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ABSTRACT

A large survey of two-component, spherically symmetric, collisionless, self-consistent models is carried out
with the aim of studying elliptical galaxies embedded in massive dark halos. Although many factors and
options are explored in quantitative detail, the main focus is on a family of models where the luminous com-
ponent is mostly isotropic inside the half-light radius and the dark component is slightly warmer (and nor-
mally more diffuse) than the luminous component, consistent with the picture that ellipticals were generically
formed as a result of collisionless collapse (or merging) in the presence of cold/warm dark matter. The con-
straints imposed by self-consistency are found to be quite complex, but a few important features (such as
limits on the amount of dark matter inside the half-light radius in terms of observed quantities and a charac-
terization of the physical parameter space) are clarified by a proper use of the Jeans equations and of the
virial theorem. In spite of the variety of kinematical profiles realized in our self-consistent models, we note a
natural “conspiracy” to support realistic photometries, that is, luminosity profiles consistent with the R/
law. Within our main family of models, we develop the concept of “minimum-halo models” as a way to fit a
given set of data by minimizing the request of dark matter. This paper, where many of the results are illus-
trated in terms of projected quantities for a direct application to observed objects, forms the theoretical basis
for a systematic study of photometric and kinematical properties of elliptical galaxies that may give quantita-
tive estimates on the amount of dark matter present in these systems.

Subject headings: dark matter — galaxies: elliptical and lenticular, cD — galaxies: fundamental parameters —
galaxies: kinematics and dynamics

1. INTRODUCTION

Dynamical evidence for the presence of dark matter in gal-
axies is usually claimed when models with stellar components
characterized by constant mass-to-light ratios prove inade-
quate when confronted with observations. The possibility of
radial gradients in the M/L ratios for the stellar components is
generally discarded especially because large color gradients are
not observed (Peletier et al. 1990; Franx & Illingworth 1990).
For spiral galaxies this point of view leads to the construction
of “maximum-disk models” (see van Albada & Sancisi 1986);
in general, significant amounts of dark matter are required
only when the models are confronted with H 1 data well
beyond the optical disk, as in the clear case of NGC 3198 (van
Albada et al. 1985).

For elliptical galaxies the situation is less clear (see Sarazin
1987; Sancisi & van Albada 1987). Although one-component
stellar dynamical models so far appear to provide a good
zeroth-order description of current data (see, e.g., Bertin,
Saglia, & Stiavelli 1988; van der Marel, Binney, & Davies
1990; Binney, Davies, & Illingworth 1990; Efstathiou, Ellis, &
Carter 1982), the kinematical data considered for these galaxies
are mostly restricted to the region inside the half-light radius.
Indeed, nonstellar kinematic indicators that are sometimes
available on a larger scale (such as X-rays or H 1; see Forman
et al. 1979; Fabricant, Lecar, & Gorenstein 1980; Canizares,
Fabbiano, & Trinchieri 1987; Raimond et al. 1981; van
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Gorkom et al. 1986; Schweizer, van Gorkom, & Seitzer 1989;
Lees, van Gorkom, & Knapp 1990) tend to favor the view that
dark matter is present also in ellipticals. In particular, some
cases of flat H 1 rotation curves have been found, raising the
interesting possibility of a “kinematic conspiracy ” similar to
that found in spiral galaxies.

This brief discussion gives the primary motivation for this
paper, that is, the construction of self-consistent two-
component models of elliptical galaxies where one component
is supposed to represent the stars and the other the dark
matter. The theoretical issue addressed here in great detail is
the role of self-consistency in constraining the properties of the
models. Note that because of the Gauss theorem, we expect the
distribution of dark matter, if diffuse, to suffer more from the
influence of luminous matter than vice versa. On the other
hand, if we are going to invoke the presence of dark matter
based on some kinematical signatures on the stellar com-
ponent, such as a relatively flat velocity dispersion profile (see
Saglia, Bertin, & Stiavelli 1992, hereafter Paper II), we should
consider the possibility that dark matter may be present in
significant amounts inside the half-light radius and thus affect
the distribution of the stellar component. Therefore, it is not
clear why the luminosity profile should always conform to the
universal R'* law (de Vaucouleurs 1948, 1953) rather than
being distorted depending on the amount of dark matter
present; this seems to be a kind of “ photometric conspiracy”
operating if elliptical galaxies do indeed contain dark matter
(Bertin, Saglia, & Stiavelli 1989). In fact, it is somewhat of a
miracle that the realization and survival of the R'* profile
happen to occur for a large subset of the parameter space
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defining our simple but fully self-consistent models (see espe-
cially following § 5).

There are two possibilities for distributing dark matter dif-
ferently from the luminous component. One way is to consider
dark halos with a different shape (see the extreme case of spiral
galaxies where dark matter is thought to have a spheroidal
distribution in contrast with the stellar disk); the other is to
have a distribution with a different radial scale length (in partic-
ular a larger scale length). Although the first possibility raises
many interesting questions, in this paper we shall address only
the second aspect which can be tackled adequately already in
the simplified context of spherical models.

The paper is organized in the following way. First we choose
a form for the distribution function describing both com-
ponents and justify the merits and limitations of our choice
(§ 2). Then we discuss the properties of the large parameter
space that characterizes the family of models of main interest
(§ 3) and present our survey of models which leads to the con-
struction of a “data base” of 2939 fully self-consistent models
within the main family (§ 4); we illustrate the intrinsic and
observable properties of the models found. In § 5, we develop
the concept of minimum-halo models, derive a few simple
expressions that relate the amount of dark matter inside the
half-light radius to the observed stellar velocity dispersion
profile, and discuss the properties of models with good lumi-
nosity profiles (“photometric conspiracy”) in the physical
parameter space. In Appendix A some of the adopted numeri-
cal techniques are briefly outlined with reference to the numeri-
cal accuracy that has been obtained, and to the completeness
of the survey. Appendix B is devoted to an exploration of some
issues that are beyond the main goal of this article, that is,
rotation and properties of some models that are outside the
main survey.

2. CHOICE OF THE DISTRIBUTION FUNCTION FOR THE
TWO COMPONENTS

With the aim of studying the effects on the observable quan-
tities of the introduction of a dark component in an equi-
librium model of elliptical galaxy, we have constructed a family
of fully self-consistent two-component models. In the physical
picture where the two components are both collisionless and
have undergone similar dynamical processes during galaxy for-
mation starting from different initial conditions, we should
consider two distribution functions (that may be taken to be of
the same form, but to imply different scale lengths and masses
for the dark and the luminous component), keeping in mind
the empirical constraint that the luminous component should
follow the R'/* law. In addition, given the little evidence avail-
able so far for the presence of dark matter inside elliptical
galaxies, we would like to explore a range of models where the
dark component is progressively “turned on” over a well-
justified reference model with no dark matter. One such refer-
ence case is that of the f-models (Bertin & Stiavelli 1984),
which we have found to possess interesting properties in rela-
tion to the statistical mechanics of galaxy formation (Stiavelli
& Bertin 1987) and to the detailed fit of observed galaxies (see
Bertin et al. 1988). It should be noted that this approach is
preferred over the simpler scheme of embedding a specified
model for the luminous component in a “frozen” spherical
halo since it enables one to investigate the problem of
“photometric conspiracy” and to consider models where the
two components have comparable masses (within the region
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where stellar kinematics indicators can be measured) and are
thus expected to heavily influence each other.

Therefore, we start out with a family of two-component
spherical models where each component is described by a dis-
tribution function of the f, -form:

fo = A(—E)*? exp [—a E —c, J?/2], o)
fo=Ap(—E)*? exp [—apE — ¢, J?2], v

where E = v%/2 + @ is the specific energy and J? = r?v2 is the
specific angular momentum. The distribution functions f; and
fp are taken to vanish for E > 0. With this choice, we can
imagine varying the “ temperature,” the amount, and the radial
scale of the dark matter by changing the ratios ap/a;, Ap/A;,
and cp/c;.

An extensive survey is required to study how the physical
properties of the models are constrained by self-consistency,
which is imposed by the Poisson equation for the gravitational
potential ® shared by the two components. '

This is a survey of models with four free parameters. We
start with seven dimensional parameters a;, ap, c¢;, ¢p, A, Ap,
and the value of the central gravitational potential ®(0). Two of
these can be fixed by choosing the scale length and the total
mass of the model. A third parameter can be eliminated by
solving the Poisson equation under the appropriate boundary
conditions. A convenient choice of dimensionless parameters is
ap/ay, cp/cy, Ap/AL, ¥ = —a; ®(0), which are taken to be posi-
tive. We discuss their physical meaning in the next section.

Taking into account the existence of “conjugate” models,
that is, those that are obtained by exchanging the luminous
with the dark component, for a complete survey of solutions it
is sufficient to take ap/a; < 1. Models with ap/a; =1 and
cp/c;, = 1, or models with either 4; or A;, equal to zero are all
equivalent to the reference one-component f, -models. Here we
do not survey models with ¥ < 0 or a; < 0 because they are
expected to be dynamically unstable. (In fact, models with
“negative temperature” [Merritt, Tremaine, & Johnstone
1989] are characterized by a very high degree of radial aniso-
tropy which makes them violently unstable even in the pre-
sence of a halo [Stiavelli & Sparke 1991].) )

We should stress that the models considered in this paper
while allowing for some variations in the distribution of stellar
orbits, do not have arbitrary “pressure” profiles for the two
components; in particular, they are all isotropic in the central
parts and dominated by radial orbits in the outer regions. This
choice of focus, which excludes many other options, such as
models dominated by circular orbits, is made on purpose
because we would like to study models consistent with the
most widely accepted ideas on galaxy formation, that is, dissi-
pationless collapse (van Albada 1982) and merging (see, e.g.,
Barnes 1989). On the other hand, the detailed analytical form of
distribution function for the models selected by the physical
picture that we adopt is by no means unique (Bertin & Stiavelli
1989). Thus, in order to test the generality of our approach we
have also considered in some detail models described by other
distribution functions that also incorporate the essential fea-
tures of collisionless collapse (Stiavelli & Bertin 1987, equation
9). Some of these models will be used in Paper II to test our
luminous-dark decomposition on “simulated observations.”

In conclusion, we do not claim full completeness of analysis
in our investigation of two-component models, but only physi-
cal plausibility and sufficient generality of the models that we
focus on. This paper will then provide the theoretical basis for
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one way of modeling elliptical galaxies and measuring M/L
ratios as illustrated in the following Paper II.

3. THE PARAMETER SPACE FOR THE (f, + f.,) MODELS
AND ITS PHYSICAL MEANING

The dimensionless parameters ap/a;, cp/cy, Ap/AL, and ¥
are directly related to the physical properties of the model. We
define 6,(r), G.(r), and &(r) = /(G2 + 62)/3 as the radial,
tangential, and unprojected (average over the spatial
directions) velocity dispersion, respectively, and o(R) as the
velocity dispersion of a given component projected along the
line of sight at projected distance R from the center.

For high values of ¥ (¥ > 1, ¥ > a,/a,) we obtain the fol-
lowing relations for the central velocity dispersion and density

ratios:
50 (ap\"?
&D(0)~<aL> : ¢
PO A [ap)*? ap
po(0)~ Ay (a) exp Ml_a)]' @

Note that for 0.25 < ap/a; < 1, which is the range considered
in the survey of models described in the next section, we have
ap(0) < 1.756,(0). In a hot dark matter scenario, the dark com-
ponent should have a velocity dispersion much higher than
that of the luminous component. Thus, a very low value of
ap/a; is needed to produce an (f,, + f,)-model with this pro-
perty. In contrast, models with ap/a; <1 have a 6,(0)/a(0)
ratio similar to what we can expect in a cold or warm dark
matter scenario.

The value of cp/c, fixes the ratio r,;/r,, of the anisotropy
radii of the luminous and of the dark components. The aniso-
tropy radius r, is defined as the location where the anisotropy
parameter ofr) = 2 — 62(r)/G2(r) equals unity (cf. van Albada
1982). In contrast with the estimates given by equations (3)4),
the relation between cj/c, and the ratio r,; /r,,, depends on the
global properties of the self-consistent solutions. On the basis
of the survey of the (f, + f..) models to be described in the
next section, we find that a very good power-law fit for the
anisotropy ratio r,;/r,p is given by the relation:

0.8
L'y 1.1(5’—’> . )

TaD CL

Once the Poisson equation has been solved, all the physical
properties of the models can be derived; a synthetic description
of the global features of these models can be given in terms of a
few physical parameters in addition to r,; /r,p, such as:

1. The ratio r./r, of the half-mass radii of the two com-
ponents.

2. The ratio M;/M/, of the total masses of the two com-
ponents.

3. The flatness parameter of the (unprojected) velocity dis-
persion profile of the luminous component ,(3r.)/a(0).

4. The flatness parameters of the circular velocity profile
V(3rL)/Vuax» Where V(r) = ./r(d®/dr) measures the gravita-
tional force field of the model with maximum value V,,,,.

5. The “luminosity ” parameter:

2 & |:PL(") — PJ(")]Z/ 6
Xio = r=§;1o pi(r) N ©

which we introduce in order to measure the departures from
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the R'* law of the density of the luminous component. In
equation (6) N is the number of points considered, and for
simplicity the density consistent with the R** profile is approx-
imated by means of the function p; (Jaffe 1983), scaled to have
the same half-mass radius and the same density at such radius.

4. A SURVEY OF (f, +f.) MODELS

We have solved the Poisson equation numerically under the
natural boundary conditions (see Saglia 1990), using the algo-
rithms described in Appendix A, for 10,000 values of the
parameters ap/a;, cp/cy, Ap/AL, ¥. For a given set of dimen-
sional parameters ay, a;, Ap, A;, ¥/a;, and cp, our code com-
putes a value of ¢, (if it exists) which produces an equilibrium
model satisfying the virial theorem with a given accuracy
(11 =2K/|W|| < 10™%).

The explored region of the parameter space is defined as
follows. Twenty different values of ¢, and A, (30 < ¢p, < 600,
1 < Ap < 39) and five different values of a, and ¥ (0.5 < g, <
1.5, 8 < ¥ < 24), all uniformly spaced, have been considered,
setting our units so that A, = 1, a; = 2 and the gravitational
constant G = 1/4rn. The adopted grid covers a wide region of
the allowed parameter space, with central density ratio
p1(0)/p p(0) ranging from 10~ ! to 10. In particular, high values
of ¥ have been focused on, since the luminous component of
the (f, + f,,) models follows the R*/* law only if it is sufficiently
centrally concentrated.

4.1. The Set of Accepted Solutions: “ Normal” and “ Reverse”
Models

Out of the 10,000 models calculated, only 2939 solutions
were accepted. In the remaining cases, the numerical routines
either did not converge or led to solutions that were judged to
be inaccurate.

We define as normal, models with r;/r, < 1, and as reverse,
models with r/r, > 1. A normal model with parameters ap/a;,
¢p/er, Ap/AL, and ¥ is “conjugate” to the reverse model with
parameters a,/a,, ¢;/cp, A;/Ap, and Wap/a,. We found 852
normal models and 2087 reverse models. Normal models are
interesting for the description of elliptical galaxies with dark
matter, since they possess a highly concentrated luminous
component and a more diffuse dark halo. Reverse models have
in general a dark component with small or insignificant mass.
Thus, in their observable properties they are very similar to the
one-component f, -models with the same value of W.

Some properties of the equilibrium models can be described
by the following interpolation formulae:

r_L < 1‘6<_C—_D>0.45<a_2>0.8<@)-0.3 ’ (7)
'p ‘L ap AL

0.3 -0.2 -0.8
My o qg(C2) (42 Ap) ®)
M, cL a A

These formulae hold essentially for all values of W for the
normal models of our survey, although with a larger scatter
with respect to relation (5).

The 2939 accepted models described above cover a wide
region of the physical parameter space. The r /r, — M /Mp
plane is covered almost uniformly, except that models with low
r./rp ratios have only low M;/M, values. It is possible to
construct models with a less massive and more diffuse dark
component by choosing lower values of the parameter ap/ar
(ap/a; < 0.25). In Figure 1 we illustrate the range of properties
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FiG. 1.—*Luminosity parameter ” is plotted vs. some key mass and kinematical quantities for the two-component normal models

probed by our family of models for other physical parameters
as a function of the value of the y%, parameter. From these
plots it follows that we have constructed a set of models with a
luminous component following the RY/* law (log y%, < —1)
and with a large spread in the dark mass content and in the
mass distribution. From the same plots it follows that a wide
class of velocity dispersion profiles has been obtained, from the
steeply declining case [o,(3r.)/5.(0) = 0.3], to the nearly flat
behavior [6,(3r.)/6.(0) = 0.7]. Finally, these models show
quite a variety of circular velocity profiles. In conclusion, our
set of two-component models can describe elliptical galaxies
with a moderately massive and diffuse dark halo with slowly
declining velocity dispersion profiles and nearly flat circular
velocity profiles.

4.2. Three Representative Classes of Two-Component Models

The models that we have constructed can be roughly
grouped in three classes on the basis of the relative importance
and distribution of their luminous and dark components.
These classes are well illustrated by three representative
models (N = 402, 1857, and 9382; see Fig. 2).

The reverse model N =402 (¥ = 12,a, =0.5, Ap = 1,¢cp =
150, ¢, = 10) has a small amount of dark matter (M /M, =
8.5) and thus is very similar to the one-component ¥ = 12
model. The densities of the luminous and dark components
decrease as r~* in the outer regions (r > ry, r, = 0.41, r frp =
1.4), while for 107 3r, <r <r, we have p, ~r~2, pp ~r 11,
In the very central regions (r < 10~ 3r,) there is a flat core. The
model has a Keplerian circular velocity profile. Models with a
low content of dark matter (in particular, most of the reverse
models) show similar properties.

The model N = 1857 (¥ = 12, ap, = 0.5, A, = 23, ¢, = 560,

¢y = 353.7) has a larger fraction of dark matter (M, /M, =
0.27), but the dark halo becomes dominant only in the outer
regions (r > ry, r, = 0.026, ry/r, = 0.29). For 0.04 r, <7 <71,
we find p, ~r~2, pp ~r~'1, while for r > r;, p; ~r~* and
finally for r > rp, pp ~ r~* also. The circular velocity profile
has a central peak due to concentration of the luminous com-
ponent; it stays flat in the region 0.3r, < r < 1.6r; and begins
to decrease at greater radii. Notice how the flat part of the
circular velocity profile is produced by the combination of the
declining contribution of the luminous component and the
rising curve caused by the dark halo.

The model N = 9382 (¥ = 12, ap, = 1.5, A, = 33, ¢, = 420,
¢y = 1336, r, =0.022, r /r, =029) is dominated by dark
matter (M /Mp = 0.03). In the region 5 x 10 3r, <r <r, we
find p, ~r~%7, p;, ~ r~2, while in the outer regions p, ~ r ™%,
pp ~ 1~ * Outside the inner peak, the circular velocity profile is
monotonically decreasing.

Since the transition among these classes of models is
smooth, we can identify systems with intermediate features.
Models, some of which reverse, with a conspicuous amount of
dark matter inside R, belong to these intermediate categories.

4.3. Projections along the Line of Sight

In order to compare theoretical models with observations
(as will be done in Paper II), it is necessary to project the
relevant physical properties of the models. We have computed
the surface density (normalized to the densities at R = R,) and
the velocity dispersion profile projected along the line of sight
for the luminous and dark component of all the models that we
have determined.

For each normal model we have computed the parameter x2
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FiG. 2—Upper row: volume densities of the luminous and of the dark components for three representative models (see discussion in § 4.2). Bottom row: circular
velocity profile for the same models separated into the contribution of the luminous and of the dark components. Here the radial distance is normalized to the
half-mass radius of the luminous component. All velocities are given in model units.

as a direct measure of the departures from the R** law: is the corresponding magnitude of the R/* law and N is the
3R, number of points considered in the sum. A reasonable corre-
2= Y [u(R) — py (RPN, ) lation is found between x2 and x3,.
R=Re/10 In Figure 3 we show the position of the normal, mini-
where p;, = —2.5 log X(R) is the surface density of the lumi- mum-halo (see following § 5) models with x}, <0.01 on

nous component of the model expressed in magnitudes, £, ,4(R) the planes M,;/M,— M;/[R,c}0)/G] and M,/M,— (M,

4 T[T ITT 7T 10 T[T TTIT T
! I i
L 2 | -
"~ x%,0<0.01 % ]
B | _ glE |
. S :
—~ - — > —f*;, —
sk 1 SR
— *}#++£+ e o2 6'_;,* ]
2 T e e L e 5, IREAY |
eI < R I S :
v o+ R + T ~ I~ o+t ]
Ef‘/ __+*++ — /_a 4_1»##4;“‘ —_—
™~ L. | = e
2 1_ | t L N +*+ #‘»_
_: | =2 o _
O_u|||||||||n||||||1l L 0 cch bbb
0O 1 2 3 4 b5 0 1 2 3 4 5
M./ Mp M/ Mp

FiG. 3.—Correlations between M;/M,, and the quantities M,/[R,0}(0)/G] (left frame) and (M, + Mp)/[R, 62(0)/G] (right frame) for normal, minimum-halo
models with y2, < 0.01. The quantity R, 67(0)/G clearly underestimates the total mass of the model if M, /M, < L.5.
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+ Mp)/[R,6}0)/G]. These plots show that the quantity
2R, 0%(0)/G, often used to estimate the mass of elliptical gal-
axies, can give the luminous mass of the objects with ~50%
accuracy, but strongly underestimates their total mass, if a
massive (M /M < 1.5) dark component is present.

5. MINIMUM-HALO MODELS

There are two obvious limiting cases where significant
amounts of dark matter are expected to coexist with the stellar
component without distorting the observed luminosity profile.
The first possibility is that the dark component is distributed
exactly as the luminous component. In this case, only the high
value of the derived (constant) M/L ratio may suggest that
dark matter is present.

The second and more interesting possibility is to assume
that dark matter is diffuse (i.., 7p > r;), with a central density
much smaller than that of the luminous component. In this
case, the “dark ” contribution to the potential becomes impor-
tant only in the external regions of the galaxy, and the density
distribution of the dark halo is different from that of the stellar
component of the galaxy (see, e.g., the model N = 1857
described in § 4.2). Here the M/L ratio is an increasing function
of radius. ~
_ To_be more specific, given a two-component model f=
f1. + fp in the self-consistent potential, it is always possible to
construct models with the same observables (projected lumi-
nosity profile, projected velocity dispersion profile, and circu-
lar velocity) but with different amounts of dark matter. For this
purpose, it is sufficient to decrease the (M/L) ratio of the stellar
component by “moving” part of the mass from the luminous
to the dark component:

f=fi+fo=M +fo+0—-Af], witho<i<l. (10

This shows that if we find a model f=f; + f, that gives a
reasonable fit to the data, we can always refer to a model that
equally fits the data but has a larger amount of “ dark ” matter.
A few of these models may happen to be well approximated by
models of our class, that is, they may have f}, approximated by
an f, function.

We note that moving in the opposite direction, that is, that
of increasing the amount of luminous matter while keeping the
same observable profiles is not always possible. If one con-
siders the symmetric procedure defined by exchanging L and D
in equation (10), the observable profiles are likely to be
changed because we now have f; =f, + (1 — 4)fp. On the
other hand, if one considers A > 1 in equation (10), for suffi-
ciently large values of 1 the function f}, becomes negative and
therefore unphysical. On this basis we may define the
minimum_halo solution for a given object fitted by a model
with f=f; +f), as that obtained from equation (10) with
the largest 41 >1 and f, positive everywhere. For our
(f» +f,)-models with a; > apand ¢, > ¢, we have

A
'lmax= 1 +_Dexp|:_(1 _@>"Pj| (11)
AL a

For the models with ¢; < ¢p, A = 1. The numerical survey
has explored models with 4., < 6. Models with high ¥, low
ap/ay, or low Ap/A,; values have 4 =~ 1 and consequently have
a minimum halo.

Such a minimum halo solution may or may not belong to
the class of models investigated in our survey. In any case one
should check that the new function 1}, does not show peculiar
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features that would not be reasonably associated with one
“homogeneous ” component.

5.1. Limits on the Amount of Dark Matter Inside R,

For a class of models for which the luminous component
follows the R** law and the dark component has a diffuse
distribution, we can derive a useful relation between the veloc-
ity dispersion profile and the amount of dark matter as a func-
tion of radius. In fact, the Jeans equation for the luminous
component, under the assumption that the dark component is
insignificant at small radii, requires that the central velocity
dispersion ¢,(0) be related to the total mass M, and to the
half-mass radius r, according to the relation

GM,
53(0) = 2—1:1 . (12

For an R'* law density profile the density gradient and the
cumulative mass profile M,(r) are also determined. Then the
2rp+2r) «

Jeans equation requires
1 dIna?
GM(r) = 3rg% | = 2——= — ~ — - L, 13
® ""L[ 3r,+7) 3 3 dinr ] (13
where M(r) = M,(r) + Mp(r) and 6% = <v?);. For an R'*
profile we have r, ~ 1.32R, (where R, is the radius enclosing
half of the projected mass), so that M;(R,) =~ 0.43M,. Thus:

M D(Re) &rL(Re) ( d lIl &3L>
~25 1—035¢—035—2) _ 1. (14
MR, 52.(0) * dinr (14

For many of the models of our survey for r < R, we have
a=x0, ding%/dlnr ~ —0.5, and the value of G%(R,)/5%(0)
exceeds by 15% the value of o%(R,)/c?(0) for the projected
quantities. On this basis we can argue the following estimate:

M D(Re) ~ ai(Re) _
MyR) "7 0

1, (15)

which now relates the amount of dark matter present inside R,
to the directly observable velocity dispersion profile. Here ¢,(0)
denotes the velocity dispersion in the vicinity of the center
excluding any peculiarities that may be associated with the
nucleus. Equation (15) has been derived without assuming any
specific form for the distribution functions of the luminous and
of the dark components. The only requirements are that the
stellar velocity distribution is essentially isotropic in the inner
part of the galaxy and that the luminous density follows the
RY* law. Under these hypotheses, a flat velocity dispersion
profile traces the presence of a massive dark halo. Note that
this estimate of M, is conservative with respect to the presence
of finite rotation of the system, in the sense that, for given
observed values of ¢,(R,) and ¢,(0), if the object is slightly
rotating in the way often observed in ellipticals, then the rela-
tion underestimates the (M /M), ratio.

In Figure 4 we show the properties of the normal models of
our survey with a projected luminous density that follows with
good accuracy the RY* law (y?, <0.01) in the plane
0}(R,)/o1(0) M p/M)g, Models falling on the relation gener-
ally have a diffuse dark component (r, > r;) with a central
density pp(0) much smaller than that of the luminous com-
ponent. Models with (M /M, )z, much larger than predicted by
equation (15) have instead p;(0) =~ 1 — 8p,(0) and r, < 5r;.
In the central parts of these models the luminous and
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F1G. 4—Crosses show the normal two-component models with a projected
luminosity that follows the RY/* law with a prescribed accuracy (x3, < 0.01).
The line showing the prediction of eq. (15) is close to the boundary of minimum
halo models.

dark density profiles are very close to each other. They have
J.. > 1 and, consequently, following the definition given in

‘max

§ 5, they are not “ minimum halo ” models.
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5.2. The(r /rp, M /M) Plane

In order to better characterize the properties of the models
of our survey for which the luminous component follows the
RY/*law we can refer to the virial relation:

2K+ W, + Wp=0, 16

where K represents the total kinetic energy of the luminous
component and

© GM?
W, = _41-5GL rp (MM (r)dr = —q, " £, 17
L
© GM, M, .
W= —4nG f rpL)Mp(r)dr = — ——=—2 Wy, , (18)
0 L

represent the gravitational energy terms. The no dark matter
case is characterized by W, = 0, q; = 1. Since the dark com-
ponent corresponds to a low-¥ model (if a < a;), we may
argue that its mass distribution is reasonably represented by a
density of the form p, oc (r3 + %)~ 2, with ry & 0.45r,. Then we
can estimate the interaction term W, with the following inter-
polation for the interaction integral :

1
Win~ - 2 [1 + 1.37<r—L>] . (19)
Trp p

For the class of models that preserve the R'* law, W, is
practically unchanged with g, ~ %, while the presence of the
interaction term W, is balanced by an increase in the kinetic

1 7 I L L L B g
8 x"0<0001 3
g °F ) -
R C * ]
= 4 f? -
2k —
ok .
0 2 1
r./rp

8 L
S el |
5 L _
> | _
o B i
o 41— |
IS L . -
— ﬂ —
2_1 T B R B

0 2 4

FI1G. 5—Position in the (r /rp,, M;/M,) plane of the two-component models with a projected luminosity that follows the R'* law with prescribed accuracy
2, < 0.1,0.01,0.001: upper left, bottom left, and upper right, respectively). The line shows the constraint given by eq. (21) argued on the basis of the virial theorem. In
the bottom right frame we show the correlation between the difference AM /My, = M /M, — (M /M )., where (M /M p),;. is given by the right-hand side of eq. (21),
and the flatness parameter of the velocity dispersion profile, for normal models with 3, < 0.01. Note that models with low AM /M, values have flatter velocity

dispersion profiles.
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energy content K; (see also relation [15]). If we set as an upper
limit for K, the value (3/2)M, 52,(0) that would hold for a flat
dispersion profile, we obtain the following inequality

1GM} GM M, . 3 GM?
2K; = 2 + . Wip < 2 (20)
that is,
M, 1r rL
—>—=|1+137N—=)]. 1
M, > 2w, [ + 37<rD 21

Therefore in the (r/rp, M /Mp) plane, models following the
R'* law are expected to fall above a parabola, and those
models that are close to it are expected to have the flattest
velocity dispersion profile (see Fig. 5). The empty region in the
upper left part of the plane can be interpreted partly by the
limited region of parameter space explored and partly by the
fact that those models would have a large interaction term of
the luminous on the dark component (| Wy, |2 |W,|). It
appears that taking | Wy, | < | W), | goes in the direction of iden-
tifying a narrow strip of models that are best fitted by the R/4
law (i.e., x3, < 0.001; see Fig. 5, upper right frame).

6. CONCLUSIONS

A detailed analysis of the properties of a family of self-
consistent, spherical, two-component models of elliptical gal-
axies has shown that a large set of models exists characterized
by the presence of a sizeable amount of dark matter, photo-
metric profiles well-fitted by the R'/* law, and circular velocity
and velocity dispersion profiles both fairly flat and featureless.

The distribution function on which the models are based
had been shown previously to produce one-component models
with the RY* law as a built-in property (Stiavelli & Bertin
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1985). This property is found to be preserved even when the
presence of a massive halo is included self-consistently. Both
the photometric and the kinematic “conspiracies,” neither of
which has been imposed a priori, seem to be a natural conse-
quence especially when dark matter has a distribution more
diffuse than that of the stellar component.

The present study is mostly based on dynamical arguments
on the properties of equilibrium configurations. It remains to
be investigated how such equilibria can be obtained as the end
product of galaxy formation processes. This line of research is
being pursued with the device of N-body simulations.

The models are characterized by a wide range in the ratios of
scale lengths and masses, so that their application to the mod-
eling of elliptical galaxies seems to be justified. The major
application is to galaxies with dark matter. By fitting the
models to observed photometric and kinematical profiles of
individual galaxies it is possible to set constraints on the pre-
sence and extent of dark halos in these objects. Paper II is
devoted to such application. '

However, other applications of this approach are possible.
The two components may in fact be taken to represent the
stellar component and the system of globular clusters in a giant
elliptical galaxy, or, alternatively, two different stellar popu-
lations in a galaxy with color and metallicity gradients, or,
possibly, two distinct stellar populations to represent the
observed properties of cD galaxies. Of course for these new
cases, the choice of the relevant distribution functions should
be carefully examined.

This work has been partially supported by MURST and
CNR of Italy. R. P. S. gratefully acknowledges ESO for the
hospitality extended to him while part of this work was carried
out.

APPENDIX A
NUMERICAL METHODS

The 2939 accepted two-component models described in the paper have been calculated on the VAX 8650 of the Scuola
Normale Superiore with a program extensively described by Saglia (1990), with each model identified by a progressive number
N =2000(,, — 1) + 100G, — 1) + 5(i4, — 1) + iy, Where i,, =1,2,...5,i,,=1,2,...20,i,,=1,2,...20,ig =1, 2, ... 5, and
aplizy) = 0.5 + 0.25(i,, — 1), cpli, ) = 300, Ap(i) =1+ 234, — 1), ¥ = 8 + 4(iy — 1).

The Poisson equation is solved by using an iterative shooting method with superlinear convergence. The adopted integration
scheme is a fourth-order Adams-Bashfort method (see Press et al. 1985) with a fourth-order Runge-Kutta scheme providing the
necessary initialization values. The moments of the distribution functions are computed by using an eight-point Gaussian inte-
grator.

The numerical accuracy of the code has been tested in several ways. Essentially identical results are found by solving the
differential equation with the Runge-Kutta method all the way through. Minor changes are observed when the integrations are
performed with 12- or 24-point Gaussian integrators. However, the eight-point integrator is probably inadequate for the calculation
of very low-density, low-a;, models. In addition, the radial grid used in the calculation has been found to be not sufficiently fine for
some of the models with higher central densities and higher ¥ values (i.c., ¥ = 24).

The algorithm, when applied to the one-component f,, sequence, is able to find correctly the unique value of ¢ associated with a
model of given ¥. The initial guess for ¢ can be varied considerably without affecting the final answer. When applied to the problem
of two-component models, the algorithm cannot recognize the possible presence of multiple solutions for c;. By considering a set of
parameters for which two solutions for ¢, were known to exist (a, = 1.5, ap, = 2, ¢;, = 0.1966, A; =9, Ap =1, ¥ = 9), we have
tested that the algorithm can determine one of the two solutions (c; = 240) only when the starting value ¢} is close to 240
(239 < ci, < 244). For other values of ¢ the algorithm always finds the second solution ¢; = 200.

For some models with ap/a;, = 0.5-0.68 the code finds solutions with very high values of ¢, (¢, = 108-10°). Since the f,,
distribution functions of equations (1) and (2) are set to zero for numerical reasons when the arguments of the exponential functions
are lower than — 60, these models are certainly inaccurate and have not been considered further in the analysis.
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Truncated solutions, with finite radial extent, are easily computed. They have not been considered in the paper since their
properties closely resemble those of the models of infinite extent whenever their truncation radius is large. On the other hand, they
are not well fitted by the R'/# law when their truncation radius is small.

APPENDIX B
SOME LIMITATIONS OF THE PRESENT SURVEY

A few questions that need to be addressed are related to the effect of adding new ingredients to the physical picture outlined in § 2.
An extensive study of these issues is beyond the scope of this paper. Here we report on the properties of some models outside the
main survey and on the effect of rotation.

Bl. A FEW MODELS OUTSIDE THE MAIN SURVEY

In order to complete our survey, we have also computed a few models with low values of a;, and a few others with aj, = a;.
Models with high-velocity dispersion for the dark component (i.e., small ap) are hard to explore extensively, since they require the
use of higher order Gaussian integrators, and consequently large amounts of CPU time. These models tend to have massive and
diffuse dark halos and are characterized by very flat circular velocity and velocity dispersion profiles.

Other models outside the main survey have a;, = a,. The interest in these lies in the fact that they represent the case where the
dark matter is coldest. The density distribution of the two components is similar for r < r, so that the mass-to-light ratio is
approximately constant at small radii. All the computed models have a massive dark component (M /M, < 1). The values of the
ratios r./rp, and M;/M, correlate (see egs. [7] and [8]), so that massive halos are also diffuse. Only models with r, = rj, or
r, < 0.1rp have x2, < 0.01, that is, a good R'/* luminosity profile. In their general properties, these models are found to resemble
those with ap/a;, = 0.75.

B2. INFLUENCE OF ROTATION

It is possible to construct (spherical) rotating analogues (Petrou 1983) of the models described so far, by using the distribution
function discussed in Stiavelli & Bertin (1985, eq. 5.1), and characterized by two additional parameters: B and Q. Parameter B

'8_|||||||1||||||_ ~8_|||||||||||s||_
< 0=0.25 N < ]
8> . - 6 -
- B"=0.0005 7] - .
>'_2 4_— . — :>‘: 4 - =
® - i © L ]
o _] o ]
01||1||1|||||11_ O_/'""l""ll"'
0 1 2 3 0 1 2 3
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CH B [T T T T T ]
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3 :/\“\?\\\\ ] °
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FIG. 6—Projected rotation curves (dotted long-dashed lines) and velocity dispersion profiles (short-dashed lines) are plotted for the model N = 1857R modified to
include rotation and four values of the parameters defining the rotation curve. The velocity dispersion profile of the nonrotating model (solid line) and the
unprojected rotation curve (long-dashed line) are also shown for comparison. Here the radial distance is normalized to the projected half-mass radius of the luminous
component. All velocities are given in model units. Note that the profiles are significantly affected by rotation and projection; in particular, sizeable differences can
occur between oy and o, and between V, and V,

rot*
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defines the shape of the (stellar) rotation curve, and Q(< 1) the amount of rotation. For the model N = 1857R modified to include
rotation, we have computed a few rotation curves for Q = 0.25, 0.3, 1.0 and for B> = 5 x 10™% and 0.01. These rotation curves are
shown in Figure 6 with their projections along a line of sight perpendicular to the rotation axis and with the associated projected
velocity dispersions. As is readily seen, models with fast rising rotation curves are characterized by a velocity dispersion profile more
peaked toward the center. For Q close to unity the effect can be quite strong, even when the observed V,,.,,/6,(0) is smaller than 0.5.

The influence of rotation on the observed kinematics depends on the specific form of the adopted distribution function. The term
o%(R,) in equation (15) should be replaced by 6Z(R,) + EV2(R,), with & < 1. In general, the measured mean velocity of the stars V,
would be smaller than the intrinsic unprojected rotation velocity V., because of the inclination of the axis of rotation with respect
to the line of sight, and also as a result of the integration along the line of sight. In addition, the latter effect produces an asymmetric
distortion and widening of the line profiles, thus affecting the determination of the velocity dispersion profile (Saglia 1990; Bender
1990).

It is worthwhile to stress that stellar rotation curves, V, (R), can have a variety of shapes not directly related to the underlying
gravitational potential, in contrast to the rotation curve for test particles, such as the H 1 rotation curve, which is given by the
circular velocity V(R) and thus is directly related to the force field.

B3. STABILITY

N-body simulations have been performed to check that the equilibrium models used in this analysis were stable.
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