the first time simultaneously
in order to constrain cosmological models. The test utilizes the
complementarity of clustering and abundance of galaxy clus-
ters and allows us to fully exploit the cosmological potential of
the REFLEX survey of X-ray clusters (but see below).

For spatially flat cosmologies as suggested by all re-
cent CMB measurements (Sect. 1) and for a non-evolving clus-
ter population as suggested by the z-independent comoving
REFLEX cluster number densities (Paper I), we obtain Ωm =

0.341 for the cosmic matter density andσ8 = 0.711 for the nor-
malization of the matter power spectrum. The random errors
range between 8–9% for Ωm and 4–5% for σ8, not including
cosmic variance. Systematic errors can be identified and quan-
tified so that the whole process appears to be well-controlled.
Under the assumption that the systematics add quadratically the

total systematic errors are found to be about 2.5 and four times
larger than the random errors of Ωm and σ8, respectively.

Compared to the results obtained with the fluctuations only
(Paper II), the combination of abundance and fluctuation mea-
surements reduces the random errors ofΩm by a factor of about
two and of σ8 by a factor of about nine. The main driver of the
accuracy of the present results thus appears to be the cluster
abundance, especially for σ8 (but see below).

In contrast to many other cosmological parameter estima-
tions we tested the assumed functional form of the sample like-
lihood function. As in Paper II we could verify Gaussianity
on large scales – a fundamental property of the cosmic mat-
ter field. In this respect the present analysis appears to be fully
consistent and self-contained.

The KL likelihood contours (Figs. 1 to 5) show some cor-
relations between Ωm and σ8, probably indicating that the pri-
mordial part of the power spectrum is still less constrained by
the REFLEX data. The correlations are, however, restricted
to comparatively small (Ωm, σ8) ranges so that it does not
make much sense to determine an Ωm-σ8 relation from the
data. Therefore, the degeneracy between Ωm and σ8 can be re-
garded as broken. The breaking of the degeneracy by the KL
method using both cluster abundance and fluctuations is nicely
seen when the KL reference results (Fig. 4, left) are compared
with the likelihood contours obtained with the REFLEX cluster
abundance only (Fig. 7).

Generally, likelihood analyses which optimize simultane-
ously two or more almost independent observational quanti-
ties like the power spectrum and the cluster abundance, try to
find the best compromise between the individual observables
and not necessarily the best fit of the different components.
However, Fig. 8 shows that the best KL solution obtained with
the REFLEX data is consistent with both the redshift histogram
and the redshift-space power spectrum obtained with a stan-
dard Fourier method (Paper I). Note that the power spectrum
was measured within a comparatively small volume to reduce
correlations between different fluctuation modes. A further ar-
gument supporting the reliability of the present cosmological
constraints is given by numerical fits of the amplitude of the ob-
served power spectrum of three volume-limited REFLEX sub-
samples using ΛCDM models which yield σ8 = 0.70 (Paper I).
This result is at variance to the standard normalization of the
ΛCDM model, but in very good agreement with the results of
the present KL analysis.

The value of the cosmic matter density obtained with
REFLEX is in good agreement with other recent independent
measurements (see also Turner 2002). For example, Pryke et al.
(2002) measured with DASI a matter density of Ωm = 0.40 ±
0.15 for h = 0.72±0.08 and Sievers et al. (2002) measured with
CBI Ωm = 0.62 ± 0.22 (weak priors). Netterfield et al. (2002)
obtained for flat geometries Ωm = 0.33 ± 0.05, combining
COBE-DMR, BOOMERANG, large-scale structure, and su-
pernovae type Ia data. Sievers et al. (2002) found from the com-
bination of COBE, BOOMERANG, MAXIMA-1, DASI, CBI,
large-scale structure surveys, Hubble parameter determina-
tions, and supernovae type Ia the valueΩm = 0.32± 0.06. With
the galaxy power spectrum of the 2dF Galaxy Redshift Survey
and a new compilation of CMB data (COBE, BOOMERANG,
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Fig. 8. Comparison of the reference KL solution (Ωtot = 1, Ωm = 0.341, Ωbh2 = 0.020, h = 0.70, nS = 1.0, σ8 = 0.711, σeff = 25%, ST
biasing) with REFLEX observations. Left: Power spectrum obtained with the flux-limited REFLEX sample (Paper I, points with 1σ error bars
including cosmic variance) and the KL solution (continuous line). The theoretical model takes into account the effects of the different volumes
covered by the present KL and the former Fourier analysis, includes the effects of the baryons, and is transformed into redshift space using the
nonlinear model described in Paper I. In order to make the measured power spectrum less crowded adjacent power spectral densities and their
errors were averaged. Right: Redshift histogram of the REFLEX subsample used here (steps) and the KL solution (continuous line).

MAXIMA-1, DASI, VSA see Scott et al. 2002, CBI see Mason
et al. 2002), Percival et al. (2002) obtained for a flat cosmology
Ωm = 0.313 ± 0.055 (all 1σ errors without cosmic variance).
Therefore, a significant number of independent applications ap-
pear to converge to a low matter density.

The linear theory σ8 obtained with REFLEX is lower
than the COBE normalization and most estimates from clus-
ter abundance as summarized in, e.g., Table 6 in RB02. Note
that values of the effective scatter σeff of the mass/X-ray lu-
minosity relation larger than assumed here would increase this
descrepancy even more. However, small σ8 values were also
obtained by Markevitch (1998) using a local cluster sample
with ASCA X-ray temperatures and ROSAT X-ray luminosi-
ties, by Borgani et al. (2001) using the ROSAT Deep Cluster
Survey, by Seljak (2001) from the empirical mass/X-ray tem-
perature relation of nearby clusters, by Viana et al. (2002) us-
ing SDSS/RASS data and the X-ray luminosity function of
REFLEX clusters of galaxies, and by Bahcall et al. (2002)
using clusters selected from SDSS data. In this context it is
also interesting to note that the KL results are in very good
agreement with the new constraints obtained by Lahav et al.
(2002) from their simultaneous analysis of the amplitudes of
the fluctuations probed by the 2dF Galaxy Redshift Survey and
COBE, BOOMERANG, MAXIMA-1, DASI data, and with the
constraints obtained with the KL analysis of the early Sloan
Digital Sky Survey by Szalay et al. (2001) obtained under simi-
lar priors (as described in Lahav et al.). There is thus increasing
observational evidence for a σ8 value lower than previously,
although some recent weak lensing results show a tendency
for a higher σ8 for given Ωm (e.g., Hoekstra et al. 2002;
van Waerbeke et al. 2002). Small σ8 values help (James S.
Bullock, private communication) to reduce the apparent prob-
lem of the ΛCDM model with the standard normalization to

overpredict the number of low-mass satellite galaxies (Klypin
et al. 1999; Moore et al. 1999).

In all the cosmological studies mentioned above including
the present, various model corrections might change the final
results by 10% to 30% so that more detailed analyses of pos-
sible sources of systematic errors are needed to get below this
error level. Our tests for systematic errors show that the largest
systematic errors are introduced by the mass/X-ray luminos-
ity relation (as expected). In order to use the full potential of
REFLEX-like cluster surveys it is thus important to have more
precise measurement of this function, i.e., its shape, intrinsic
scatter, redshift-dependency, etc. which are expected to be pro-
vided by detailed observations with the Chandra and XMM
satellites. Future REFLEX papers will test carefully the resid-
ual effects of possible evolution of nearby clusters, the cosmo-
logical constant and related quantities (H. Böhringer et al., P.
Schuecker et al., in preparation).

Regardless of these interim restrictions, the present inves-
tigation illustrates that large and fair samples of X-ray clusters
of galaxies give quite clean measurements of the cosmological
parameters. In addition to the abovementioned quality of σ8

constraints traditionally obtained with clusters of galaxies, the
1σ random error for the matter density of σΩm = 0.030 ob-
tained with the REFLEX data is already close to the random
error of σΩm = 0.010 expected to be attainable with the CMB
Planck Surveyor satellite and similar to σΩm = 0.015 attainable
with the SNfactory plus SNAP supernovae satellite projects
(see, e.g., Hannestad & Mörtsell 2002). Moreover, the cosmo-
logical constraints obtained with cluster data have degenera-
cies different from high-z supernovae and CMB anisotropies
(Holder et al. 2001). Therefore, galaxy clusters can play a sig-
nificant rôle in high precision measurements of cosmological
parameters.
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Appendix A: Mass transformations

In this appendix we discuss mass transformations which are
necessary when masses M∆ are defined within radii r∆ which
correspond to different average density contrasts ∆ and when
average contrasts are related to different background densi-
ties. We are particularily interested in the relation between the
masses used in the empirical mass/X-ray luminosity relation of
Reiprich & Böhringer (2002) and the masses used in the theo-
retical mass function of Jenkins et al. (2001). To motivate the
mass transformations we first assume an isothermal sphere at
redshift z = 0 and define a virial radius by

rVIR =

[
MVIR

(4π/3)∆c ρc

]1/3

, (A.1)

with the average density contrast ∆c which is 18π2 for the EdS
case, and the critical EdS density ρc = 3H2

0/8πG. The virial re-
lation then reads G MVIR = a TX rVIR, with TX the temperature
of the X-ray emitting gas and a a structural constant. If mas-
sive clusters are simply re-scaled versions of low mass clusters
(e.g., Neumann & Arnaud 2001) then a is a universal constant
and one obtains

MVIR =

( a
G

)3/2 1√
4π/3

1√
∆c

1√
ρc

T 3/2
X . (A.2)

The assumption of an isothermal sphere mass distribution thus
yields for a given redshift and temperature the mass-density
contrast relation MVIR/M∆ = (∆/∆c)0.5. Deviations from
isothermality changes this relation as can be seen in Horner
et al. (1999) who found from spatially resolved temperature
measurements the empirical relation MVIR/M∆ = (∆/∆c)0.266,
consistent with the mass density profile ρ(r) ∼ r−2.4. In order
to be consistent with our reference to high-quality dark matter
simulations we assume a Navarro et al. (NFW, 1997) profile.
In this case we have to deal with a mass ratio MVIR/M∆ ≡
Π(∆c,∆) which can only be obtained numerically using

M∆1

M∆2

=
∆1

∆2
·
(
r∆1

r∆2

)3

, (A.3)

M∆1

M∆2

=
ln

(
1 + c r∆1/r200

) − cr∆1/r200

1+c r∆1/r200

ln
(
1 + c r∆2/r200

) − cr∆2/r200

1+c r∆2/r200

, (A.4)

where c is the concentration parameter which we assume to be
independent of mass and redshift. Iterative solution for r∆1/r∆2

yields the mass ratio Π where the normalization radius r200 of
the NFW profile cancels out. Due to its definition via a mass
ratio, Π has the property Π(∆1,∆2) · Π(∆2,∆3) = Π(∆1,∆3),
yielding

MVIR(0)

MEdS
200 (0)

= Π
(
∆c(0),∆EdS

c (0) = 18π2
)
. (A.5)

The arguments indicate that the quantities are determined at
redshift z = 0. Note that the density contrast ∆EdS

c (0) approx-
imately defines the same mass MEdS

200 as used in the empirical
mass-luminosity relation of Reiprich & Böhringer.

With the function E(z) defined in Sect. 3, a possible
redshift-dependence might be introduced by ρc(z) ∼ E2(z)
and ∆c(z) = 18π2 + 82 [Ωm(z) − 1] − 39 [Ωm(z) − 1]2 with
Ωm(z) = Ωm(1 + z)3/E2(z) for spatially flat geometries (Bryan
& Norman 1998). For a given temperature we thus obtain

MVIR(z) = MVIR(0)
Π (∆c(z),∆c(0))

E(z)
, (A.6)

so that the relation between a virialized mass at redshift z and
the mass as defined in the empirical mass/X-ray luminosity re-
lation becomes

MVIR(z) = MEdS
200 (0) · Π

(
∆c(z),∆EdS

c (0)
)
· 1

E(z)
· (A.7)

Finally, we have to relate MVIR(z) to the mass as defined in
the universal mass function of Jenkins et al. (2001). Here, the
masses are defined by the radius of the spherical overdensity
of 18π2 with respect to the Ωm-dependent background density.
Denoting this mass by MSO(180)(z) we have

MSO(180)(z) = MVIR(z) Ωm(z) r̃3 , (A.8)

where r̃ = rSO(180)/rVIR is obtained iteratively from the NFW
mass density profile using

ln(1 + cr̃) − 1 +
1

1 + cr̃
= Ωm(z)

[
ln(1 + c) − c

1 + c

]
· (A.9)

In the main text a non-evolving cluster population is assumed
so that the relevant equations are evaluated either at z = 0.0 or
alternatively at z = 0.05.
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