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Abstract. Spatially-resolved gas pressure maps of the Coma galaxy cluster are obtained from a mosaic of XMM-
Newton observations in the scale range between a resolution of 20 kpc and an extent of 2.8 Mpc. A Fourier
analysis of the data reveals the presence of a scale-invariant pressure fluctuation spectrum in the range between
40 and 90 kpc and is found to be well described by a projected Kolmogorov/Oboukhov-type turbulence spectrum.
Deprojection and integration of the spectrum yields the lower limit of ∼ 10 percent of the total intracluster
medium pressure in turbulent form. The results also provide observational constraints on the viscosity of the gas.
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1. Introduction

In hierarchical structure formation scenarios clusters grow
via accretion and merging of smaller subclumps. Gas ac-
creting onto clusters of galaxies have bulk velocities of
about v = 1900 (T/6.7 keV)0.52 km s−1 at 1Mpc (e.g.
Miniati et al. 2000), where T is the mean X-ray tem-
perature of the intracluster medium (ICM). This veloc-
ity is comparable to the expected sound speed of 1000-
1500km/s of the ICM. Accretion flows through filaments
and sheets are highly asymmetric and produce complex
pattern which can survive for long time scales in the ICM
(Miniati et al. 2000). Simulations by Norman & Bryan
(1999) predict that the turbulent pressure in the ICM can
account for up to 20% of the thermal pressure. We thus
expect some measurable effects of turbulence in the ICM
of clusters of galaxies.

Concerning X-ray data, Inogamov & Sunyaev (2003)
propose a study of spectral line profiles which could be
measured with the future ASTRO-E2 satellite as a use-
ful diagnostic tool of turbulent flows in the ICM. Vogt &
Enßlin (2003) propose the application of Faraday Rotation
measures to test turbulence of the ICM and claim that for
a few clusters a Kolmogorov spectrum seems to be plau-
sible.

In the present investigation we show that turbulence in
the ICM can be probed directly with pressure maps pro-
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vided by the XMM-Newton satellite due to its high sen-
sitivity and excellent spectral capabilities. Section 2 sum-
marizes the basic phenomena related to turbulent flows. In
Sect. 3 we give a simple analytic treatment of projection ef-
fects introduced through observation. In Sect. 4 we present
the observational data and describe how X-ray tempera-
ture and pressure maps are constructed. Based on the di-
rect comparsion of local temperature and density measure-
ments, we give in Sect. 5 some observational arguments
that their fluctuations appear to be almost adiabatic. The
same statistical analysis also suggests the absence of pro-
nounced contact discontinuities and strong shocks. These
observations provide a baseline consistent with the pres-
ence of a turbulent flow. Therefore, we study in Sect. 6
the measured pressure spectrum in Fourier-transformed k
space in detail and discuss its interpretation in Sect. 7. For
all computations a flat geometry and a Hubble constant of
H0 = 50 kms−1 Mpc−1 is used. We assume a distance of
139Mpc to the Coma cluster so that 1 arcmin corresponds
to about 40 kpc.

2. Phenomenology of isotropic turbulence

Traditionally, the phenomenology of isotropic turbu-
lence is based either on second-order velocity statistics
(Kolmogorov 1941) or on their Fourier-transformed coun-
terparts (Oboukhov 1941). The velocity energy spectrum

Ev(k) = CK ǫ2/3 k−5/3 , (1)

with the non-dimensional Kolmogorov constant CK, can
be obtained for the inertial scale range from simple dimen-
sional arguments (e.g., Lesieur 1997). In Eq. (1), Ev(k)
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Fig. 1. Angular profile of the weight function (β profile
squared) integrated along the LOS for various integration
lengths. The lowest/highest contours indicate 10/100% contri-
butions and the intermediate lines the contributions in steps
of 10%. The upper panel shows the contributions on cluster
scales and the lower panel the contributions on the maximum
scales of the observed turbulence structures (see Sect. 7). For
the brightness distribution we assume a β profile with the pa-
rameter values β = 0.75 and rc = 420 kpc.

is the kinetic energy of fluctuations per unit mass and
wavenumber k (physical units m3s−2), and ǫ, in units of
kinetic energy per unit mass and time (m2s−3), is the
flux of kinetic energy from large to small scales. The re-
sult in Eq. (1) fundamentally stems from the assump-
tion that, based on dimensional arguments, a turbulent
eddy on a scale λ ∼ k−1, decays on a ‘turnover’ timescale
τ = λ/v(k) = [k3Ev(k)]−1/2 (Oboukhov 1941). Since the
kinetic energy associated with fluctuations over a scale
k−1 is kEv(k), in steady state regime the flux of energy
across different scales is ǫ = kEv/τ which leads to Eq. (1).

In the inertial scale range where Eq. (1) applies, turbu-
lence develops without being affected by boundaries, ex-
ternal forces, or viscosity. Here, the fluctuating quantities
are assumed to be statistically invariant under translation
(homogeneity) and rotation (isotropy). Tab. 1 summarizes
some of the results from theoretical studies and numerical
simulations which suggest that Kolmogorov/Oboukhov-

Fig. 2. Pressure power spectra with an intrinsic slope of
n = −7/3 as expected for a Kolmogorov/Oboukhov turbu-
lence (r = 0) and its projection (420 kpc) as seen along the
LOS through the center of a cluster with a core radius of
rc = 420 kpc and a slope parameter of β = 0.75 as measured for
the Coma cluster. In order to illustrate the projection effects
over a large scale range we did not introduce any characteristic
scale which limits the spectra at large and small scales.

Tab. 1. Spectrum Ev(k) in the inertial range for different flu-
ids, Mach numbers M, and magnetic fields B.

Turbulence M B-field Ev(k)

[1] < 1 B = 0 k−5/3

[2] > 1 B = 0 k−6/3

[3] < 1 B 6= 0 k−5/3

[4] > 1 B 6= 0 k−3/2...−9/3

[1] Kolmogorov (1941), Oboukhov 1941), [2] Burgers (1974),
[3] Goldreich & Sridhar (1995), [4] Cho & Lazarian (2002),
Vestuto et al. (2003).

like spectra emerge in an inertial scale range under quite
general conditions.

Whereas all these studies are based on the analysis
of velocity fluctuations, Oboukhov (1949) and Batchelor
(1951) showed that gas pressure fluctuations also obey a
scaling law (e.g., Lesieur 1997, Chap.VI),

EP (k) = CP ǫ4/3 k−7/3 , (2)

where CP is a non-dimensional constant, and EP(k) has
the units of kinetic energy per unit mass squared and is
normalized to unit wavenumber k (physical units m5s−4).
We note that the slope of the spectrum of the pressure
is steeper than the spectrum of the velocity (P ∼ v2).
As for the velocity spectrum, we also expect that in gen-
eral the exact slope of the pressure spectrum depends on
whether or not the fluid is supersonic, and whether or not
magnetic fields are present. The pressure spectrum thus
appears as an excellent and powerful diagnostic tool of
turbulent ICM flows. In addition, this approach appears
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quite attractive because pressure fluctuations can already
be measured from high resolution X-ray data.

Establishing the presence of a turbulent ICM implies
testing whether or not there is a scale-free inertial range
in the pressure spectrum with a slope similar to the
Kolmogorov/Oboukhov case. It is of further interest to
measure the location of certain characteristic scales like
the spectral break which corresponds to the scale where
the kinetic energy is initially injected into the ICM as well
as the smallest scale where the corresponding energy is fi-
nally dissipated into the ICM. It is, however, not clear yet
whether there is also energy dissipation within the inertial
range caused by the development of randomly distributed
weak shocks (Burgers turbulence, Tab. 1).

3. Projection effects

X-ray observations measure after filtering and normaliza-
tion (Sect. 6) a projection of the actual three-dimensional
pressure fluctuations, δP/P (r), on the two-dimensional
celestial sphere. Note that the application of normalized
instead of absolute quantities modifies the physical units
of the structure function and power spectrum introduced
in Sect. 2. Our analysis concentrates on scales which are
small compared to the cluster core radius rc. As larger
scales of order rc are approached, the global cluster pro-
file starts to be probed. This will be taken into account in
the treatment (see Sect. 6). Thus, we start by decomposing
the fluctuations into Fourier modes,

δP

P
(r) =

1

(2π)3

∫

d3
k

δP

P
(k) e−ik·r . (3)

The small-angle approximation allows us to regard the
cluster region as composed of coplanar layers, with a
pressure distribution assumed to be isotropic within each
layer. A two-dimensional pressure field can thus be con-
structed using r = (R, z),

δP

P
(R) ∼

∫

dz
δP

P
(r)

[

1 +
(z − z0)

2

r2
c

]

−3β

, (4)

which weights the pressure field of each layer with its
emissivity, as obtained from a β model of the cluster gas
density (squared). In Eq. (4), z0 is the distance between
the observer and the cluster centre along the line-of-sight
(LOS), and R a two-dimensional vector on the sky.

An illustration of the weighting scheme is shown for
the Coma cluster in Fig. 1 where the contours give the
percentage of surface brightness contributed by ICM gas
within a distance |z − z0| from the cluster centre by the
integral of the squared β profile given in Eq. (4). A com-
parison of the upper and lower panels of Fig. 1 reveals
that the general profile of the Coma cluster is imprinted
on large scales, of order > 200kpc, whereas on smaller
scales the structure of Coma appears quite homogeneous
in the radial direction in the plane of the sky, consisting of
a set of coplanar layers. In the inner region weighting can
thus be approximated by taking into account the variation
of the density only along the LOS.

A direct consequence of Eq. (4) is the invariance of rela-
tions between fluctuating quantities under geometric pro-
jections. This is illustrated for the adiabatic relation be-
tween temperature and density, T ∼ nγ−1, used in Sect. 5
to classify the fluctuations. Its differential version

δT

T
(r) = (γ − 1)

δn

n
(r) . (5)

defines the (adiabatic) fluctuations. The projected tem-
perature and density fluctuations are given by Eq. (4) re-
placing P with T and n. We further replace [1 + (z −
z0)

2/r2
c ]

−3β by W (r), i.e., a general weighting function
which describes the geometric projection process. If the
weighting W (r) were the same for T and n, then we could
write

δT

T
(R) = const

∫

dz
δT

T
(r)W (r)

= (γ − 1) const

∫

dz
δn

n
(r)W (r)

= (γ − 1)
δn

n
(R) .

However, two-dimensional (projected) temperature maps,
T (R), resulting from X-ray observations, are n2(r)-
weighted averages along the LOS of the three-dimensional
field T (r). On the contrary, projected squared densities,
n2(R), are obtained by a simple geometric mean without
any weighting. For this more realistic case we thus have

δT (R)

T (R)
=

∫

dz δT (r)n2(r)
∫

dz T (r)n2(r)
=

γ − 1

2

∫

dz T (r) δn2(r)
∫

dz T (r)n2(r)
, (6)

where δn2 = 2n δn and Eq. (5) have been used. For the
assumed central core region of the cluster we now have
the advantageous situation that T (r) assumes the role of
an almost constant weighting function for the density, and
we can show that retaining only first order terms, Eq. (6)
simplifies to

δT (R)

T (R)
≈ γ − 1

2

∫

dz δn2(r)
∫

dz n2(r)
=

γ − 1

2

δn2(R)

n2(R)
. (7)

Eq. (7) is the observational counterpart of Eq. (5) and will
be used in Sect. 5 to constrain possible types of pressure
fluctuations measured in the centre of the Coma cluster.

After cross-correlating projected fluctuation measures,
we now proceed with projecting pressure spectra. We want
to take advantage of the invariance property of a Gaussian
profile under Fourier transformation by replacing the β
model by a Gaussian with variance r2

c/3β. The approxi-
mation is better than 5% for r < rc and allows us to regard
the convolution of the pressure field with the gas density
profile in Eq. (4) along the z direction as a transformation
δP/P (k) → δP/P (k) exp (−k2

zr2
c
/6β). With the standard

relations between two and three-dimensional power spec-
tra (e.g., Peacock 1999, Sect. 18.1) we obtain the simple
expression

P2D(K) =
1

π

∫

∞

0

dkz P3D

(

√

k2
z + K2

)

exp

(

−k2
z r2

c

3β

)

, (8)
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Fig. 3. Projected temperature map (upper left), pressure map (upper right), entropy map (lower left) and image substructure
(residual) map as revealed by small-scales in the wavelet decomposition (lower right). The maps are obtained from spectral
hardness ratios and surface brightness data and smoothed with a wavelet filter of the Coma cluster. Each map covers an area
of 93 × 93 arcmin2.

where the integration extents over the wavenumber kz

along the LOS. The wavenumbers in two and in three di-
mensions are K and k, respectively. Note that K = 2π/Θ,
with Θ being the angular scale of the projected fluctu-
ation, has the physical units rad−1, but can be readily
transformed to metric scales using the distance to the
cluster. Eq. (8) shows that adding three-dimensional fluc-
tuations along the z direction leads to an exponentially
damped two-dimensional spectrum. Damping is larger for
smaller modes because relatively more fluctuations are
added along the LOS.

The relations between power spectra and pressure
spectra in two and three-dimensions can be obtained from
the condition that the sum over both statistics must give
the same total energy,

1

(2π)2

∫

∞

0

2π K dK P2D(K) =

∫

∞

0

E2D(K) dK , (9)

1

(2π)3

∫

∞

0

4π k2 dkP3D(k) =

∫

∞

0

E3D(k) dk , (10)

which yields the following conversions:

P2D(K) = 2 π K−1 E2D(K) , (11)

P3D(k) = 2 π2 k−2 E3D(k) . (12)

This gives the projection of the pressure spectrum

E2D(K) = K

∫

∞

0

dkz

k2
z + K2

E3D(
√

k2
z + K2) e−

k2
zr2

c

3β , (13)

where E3D(·) can be identified with the spectrum Eq. (2).
Fig. 2 gives a quantitative impression of the projection ef-
fects on a power spectrum computed with Eq. (8) for the
Coma cluster with the distance 139Mpc, β = 0.75, and
the core radius rc = 420kpc. For comparison we also plot
the kzrc ≪ 1 case where no corrections for projection
are necessary. The intrinsic slope of the pressure spec-
trum is n = −7/3. Note that the power spectrum of the
pressure fluctuations is damped at 60 kpc by a factor of
about 28. The observation of pressure fluctuations along
the LOS through the cluster thus damps their amplitudes
by a factor

√
28 ≈ 5.3. However, cluster-wide fluctuations

on Mpc-scales would appear almost undamped.
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Fig. 4. Detailed view of the projected pressure distribution of the central region of the Coma cluster. The 145 kpc scale
corresponds to the largest size of the turbulence eddies indicated by the pressure spectrum (Sect. 7). The smallest turbulence
eddies have scales around 28 kpc. On smaller scales the number of photons used for the spectral analysis is too low for reliable
pressure measurements.

Fig. 5. Nested grids with temperature (left panel), pressure (middle panel), and entropy (right panel) measurements. Each
map covers an area of 69.3 × 69.3 arcmin2.
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Further observational effects are related to the mea-
surement errors of the pressure and the global pressure
profile and can be illustrated best with the observed spec-
trum of the cluster pressure distribution (Sect. 6).

4. The Coma mosaic

In this paper we use the performance verification obser-
vations of the Coma cluster obtained with the EPIC-
pn instrument on board of XMM-Newton (Jansen et al.
2001). Previous reports of these observations were given
by Briel et al. (2001), Arnaud et al. (2001), Neumann
et al. (2001, 2003) and Finoguenov (2004a, for point-like
sources). This work includes all datasets obtained to date,
as described in detail by Finoguenov et al. (2004a, see also
Tab. 2). While the central pointing has been obtained in
Full Frame Mode all other observations were conducted in
Full Frame Extended Mode.

All observations have been reprocessed using the lat-
est version of the XMM reduction pipeline (XMMSAS
5.4.1), which yields an astrometry to better than 1 arcsec.
Although the Coma data are public, for some (Coma-10
and Coma-0) of the early observations of the performance
verification phase no complete Observational Data Files
(ODF) had been produced by standard processing, and a
special preprocessing (XMMSAS task odffix) was done on
such pn exposures at MPE by Michael Freyberg. As a re-
sult, a few Coma pointings are not publically available yet,
which precluded us from using MOS data. The vignetting
correction, crucial for obtaining reliable source character-
istics over a wide region, is performed using the latest cal-
ibration (Lumb et al. 2003). Two pointings at the Coma
centre were used in that calibration, in a way requiring
that the same sky pixels yield the same flux between the
two observations. The level of the emission was not used
in the calibration, so it could be analyzed further. The
RMS fluctuations of the comparison of two Coma fields is
within 2%, which will affect the apparent pressure fluctu-
ations studied here on the 1% level, much lower than the
observed 10% amplitudes.

The images were extracted separately for each point-
ing, along with the corresponding exposure maps.
We select pn events with PATTERN < 5 and
(FLAG&0xc3b0809) = 0, which in addition to FLAG = 0
events includes events in the rows close to gaps and bad
pixels, however, it excludes the columns with offset energy.
This event selection results in a better spatial coverage of
the cluster, but at a somewhat compromised energy reso-
lution, which is sufficient for the broad-band imaging.

Our final results are derived from a spectral analysis,
where only the FLAG = 0 events were retained. For back-
ground subtraction we used the similarly screened and se-
lected events from the background accumulation of Andi
Read (Read & Ponman 2003) and also subtracted out-of-
time events as a background, using products of the SAS
task epchain. This subtraction is important as some point-
ings (see FrameTime 73ms in Tab. 2) are performed in the
Full Frame Mode.

To provide an overview on the structure of the ICM
of the Coma cluster, we show in Figs. 3 and 4 the tem-
perature, pressure, and entropy maps as well as maps of
the small-scale surface brightness structure. These maps
use hardness ratios of the 0.8–2keV and 2–7.5 keV bands
calibrated for the measurement of temperature as a sub-
stitute for the temperature directly determined from the
spectral analysis. The projected entropy (S) and projected
pressure (P ) maps are derived from the projected temper-
ature, T , and surface brightness, Σ, through the relations
S = TΣ−1/3 and P = TΣ1/2, respectively. The maps are
constructed from composite wavelet filtered images to sup-
press the large scale background. The details of the anal-
ysis based on surface brightness and hardness ratio maps
and the rational of the use of wavelet filtering is described
in detail in the previous publications (Briel et al. 2003,
Finoguenov et al. 2004b, and Henry et al. 2004).

The substructures seen in these maps suggest
turbulent-like fluctuations. The pressure maps are of spe-
cial importance because they clearly show fluctuations
which are not contaminated by contact discontinuities (see
Sect. 5). For a quantitative study of the significance of
these fluctuations we performed direct fits to the spectral
X-ray data.

In Fig. 5 we show the temperature, entropy and pres-
sure maps, based on the temperature and emission mea-
sure obtained through a direct spectral fitting, using sev-
eral grids to define the region of spectral extraction.
Only the 16 × 16 grids with a pixel size 40 × 40 arcsec2,
120×120 arcsec2, 260×260 arcsec2 are shown. This figure
also illustrates the relative positioning of the grids. As a
crude region selection typical to grids involve a mixing of
various spectral components, a decision has to be made on
which of the components to probe with spectral analysis.
We have chosen to put our interest on the hotter compo-
nent and so used the 1–7.9 keV energy band for spectral
fitting. Fine grids, with a pixel size of 40× 40 arcsec2 and
lower, located in the central region, do not suffer that
much from temperature mixing, while they suffer from
small number statistics. So, for those we used the 0.5–7.9
keV band. A detailed check has shown that for a similar
location in the Coma cluster all grids yield similar tem-
perature estimates, which supports our choice of energy
bands. The selection of the grid resolution was done to
yield at least 5000 counts per pixel. The total number of
counts available for the analysis in the Coma observation
reaches two million counts in the 0.5–2 keV band and a
similar amount in the harder band (2–7.9 keV).

5. General character of the fluctuations

In order to get more information about the type of fluc-
tuations seen in Figs. 3–5, we performed a pixel-by-pixel
cross-comparison of temperature and density gradients.

Figure 6 shows the correlation between the gradients
of the projected X-ray temperature and the gradients of
the projected squared gas density as obtained for the
40 × 40 arcmin2 pixelation. Here, we concentrate on this
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Tab. 2. Summary of XMM-Newton observations

Name of pn-Camera observing times (ksec) Orbit Frametime
Date Observation RA(2000) DEC(2000) planned effective msec

2000 May 29 Coma center 12 59 46.7 27 57 00 15.0 12.8 86 199
2000 June 21 Coma 1 12 56 47.7 27 24 07 25.0 21.1 98 73
2000 June 11 Coma 2 12 57 42.5 27 43 38 25.0 43.8 93 199
2000 June 27 Coma 3 12 58 32.2 27 24 12 25.0 11.0 101 73
2000 June 23 Coma 4 13 00 04.6 27 31 24 25.0 5.4 99 199
2000 May 29 Coma 5 12 59 27.5 27 46 53 20.0 9.9 86 199
2000 June 12 Coma 6 12 58 50.0 27 58 52 20.0 12.4 93 199
2000 Dec 10 Coma 7 12 57 27.7 28 08 41 25.0 18.6 184 199
2000 Dec 10/11 Coma 8 13 01 25.6 27 43 53 26.0 14.3 184 199
2000 June 11/12 Coma 9 13 00 32.7 27 56 59 20.0 14.7 93 199
2000 June 22 Coma 10 12 59 38.4 28 07 40 20.0 15.4 98 199
2000 June 24 Coma 11 12 58 36.5 28 23 56 25.0 11.5 99 199
2002 June 5/6 Coma 12 13 01 50.2 28 09 28 25.0 9.6 456 199
2002 June 7/8 Coma 13 13 00 36.5 28 25 15 25.0 20.0 457 199
2000 June 22 Coma 0 (bkg) 13 01 37.0 27 19 52 30.0 12.8 98 199
2001 Dec 4/5 Coma cal 12 59 46.6 27 57 00 25.0 17.4 364 73

Fig. 6. Correlation between relative fluctuations of density
squared (n2) and temperature (T ), and their 1σ errors. The
two thick lines represent the adiabatic exponent γ = 5/3
(monoatomic ideal gas) and γ = 4/3 which gives a good repre-
sentation of the data. Due to the sliding window method used,
neighbouring data points are correlated.

specific pixelation because it is mainly restricted to the
core region of the Coma cluster and has sufficiently high
signal-to-noise X-ray spectra at a comparatively small an-
gular resolution. The relative fluctuations are determined
for each pixel of the temperature and density map by av-
eraging the gradients over its four nearest neighbour pix-
els. These averaged gradients are obtained for tempera-
ture and density maps and can now be compared in a
point-wise manner. However, the individual fluctuations
are large (10% level) because they include also the mea-

surement errors. Therefore, an additional binning with
dn2/n2 = 0.1 and a continuous sliding of this bin along
the density axis is necessary to see a clear trend. The error
bars are the 1σ fluctuations of the mean obtained for each
bin.

For the classification of the fluctuations, we show in
Fig. 6 model expectations obtained with Eq. (7). The line
labeled γ = 5/3 corresponds to a monoatomic ideal gas.
For contact discontinuities local pressure equilibrium leads
to δn/n = −δT/T . Apparently, the γ = 4/3 line gives a
better representation than what is expected for the γ =
5/3 case. This could be due to a contamination by contact
discontinuities.

Figure 6 suggests a positive correlation between tem-
perature and density gradients. These occupy different re-
gions than contact discontinuities and strong shocks. The
data are actually quite close to the expected adiabatic
case. In order to find out whether or not such fluctuations
are organized as in a turbulent regime, we study in the fol-
lowing the statistics of the spatial pressure fluctuations.

6. Power spectrum of spatial pressure fluctuations

The first step in our (standard) power spectrum analysis is
the determination of the global pressure profile P̄ (R) from
the observed 2-dimensional pressure map P (R) in order
to get the residual local pressure fluctuations, δP/P (R) =
P (R)/P̄ (R) − 1. The second step is the determination of
the Fourier power spectrum of δP/P (R), corrected for the
errors of the pressure measurements (shot-noise subtrac-
tion), and normalized to unit number of Fourier modes
and to unit area in K-space. The resulting projected spec-
trum P2D(K) has the physical units kpc2. In the follow-
ing example, the pressure is measured in a regular grid
of 32 × 32 cells, each with 20 × 20 arcsec2. The pixelation
covers the central core region of Coma up to 431kpc and
has the fundamental mode K = 2π/λ = 0.0146 kpc−1.
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Fig. 7. Projected power spectra of different angular pressure
distributions from the 20 × 20 arcsec2 grid. Lower thin con-
tinuous line: raw spectrum including shot-noise, substructure,
and cluster profile (P). Upper thin continuous line: spectrum
from the normalized pressure distribution (dP/P). Thick con-
tinuous line: spectrum of the global cluster pressure profile
as determined with the wavelet transform. Dashed horizontal
lines: shot-noise levels computed from measured pressure er-
rors. Dashed vertical lines: characteristic scales.

The results obtained with the other three pixelations are
given at the end of this section.

The global pressure profile P̄ (R) is obtained from a
low-passband Fourier-filter applied to P (R) with a filter
scale of 150kpc which leaves the global cluster profile be-
low this scale almost unchanged. To illustrate the effect of
the filter, we show in Fig. 7 the power spectrum (marked
‘P’) obtained from a direct Fourier-transformation of
P (R). On scales between 20 and 40 kpc, the spectrum has
a flat plateau-like distribution which is determined by the
temperature and density errors (shot-noise, see below).
Between 40 and 125 kpc the spectrum increases signifi-
cantly above the shot-noise level. This is the spectrum of
the substructures seen in Figs. 3 to 5. Beyond 125–150kpc,
the spectrum suddently increases as caused by the global
pressure profile of the Coma cluster.

A similar increase is also seen in the spectrum marked
‘Wavelet’ which is obtained alternatively from a wavelet-
filtered pressure map. For the wavelet decomposition we
used the algorithm of Vikhlinin et al. (1998) and com-
puted the spectrum from the wavelet reconstruction of
the 30 × 30 arcsec2 map with the lowest angular reso-
lution. The wavelet algorithm performs a self-adjusting
noise suppression so that almost no significant shot-noise
occurs in the spectrum of the global pressure profile. The
20×20 arcsec2 pixelation does not cover the complete clus-
ter area and is thus not optimal for the proper sampling of
the global cluster profile. Therefore, the similarity of the
‘P’ and ‘Wavelet’ spectra is not very good on large scales.
However, pixelations with a larger bin size cover larger

Fig. 8. Comparison of a Gaussian profile with the histogram
of projected pressure contrasts δP/P = [P (R)/P̄ ] − 1 in con-
figuration space for a pixel size of 20 × 20 arcsec2 which cor-
responds to 13.5 × 13.5 kpc2. The mean over all fluctuation is
almost zero and the 1σ standard variation σδP/P = 0.15.

scales and give a very good agreement with the ‘Wavelet’
profile (see below). For the following analyses we thus use
the Fourier low-pass filter with a filter scale of 150kpc to
determine P̄ (R) for all four pixelations.

The histogram of the resulting δP/P (R) is shown in
Fig. 8. Their distribution appears quite consistent with a
Gaussian random field (KS-probability of 90%) with zero
mean and a standard deviation of 15 percent (including
shot-noise) on a pixel scale of 13.5 kpc. The δP/P (R) field
can thus completely be summarized by a power spectrum.
The corresponding power spectral densities are marked
by ‘dP/P’ in Fig. 7. The spectrum shows the expected
drop beyond 150 kpc. A similar drop at scales below 20 kpc
marks the resolution limit as given by the pixelation (see
‘Point Sources’). These two cutoff scales limit the range
of the power spectrum of the substructures.

The effect of temperature and density measurement
errors is seen in the power spectra as an almost scale-
independent shot-noise level which must be subtracted
from the ‘dP/P’-spectrum (dashed horizontal lines in
Fig. 7). For the determination of the shot-noise we per-
formed a Fourier analysis of 100 random realisations of
the grid of the measured pressure errors assuming that
the errors are Gaussian.

The 1 σ error bars shown in Fig. 7 are also determined
from the variances of the spectra obtained from random-
ized maps of the measurement errors. The errors are lower
limits because they are obtained from unstructured pres-
sure maps. Unfortunately, much larger effort is needed to
improve these estimates, for example, with a set of hydro-
dynamical cluster simulations.

Figure 9 shows the power spectrum of δP/P (R) after
shot-noise subtraction. This spectrum can be compared
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Fig. 9. Projected shot-noise subtracted power spectral densi-
ties, P2D(K), and their 1σ errors of the pressure fluctuations
obtained from the 20 × 20 arcsec2 grid.

via Eq. (8) with theoretical 3-dimensional power spectra
or structure functions.

The same analysis performed on the 40 × 40 arcsec2

grid gives the power spectrum shown in Fig. 10. The er-
rors are smaller compared to the results obtained with the
20× 20 arcsec2 pixelation. We attribute this to the higher
signal-to-noise X-ray spectra obtained with the larger pix-
elation. Its shape appears somewhat more curved and
steeper than the spectrum obtained with the smaller pixe-
lation. The 120×120 arcsec2 and 260×260 arcsec2 pixela-
tions mainly sample the global cluster profile. The result-
ing ‘P’-spectra shown in Fig. 11 follow the profile obtained
with the wavelet-filtered pressure distribution. These spec-
tra do not have any significant fluctuation power on scales
below 100 kpc so that we do not show the corresponding
‘dP/P’-spectra.

The spectra shown in Figs. 9 and 10 are combined by
averaging the spectral densities measured at the same K-
values. The errors of the spectral densities are not reduced
because the two power spectra cannot be regarded as com-
pletely statistically independent. We regard the spectrum
shown in Fig. 12 as the final result of the power spectrum
analysis.

7. Discussion

The present investigation aims for the detection of turbu-
lence in the ICM of the Coma cluster using the pressure
spectrum. The mosaic of XMM-Newton observations is
ideally suited for this purpose because it allows a clear ge-
ometric discrimination between pressure variations origi-
nating from the overall cluster profile and substructure su-
perposed onto it. This transition occurs at about 150kpc.

The measured temperature and density gradients
(Fig. 6) suggest that the substructures have an adiabatic

Fig. 10. Projected shotnoise subtracted power spectral densi-
ties, P2D(K), as in Fig. 9 for the 40 × 40 arcsec2 grid.

Fig. 11. Projected power spectral densities as in Fig. 7 for the
120 × 260 arcsec2 and the 260 × 120 arcsec2 grid. The spectra
basically follow the global cluster pressure profile.

exponent of γ ≈ 4/3, which is close to the adiabatic case
of an ideal monoatomic gas. On the other side, contact dis-
continuities and strong shocks seem to be less likely in the
central core region, consistent with hydrodynamical sim-
ulations (Miniati et al. 2000, Miniati 2003). In addition,
the statistics of the residual pressure fluctuations appear
quite Gaussian (Fig. 8) emphasising their random nature.
Their Fourier power spectrum thus completely summa-
rizes the fluctuating pressure field and can be used to get
observational evidence for the presence of turbulent flows
which are characterized by a Kolmogorov/Oboukhov-like
spectrum.

Figure 12 shows the combined power spectrum of the
Coma cluster on scales between 40 and 90 kpc. A scale-



10 Schuecker et al.: Turbulence

Fig. 12. Comparison of model predictions (dashed lines) with
the observed projected shot-noise-subtracted power spectral
densities (dots with 1σ error bars) as obtained for the 20 ×

20 arcsec2 and 40 × 40 arcsec2 grids.

invariant range of the spectrum is indicated and suggests
the detection of an inertial range of a turbulent ICM.
Theoretical three-dimensional power spectra,

P3D(k) = 2π2 k−2 E3D(k) = 2π2 CP ǫ4/3 kn−2 (14)

= 2 π2 C kn−2 , (15)

are transformed with Eq. (8) into their two-dimensional
counterparts (dashed lines in Fig. 12). From the compar-
ison of observed and theoretical spectra we see that on
scales between 40 and 60 kpc, the observed power spec-
trum has a slope between n = −7/3 and −5/3. This
slope corresponds to the spectral slope of the Fourier-
transformed Kolmogorov/Oboukhov structure function
(Eq. 2). On scales between 60 and 90 kpc the spectrum
bents towards smaller slopes between n = −5/3 and −1/3.
The normalization constants range from C = CPǫ4/3 =
0.0063 kpc−4/3 for n = −7/3, to C = 0.470 kpc2/3 for
n = −1/3.

The power spectrum (Figs. 10) allows a first estimation
of the location of the characteristic scale where the spec-
trum sharply drops towards larger scales. This scale is at
approximately λi ≈ 100 kpc (Fig. 10) and should be re-
garded as a lower limit because of possible contaminations
by the global cluster profile. This scale should also roughly
correspond to the injection scale (e.g., Lesieur 1997), and
it is similar to estimates for the impact parameter of merg-
ing clusters based on kinematics and tidal torque-based
arguments (e.g., Sarazin 2002).

The integral of the power spectrum (Eq. 10) is ex-
pected to give important information about the energy de-
posited in turbulent motion. For the scale range between
40 and 90 kpc, the slope and amplitude parameters de-
rived above yield relative contributions of the turbulence
pressure to the thermal pressure between 7.4 percent for

Fig. 13. Contribution of the turbulent pressure to the to-
tal thermal pressure (contour lines of equal percentage) for
a Kolmogorov/Oboukhov spectrum with the slope n = −7/3
and the amplitude C = CPǫ4/3 = 0.0063 kpc−4/3. The power
spectrum is integrated between the injection and the dissipa-
tion scale.

n = −7/3, and 6.6 percent for n = −1/3. The largest pos-
sible contributions are obtained with the n = −7/3 spec-
trum. Therefore, we computed for this spectrum the rela-
tive contribution for different minimum scales, i.e., lower
integration limits of the inertial range (dissipation scale),
and maximum scales, i.e., upper integration limits (injec-
tion scale).

Figure 13 shows that for a fixed turbulence spectrum
the relative contribution is mainly determined by the value
of the injection scale λi. We do not see any turbulent ed-
dies of the size of the core radius of 420pc in Fig. 4 which
could have errorsously been subtracted by the Fourier low-
pass filter – although they still might be present, but are
difficult to discriminate from the global cluster profile.
Therefore, the relative contribution of the turbulent pres-
sure to the thermal pressure should be smaller than 25
percent. If we take the indication for a turnover in the
power spectrum shown in Fig. 10 at λi = 100 kpc as the
injection scale, then we would get a lower limit of about 10
percent. The simulations of Norman & Bryan (1999) sug-
gest an additional support by turbulent pressure of about
20 percent, averaged over the cluster (5 to 35 percent be-
tween core and virial radius), which is apparently of the
same order as the present observational limit. However,
further study is definitively required in order to establish
how the observational quantities relate to the simulation
results.

For the observed turbulent ICM we can now esti-
mate the kinematic viscosity by assuming that magnetic
fields have a negligible effect (see below). For a turbu-
lent flow the Reynolds number of the global fluid ℜ mea-
sured at the injection scale λi, and the Reynolds number
ℜd measured at the dissipation scale λd are related by
ℜ/ℜd = (λi/λd)4/3. The power spectra do not show any
tendency to decrease at λ = 30kpc (Fig. 9). Therefore, λd
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is smaller than 30 kpc. In the following we assume a fidu-
cial value of λd = 10kpc. The turbulent flow in the central
region of Coma can thus be characterized by ℜ/ℜd > 20.
Reynolds numbers at dissipation scales are expected to be
above unity so that ℜ will have values in excess of 20.
Although this estimate is rather conservative, this is the
best that is obtained by direct observations at the mo-
ment.

For the viscosity we further need the velocity at the in-
jection scale. This number can be obtained from hydrody-
namical simulations (Miniati et al., in preparation), which
typically give for an 8 keV cluster a dispersion turbulent
velocity of vλi

= 250 kms−1 on scales of λi ≈ 100kpc. This
provides a quite reliable upper limit on the kinematic vis-
cosity of

ν < 3·1029

( vλi

250 kms−1

)

(

λi

100 kpc

) ( ℜ
20

)

−1 [

cm2

s

]

.(16)

Note that the coherence lengths of magnetic fields in the
cores of galaxy clusters as obtained from Faraday Rotation
measurements are about 5-10kpc (e.g., Taylor & Perley
1993) and thus below the scale range covered by the
present data. Therefore, we regard the upper limit (Eq. 16)
as not significantly affected by magnetic fields.

Fabian et al. (2003, see also Reynolds et al. 2004) as-
sume a laminar flow of the ICM around the radio galaxy
NGC 1275 with vλ = 700 kms−1 in the centre of the
Perseus cluster on λ = 14 kpc scales. From the laminar
appearance of the filaments they assume that the effec-
tive Reynolds number is less that 1000 so that they esti-

mate the lower limit ν > 4 · 1027[ cm
2

s ]. The upper limit
obtained from a turbulent regime and the lower limit ob-
tained from a laminar regime can be used to estimate the
range 10–30kpc where the transition from a turbulent to
a laminar flow could occur. This corresponds to a dissi-
pation scale of the ICM in the same range. A remark of
caution is, however, necessary here, because we compare
two different situations (merger driven turbulence versus
AGN driven turbulence, and a bulk ICM in Coma versus
a condensed warm HII-gas in the NGC 1275 halo) and it
is not fully clear in how far they are comparable.

Shibata et al. (2001) determined the 2-point angular
correlation function of hardness ratios as a measure of
the temperature fluctuations detected with ASCA over an
area of 19 square degrees in the Virgo cluster. A significant
excess of the correlation amplitude is found at 300kpc.
They interpreted the random temperature fluctuations in
Virgo-North as local heating of infalling galaxy groups.

Future investigations should measure the pressure
spectrum of the Coma cluster more accurately down to
5 kpc so that the combination with the present measure-
ments would give information about the ICM in the Coma
cluster from 5–2800kpc. This could give us tight con-
straints on the type of gas turbulence, its energy content,
the importance of magnetic fields, and on the viscosity of
the ICM.
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