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ABSTRACT

This work considers which higher order modeling effects on the cosmic shear angular power spectra must be taken into account for Euclid. We
identified the relevant terms and quantified their individual and cumulative impact on the cosmological parameter inferences from Euclid. We
computed the values of these higher order effects using analytic expressions and calculated the impact on cosmological parameter estimations
using the Fisher matrix formalism. We reviewed 24 effects and determined the ones that potentially need to be accounted for, namely: the reduced
shear approximation, magnification bias, source-lens clustering, source obscuration, local Universe effects, and the flat Universe assumption. After
computing these effects explicitly and calculating their cosmological parameter biases, using a maximum multipole of ` = 5000, we find that the
magnification bias, source-lens clustering, source obscuration, and local Universe terms individually produce significant (>0.25σ) cosmological
biases in one or more parameters; accordingly, these effects must be accounted for and warrant further investigation. In total, we find biases in
Ωm, Ωb, h, and σ8 of 0.73σ, 0.28σ, 0.25σ, and −0.79σ, respectively, for the flat ΛCDM. For the w0waCDM case, we found biases in Ωm, Ωb, h,
ns, σ8, and wa of 1.49σ, 0.35σ, −1.36σ, 1.31σ, −0.84σ, and −0.35σ, respectively. These are increased relative to the ΛCDM due to additional
degeneracies as a function of redshift and scale.
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1. Introduction

While the Lambda cold dark matter (ΛCDM) model, is cur-
rently the best-in-class framework for parameterising the Uni-
verse, several open questions remain. A key component that is
yet to be fully explained is the acceleration of the expansion of
the Universe and its proposed driver: dark energy. A powerful
tool for such studies is cosmic shear, namely, a distortion of the
ellipticities that we observe for distant galaxies as a result of
weak gravitational lensing from the large-scale structure of the
Universe (LSS; see e.g. Albrecht et al. 2006).

To date, the most recent generation of cosmic shear sur-
veys (Hikage et al. 2019; Asgari et al. 2021; Abbott et al. 2022)
has been able to achieve high-precision cosmology competitive
with cosmic microwave background experiments, for a com-
bination of σ8 and Ωm (Planck Collaboration VI 2020). Now,
upcoming Stage IV surveys (Albrecht et al. 2006) will probe a
greater area and depth than previously possible. For example,
telescopes such as Euclid1 (Laureijs et al. 2011), Nancy Grace
Roman2 (Akeson et al. 2019), and the Vera C. Rubin Obser-
vatory3 (LSST Science Collaboration 2009) will achieve more
than an order-of-magnitude increase in precision over existing
surveys (Euclid Collaboration 2020, heareafter, EC20). We must
therefore ensure that any sources of bias in our theoretical for-
malism are properly accounted for.

In this work, we consider the common approximations made
when modelling the cosmic shear angular power spectrum in
aggregate. This is of particular importance when deriving the
cosmological parameters from a shear-only analysis, but also in
a 3×2pt analyses (that includes shear and photometric galaxy
clustering analyses, along with their cross-correlation), where
modelling the weak-lensing power spectrum sufficiently is also
essential. Throughout the literature, the effects considered in this
paper have been studied independently, using varying survey
and parameter specifications (see references in Table 1). Here,
we evaluate them in a consistent framework and quantify their
cumulative impact on cosmology inferred from Euclid’s weak
lensing probe. As a first step, we review the literature and pin-
point which terms are potentially significant, as well as those
for which the impact on the shear power spectrum has not been
evaluated. A comparison of the typical magnitudes of the stud-
ied corrections is given in Table 1. To create Table 1 we manually
read the published numbers from graphs in the referenced papers
for the auto-correlation cosmic shear power spectrum for a red-
shift bin closest to z = 1 for a in each paper (auto-correlation
refers to the inter-redshift bin correlation). These values are only
approximate due to the inherent inaccuracy of reading value
from graphs and varying assumptions the papers4.

From our survey of the literature we identify the follow-
ing as potentially significant systematic effects requiring full
analysis, these are as follows. Reduced shear approximation:
the effect of assuming that the measured two-point statistics
of reduced shear are equal to those of the shear field (Shapiro
1 https://www.euclid-ec.org/
2 https://roman.gsfc.nasa.gov/
3 https://www.lsst.org/
4 Every paper made various slightly differing assumptions regarding
survey area, depth, and number density; in all cases, the details can
be found in the references. In the case that only correction function
analyses were available, not power spectrum, we performed a Hankel
transform over the correlation functions of the graphs over the angular
range available.

2009; Krause & Hirata 2010); it has been previously shown
that making this approximation would not lead to precise cos-
mological parameter estimation using cosmic shear for Euclid
(Deshpande et al. 2020a). Magnification bias: the change in
the observed number density of sources, due to galaxies at
the flux limit of the survey having their flux increased or
decreased due to magnification via lensing (Turner et al. 1984);
this effect has also shown to significantly bias cosmological
information from Euclid (Deshpande et al. 2020a; Duncan et al.
2022) if not accounted for. Additionally, magnification bias
must also be accounted for in probes of galaxy clustering. Its
impact on the Euclid galaxy clustering probe is discussed in
Euclid Collaboration (2022b). Source-lens clustering: the intrin-
sic clustering of source galaxies correlated with the density field
(Bernardeau 1998; Hamana et al. 2002; Yu et al. 2015). Typ-
ically, it is assumed source galaxies are distributed homoge-
neously across the sky. Source obscuration: A reduction in the
observed galaxy distribution due to closely-spaced and blended
or overlapping source galaxies (Hartlap et al. 2011). Local Uni-
verse effects: a possible bias in our measurements of sum-
mary statistics of the LSS due to residing in a region with a
higher-than-average density (Reischke et al. 2019; Hall 2020).
Flat Universe assumption: the impact of assuming that non-flat
geometries are sufficiently well represented by modifying the
expression for comoving distance and neglecting the additional
change in the lensing kernels used to calculate the shear power
spectrum (Taylor et al. 2018b).

We made this determination by first excluding the terms
which are fourth-order in the lens potential or higher, as
these have consistently been shown to be sub-dominant
(Cooray & Hu 2002; Shapiro & Cooray 2006). Among these
are time delay-lens coupling and deflection-deflection coupling
(Bernardeau et al. 2010), which result from foregoing the small-
angle and thin-lens approximations and solving the Sachs equa-
tion explicitly. Similarly, fourth-order correction terms result-
ing from relaxing the Born approximation and accounting for
line-of-sight coupling of two foreground lenses are negligible
(Shapiro & Cooray 2006). Additionally, fourth-order reduced
shear corrections (Krause & Hirata 2010) were also neglected.
Re-enforcing the sub-dominance of these terms is the fact that
the standard reduced shear correction matches forward models
and N-body simulations sufficiently well (Dodelson et al. 2006;
Deshpande et al. 2020a). We further excluded fourth-order and
higher terms resulting from the contribution of dark energy pres-
sure to the lensing potential (Simpson et al. 2010).

Furthermore, we neglected finite beam corrections
(Fleury et al. 2017, 2019), which are manifested as a frac-
tional correction to the lensing power spectra on very small
scales. This amounts to approximately −(1/3)(`θ)2, where ` is
the angular multipole of the power spectrum and θ the mean
angular size of galaxies (this was verified by Breton & Fleury
2021 using ray-tracing simulations); for Euclid, this results
in a fractional correction of −(`/1.2 × 106)2 to the power
spectrum.

We also neglected the effects of spatially-varying survey
depth (Heydenreich et al. 2020), which can be accounted for
directly in the covariance matrix through forward-modelling
(Loureiro et al. 2022); although we note that demonstrating that
this is sufficient for Euclid-like surveys requires further inves-
tigation. This choice could be relaxed in future work. We also
note here that one could mitigate the impact of any systematics
(including all of the effects discussed in this paper) by adding
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a corresponding uncertainty in the covariance, at the expense of
the accuracy on cosmological parameter constraints. While this
is not an approach we take in this paper, it could be investigated
in future work.

Of the remaining effects, we neglected those that are signif-
icantly smaller than the reduced shear correction. This serves
as a good comparison because this correction has been consis-
tently demonstrated to produce biases close to the significance
threshold (Shapiro 2009; Deshpande et al. 2020a). Accordingly,
we neglected the impact of the Doppler-shift of galaxies on their
two-point statistics. Due to the inhomogeneity of the Universe,
galaxies have peculiar velocities that affect the measurement of
their redshifts. If this is taken into account, it results in an addi-
tional contribution to the reduced shear (Bernardeau et al. 2010).
As can be seen in Table 1, this effect can be safely neglected as it
is two or three orders of magnitude below the reduced shear cor-
rection. Additionally, the cosmological parameter biases result-
ing from it are two orders of magnitude below the level of
concern (Deshpande & Kitching 2021).

Likewise, the effect of unequal-time correlators was
neglected, as the resulting correction to the angular power
spectrum is more than four orders of magnitude smaller than
that for the reduced shear (Kitching & Heavens 2017); as illus-
trated in Table 1. This correction is a consequence of relaxing
the equal-time approximation, which approximates the cross-
correlation matter power spectrum evaluated at different times
as either the power spectrum at a fixed time, or by a geometric
mean.

We also did not need to explicitly evaluate the effects of
relaxing the Limber, and flat-sky approximations, as the com-
bined corrections for these are an order-of-magnitude smaller
than the reduced shear correction over the majority of the range
of scales observed by Euclid (Kitching et al. 2017). This is again
demonstrated in Table 1. The Limber approximation considers
only correlations in the plane of the sky as contributing to the
lensing signal, and projects others onto the plane of the sky
by replacing spherical Bessel functions with Delta functions
(Limber 1953; Kaiser 1998; LoVerde & Afshordi 2008).

Additionally, the Limber approximation is also employed
when computing higher order corrections to the angular power
spectrum, such as the reduced shear correction. In this work,
we did not relax the use of the Limber approximation, as the
cosmological parameter biases from this are safely negligible
(Deshpande & Kitching 2020).

Another series of corrections that we deemed “safely negligi-
ble” stem from corrections to the theoretical expressions describ-
ing light propagation (Cuesta-Lazaro et al. 2018). Among these
is the effect of second-order corrections to the effective speed
of light. This relaxes the assumption that, as lensing poten-
tials are small, the lensing effect can be studied in an effective
Minkowskian spacetime and, accordingly, the effective speed
of light need only be computed to the first-order. Similarly,
a second correction to the effective speed of light presents
itself from the energy-momentum tensor. Typically, this quan-
tity is calculated under the assumption that lenses are moving
slowly, so that the kinetic contribution to gravity can be ignored.
Addressing this creates another correction to the angular power
spectrum.

A further effect is that the observed ellipticity is non-linearly
related to the shear, but that a linear approximation is often
made. For a discussion of the impact of the non-linear rela-
tion on the observed shear distribution see Viola et al. (2014).

The impact of this effect on the power spectrum (if we assume
a linear relation instead of the non-linear relation) is investi-
gated in Krause & Hirata (2010) (Sect. 3.3), who find that the
impact is three orders of magnitude smaller than the shear power
spectrum5.

The temporal-Born approximation is another correction to
the description of light propagation. While the correction for
the standard Born approximation accounts for the spatial dis-
crepancy between the true perturbed path of a photon from
source to observer compared to the mathematically conve-
nient straight one, this discrepancy also produces a temporal
one. The photon on the perturbed path will at times be ahead
of the photon on the idealised path, and at other times lag
behind. Accordingly, the two would encounter different evo-
lutionary stages of the LSS at different times, necessitating a
correction in the two-point statistics. The remaining two cor-
rections that fall under this umbrella are the corrections of the
Sachs-Wolfe and integrated Sachs-Wolfe effects. The former
describes the redshift of an emitted photon due to the source
galaxy’s gravitational potential, while the latter encodes the
effect on the photon of interaction with the evolving gravita-
tional potential along its path. All of these light propagation
corrections are many orders of magnitude below the reduced
shear correction, as can be seen in a representative example in
Table 1.

Finally, we deemed the flexion corrections to be negligi-
ble without requiring explicit calculation. This additional cor-
rection term arises from the fact that, for larger sources, the
image distortion consists of both shear and a higher-order com-
ponent labelled flexion (Schneider & Er 2008). This term should
be negligible because its effect on the cosmic shear signal
will be dependent on third-order or higher-order brightness
moments.

Here, we did not consider biases arising from general mod-
elling of unknown shape measurement systematic effects (i.e.
multiplicative and additive biases). Instead, we focused only on
these well defined theoretical assumptions. For more details on
shape measurement effects, we refer to Kitching et al. (2019,
2020, 2021), Kitching & Deshpande (2022). Additionally, we
did not evaluate the additional selection effects of flux cuts and
size cuts, as the former of these can be calibrated from deep
fields, while size cuts are primarily a concern for ground-based
telescopes, rather than space-based ones.

In this work, we also did not examine the impact of
neglecting effects that are already well-established as requiring
evaluation, namely, photometric redshift uncertainties, intrinsic
alignments (IA) modelling, baryonic feedback, and modelling of
the non-linear component of the matter power spectrum. Deter-
mining the exact specification for these is outside of the scope
of this work, and each of those effects requires its own through
investigation.

This work is structured as follows. In Sect. 2, we detail the
theoretical formalism used. We review the basic, first-order cos-
mic shear angular power spectrum calculation. The expressions

5 In fact there are two definitions of ellipticity: third eccentricity and
third flattening (see e.g. Viola et al. 2014) that relate the observed ellip-
ticity to the shear in different ways. Krause & Hirata (2010) find that for
third flattening the correction to the power spectrum is zero (since the
moments of the third flattening are exactly the moments of the reduced
shear as shown by Seitz & Schneider 1997), but that for third eccentric-
ity the effect is non-zero.
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Table 1. List of higher-order correction terms to the shear angular power spectrum resulting from relaxing approximations.

Correction Reference Percentage of sample variance

` = 10 ` = 100 ` = 1000

Source-lens clustering Yu et al. (2015) N/A 6.0 57.2
Reduced shear + magnification bias Deshpande et al. (2020a) 0.4 1.8 15.3
Post-Limber reduced shear Deshpande & Kitching (2020) 0.2 0.6 1.9
Non-linear ellipticity-shear relation Krause & Hirata (2010) 0.2 0.6 1.9
Limber + flat-sky Kitching et al. (2017) 9.8 3.0 1.0
Local Universe effects Hall (2020) 7.8 24.2 N/A
Higher-order reduced shear Krause & Hirata (2010) O(φ4) O(φ4) O(φ4)
Time delay-lens coupling Bernardeau et al. (2010) O(φ4) O(φ4) O(φ4)
Deflection-deflection coupling Bernardeau et al. (2010) O(φ4) O(φ4) O(φ4)
Born approximation Cooray & Hu (2002) O(φ4) O(φ4) O(φ4)
Lensing by dark energy pressure Simpson et al. (2010) O(φ4) O(φ4) O(φ4)
Second-order speed-of-light Cuesta-Lazaro et al. (2018) <0.01 <0.01 <0.01
Temporal-Born approximation Cuesta-Lazaro et al. (2018) <0.01 <0.01 <0.01
Finite-beam corrections Fleury et al. (2019) <0.01 <0.01 <0.01
Doppler-shift Deshpande & Kitching (2021) <0.01 <0.01 <0.01
Unequal-time correlators Kitching & Heavens (2017) <0.01 <0.01 <0.01
Sachs-Wolfe effect Cuesta-Lazaro et al. (2018) <0.01 <0.01 <0.01
Integrated Sachs-Wolfe effect Cuesta-Lazaro et al. (2018) <0.01 <0.01 <0.01
Flexion correction Schneider & Er (2008) N/A N/A N/A
Flat-geometry assumption Taylor et al. (2018b) −2.0 −6.0 −19.1
Source obscuration Hartlap et al. (2011) −2.0 −6.0 −19.1
Spatially-varying survey depth Heydenreich et al. (2020) −5.9 −18.1 −57.2

Notes. To illustrate their typical sizes and facilitate comparison, the values of these correction terms at redshift z ∼ 1 are also stated here. These are
provided for `-modes 10, 100, and 1000, and as a percentage of sample variance i.e. 100δC`/(sample variance). Sample variance here is calculated
using the definition of Kaiser (1992), see Eq. (61). These values are taken from the available literature for the case of Stage IV cosmic shear
experiments. Unavailable values are represented by ‘N/A’. Corrections which have a functional form that is fourth-order in lensing potential, and
therefore sub-dominant, are denoted by O(φ4). The references provided refer to the values stated where available, or to the work describing the
correction where explicit values are not available. For the case where the absolute value of an effect is more than four orders of magnitude smaller
than the sample variance, it is denoted by <0.01. The sign denotes whether the effect is to decrease the power (a negative sign) or to increase (no
sign). The rows are ordered in decreasing amplitude for ` = 1000. These numbers were read from graphs published in the referenced papers, due
to the inherent inaccuracy of this approach we quote only one decimal place; in the case that only correlation functions were provide these were
converted to power spectrum results using a Hankel transform over the quoted angular range. We note that the Table is ordered by the magnitude
of the impact of the effects at ` = 1000, not the absolute value of the impact, therefore those effects that cause a negative change to the power
spectra are at the bottom of the Table. The effects in bold are those whose approximations are investigated in this paper. Where values are the same
this is due to rounding and limitations of transcribing values from plots in papers; hence, these values should only be taken as indicative of the
amplitude of the effects.

for the six correction terms of interest are also detailed, along
with the Fisher matrix formalism used to predict cosmological
parameter constraints and biases. In Sect. 3, we discuss the mod-
elling and computational specifics used in this work. Finally, we
discuss our results in Sect. 4. We show the cosmological parame-
ter biases that result from neglecting the studied corrections, and
discuss their implications for Euclid.

2. Theoretical formalism

Here, we begin by reviewing the standard first-order calculation
of the cosmic shear angular power spectrum. Additional contri-
butions to the lensing signal resulting from IAs and shot-noise
are then described. We then detail the analytical forms of the
six corrections requiring full evaluation: reduced shear, magni-
fication bias, source-lens clustering, source obscuration, local
Universe effects, and the flat Universe assumption. Finally, we
review the Fisher matrix formalism used to predict cosmological
parameter constraints and biases.

2.1. First-order cosmic shear calculation

As a consequence of weak gravitational lensing by the LSS, the
observed ellipticity of distant galaxies is distorted. This change
is dependent on the reduced shear, g, according to:

gα(θ) =
γα(θ)

1 − κ(θ)
, (1)

where θ is the position of the galaxy on the sky, γ is the spin-2
shear with index α ∈ {1, 2} that describes the anisotropic stretch-
ing that turns circular distributions of light elliptical, and κ is
the convergence – responsible for the isotropic change in the
size of the image. Since in the weak lensing regime |κ| � 1,
it is standard practice to make the reduced shear approximation,
whereby

gα(θ) ≈ γα(θ). (2)

Additionally, the convergence is a projection of the density
contrast of the Universe, δ, along the line-of-sight over comov-
ing distance, χ, to the comoving distance to the horizon, χh.
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For a particular tomographic redshift bin i, it is mathematically
described by:

κi(θ) =

∫ χh

0
dχ δ[S K(χ)θ, χ] Wi(χ), (3)

where S K is a function that encodes the effect of the curvature of
the Universe, K, on comoving distances according to

S K(χ) =


|K|−1/2 sin(|K|−1/2χ) K > 0 (closed Universe),
χ K = 0 (flat Universe),
|K|−1/2 sinh(|K|−1/2χ) K < 0 (open Universe) .

(4)

We recall that for the quantity δ[S K(χ)θ, χ] in Eq. (3) the second
χ indicates not only that there is an evaluation at a comoving
radius, χ, but also at a conformal time, η = η0 − χ, meaning that
all the integration over χ in this the paper are performed down
the background light cone.

The Wi(χ) in Eq. (3) is the lensing projection kernel for
tomographic bin i. It takes the form

Wi(χ) =
3
2

Ωm
H2

0

c2

S K(χ)
a(χ)

∫ χh

χ

dχ′ ni(χ′)
S K(χ′ − χ)

S K(χ′)
, (5)

which is dependent on the dimensionless present-day matter
density of the Universe, Ωm, the speed of light in a vacuum, c,
the Hubble constant, H0, the scale factor of the Universe, a(χ),
and the probability distribution of galaxies within the redshift
bin, i, namely, ni(χ).

The spin-2 shear is directly related to the convergence in
spherical-harmonic space. For a specified lensing mass distribu-
tion, assuming the flat-sky and prefactor-unity approximations
(Kitching et al. 2017), and under the small-angle limit, this rela-
tionship takes the form:

γ̃αi (`) = Tα(`) κ̃i(`), (6)

where ` is the spherical-harmonic conjugate of θ, with mag-
nitude ` and angular component φ`. The functions Tα are two
trigonometric weighting functions corresponding to each of the
shear components. These take the form:

T 1(`) = cos(2φ`), (7)

T 2(`) = sin(2φ`). (8)

In the case of an arbitrary shear field, for example, a field
constructed from data, two linear combinations of the individ-
ual shear components are pertinent. Specifically, these are a
divergence-free B-mode and a curl-free E-mode:

Ẽi(`) =
∑
α

Tα(`) γ̃αi (`), (9)

B̃i(`) =
∑
α

∑
β

εαβ Tα(`) γ̃βi (`). (10)

Here, the summations are over the shear components, and εαβ is
the Levi-Civita symbol in the 2D case; such that: ε11 = ε22 = 0
and ε12 = −ε21 = 1.

Assuming that higher order systematic effects in the data
have been accounted for, the B-mode of Eq. (10) vanishes. For
the remaining E-mode, observables of interest are defined in the
form of angular auto and cross-correlation power spectra, Cγγ

`;i j,
such that:〈
Ẽi(`)Ẽ j(`′)

〉
= (2π)2 δ(2)

D (` + `′) Cγγ
`;i j, (11)

where the angular brackets on the left-hand-side denote the
ensemble average, which (under the assumption of ergod-
icity) becomes a spatial average, and δ(2)

D is the Dirac
delta for 2D. Under the extended Limber approximation
(LoVerde & Afshordi 2008), where k = (` + 1/2)/S K(χ), the
power spectra themselves are further defined as:

Cγγ
`;i j =

∫ χh

0
dχ

Wi(χ)W j(χ)

S 2
K(χ)

Pδδ(k, χ), (12)

where Pδδ is the 3D matter power spectrum, and k is the mag-
nitude of the spatial momentum vector, k, which also shares the
angular component, φ`. Detailed reviews of this standard calcu-
lation can be found in Kilbinger (2015), Munshi et al. (2008),
Bartelmann & Schneider (2001).

2.2. Intrinsic alignments and shot noise

When the angular power spectra are actually measured from
surveys of galaxies, they contain non-lensing signals together
with the pertinent cosmic shear power spectra. It is necessary
to model each of these components to ensure accurate cosmo-
logical inference. A key non-lensing contribution arises from
the fact that galaxies forming close to each other are forming
in a similar tidal environment. Consequently, they have intrin-
sically correlated alignments (Joachimi et al. 2015; Kirk et al.
2015; Kiessling et al. 2015).

The observed ellipticity of an individual source, ε, can then,
to first-order, be written as a combination of its underlying ellip-
ticity in the absence of any cosmic shear or IA, εs, the cosmic
shear, γ = γ1 + iγ2, and the effect of IA, εI according to:

ε = εs + γ + εI. (13)

The angular power spectra corresponding to this observed ellip-
ticity, Cεε

`;i j, are then the sum of contributions resulting from its
components,

Cεε
`;i j = Cγγ

`;i j + CγI
`;i j + CIγ

`;i j + CII
`;i j + Nε

`;i j, (14)

in which Cγγ
`;i j are the cosmic shear angular power spectra defined

in Eq. (12); in all cases the notation denotes zi ≤ z j. The CγI
`;i j are

the angular power spectra of correlations between foreground
shear and background IA, which are only non-zero if photomet-
ric redshift estimates result in the scattering of observed redshifts
between bins. On the other hand, the CIγ

`;i j arise from the correla-
tion between background shear and foreground IA, and the CII

`;i j
represent the auto-correlation of the IA; both must be accounted
for. To accomplish this, the non-linear alignment (NLA) model
(Bridle & King 2007) can be employed. Under this model, these
IA spectra take the form:

CIγ
`;i j =

∫ χh

0

dχ
S 2

K(χ)
[Wi(χ)n j(χ) + ni(χ)W j(χ)]PδI(k, χ), (15)

CII
`;i j =

∫ χh

0

dχ
S 2

K(χ)
ni(χ)n j(χ) PII(k, χ), (16)

which, in a similar manner to the shear power spectra, are pro-
jections of 3D IA power spectra, PδI and PII. Both of these are
related to the matter power spectrum as follows:

PδI(k, χ) =

[
−
AIACIAΩm

D(χ)

]
Pδδ(k, χ), (17)

PII(k, χ) =

[
−
AIACIAΩm

D(χ)

]2
Pδδ(k, χ), (18)
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where the product of AIA and CIA is a free parameter typically
set by fitting to simulations or data, and D(χ) is the density per-
turbation growth factor. We note that the NLA model is a lim-
ited description of IAs and, accordingly, it has its own associated
modelling uncertainties. Extensions of this model have been pro-
posed (see e.g. Fortuna et al. 2021, EC20). However, investigat-
ing the modelling of IAs for Euclid in detail is beyond the scope
of this work and merits a separate future investigation.

Finally, the Nε
`;i j in Eq. (14) is the shot noise term arising

from the zero-lag autocorrelation of the unlensed, uncorrelated
source ellipticity εs in Eq. (13) (see e.g. Hu 1999 Eq. (4)). For
a survey with equi-populated tomographic redshift bins, such as
Euclid (EC20), this is expressed by:

Nε
`;i j =

σ2
ε

n̄g/Nbin
δK

i j, (19)

where σ2
ε is the variance of the observed ellipticities in the sur-

vey, n̄g is the surface density of galaxies in the survey, Nbin is
the survey’s number of tomographic redshift bins, and δK

i j is the
Kronecker delta; here it indicates that the shot noise vanishes for
cross-correlation spectra, as the ellipticities of galaxies at differ-
ing redshifts should not be correlated.

2.3. Reduced shear approximation

When relaxing the reduced shear approximation completely and
explicitly is intractable, this can be aptly modelled by applying
a second-order Taylor expansion (Dodelson et al. 2006; Shapiro
2009; Krause & Hirata 2010; Deshpande et al. 2020a) to Eq. (1),
which gives:

gα(θ) = γα(θ) + (γακ)(θ) + O(κ3). (20)

Computing the angular E-mode power spectra using this
expanded expression results in the standard two-point expres-
sion of Eq. (11), plus three-point terms. These additional terms,
δ〈Ẽi(`)Ẽ j(`′)〉, are given by:

δ〈Ẽi(`)Ẽ j(`′)〉 =
∑
α

∑
β

Tα(`)T β(`′)〈(̃γακ)i(`) γ̃
β
j (`
′)〉

+ Tα(`′)T β(`)〈(̃γακ) j(`
′) γ̃βi (`)〉

= (2π)2 δ(2)
D (` + `′) δCRS

`;i j, (21)

where δCRS
`;i j is the corresponding correction to Cγγ

`;i j, and is given
by:

δCRS
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )Bκκκi j (`, `′,−` − `′), (22)

where we are always free to choose a coordinate system such
that φ` = 0, and accordingly the correction only depends on
the magnitude, `. It depends on the two-redshift convergence
bispectrum, Bκκκi j , which is the three-point counterpart of the
convergence power spectrum. Higher order terms in the Taylor
expansion of Eq. (20) would result in corrections dependent on
the matter trispectrum, as well as the Wick contraction terms of
O(P2

δδ). Both types of terms have been shown to be sub-dominant
(Cooray & Hu 2002; Shapiro & Cooray 2006; Dodelson et al.
2006; Krause & Hirata 2010; Deshpande et al. 2020a). The lat-
ter type of term, although it is of the same perturbative order
in the power spectrum as the bispectrum, is still of O(W(χ)4),

and given that typically χW(χ) � 1, it will still be significantly
smaller than the correction of Eq. (22).

Additionally, just as the convergence power spectrum is the
projection of the matter power spectrum, the convergence bis-
pectrum is analogously the projection of the matter bispectrum,
Bδδδ. Under the Limber approximation, it takes the following
form:

Bκκκi j (`1, `2, `3) = Bκκκii j (`1, `2, `3) + Bκκκi j j (`1, `2, `3)

=

∫ χh

0

dχ
S 4

K(χ)
Wi(χ)W j(χ)[Wi(χ) + W j(χ)]

× Bδδδ(k1, k2, k3, χ). (23)

For a relaxation of the Limber approximation, we refer to
Deshpande & Kitching (2020).

It should also be noted that the use of the reduced
shear approximation can produce a B-mode signal contribu-
tion. However, it has been demonstrated that this is negligible
(Schneider et al. 2002).

2.4. Source-lens clustering

Since, in practice, cosmic shear is only measured where galax-
ies are present, care must be taken to account for biases from
any correlations between background source galaxies and the
foreground lensing field. Given that, in reality, tomographic bins
must be wide enough to include a sufficient number of galax-
ies so that shape-measurement noise is minimised, there will be
overlap between the source and lensing distributions. The situ-
ation is further aggravated by broadening of bins due to photo-
metric redshift uncertainties.

As a consequence of this effect, the observed number density
of galaxies used in a given estimator which determines the shear
angular power spectra from data is correlated with the intrin-
sic source galaxy overdensity, δgi , such that (Bernardeau 1998;
Hamana et al. 2002; Schmidt et al. 2009):

nobs
i (θ, χ) = ni(χ) [1 + δ

g
i (θ)]. (24)

Accordingly, the shear used in the theoretical formalism for
inference, is similarly replaced with an ‘observed’ shear,

γαobs;i(θ) = γαi (θ) + γαi (θ) δgi (θ). (25)

This is similar in form to the Taylor expansion of the reduced
shear expressed in Eq. (20), resulting in an analogous correction
term, δCSLC

`;i j , to the angular power spectra,

δCSLC
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )Bκδ
gκ

i j (`, `′,−` − `′), (26)

where Bκδ
gκ

i j is now the two-redshift convergence-galaxy bispec-
trum. By adopting a linear galaxy bias model (so that δg = b δ)
as used in EC20, and noting that δg is the 2D projection of δg,
the convergence-galaxy bispectrum can also be expressed as a
projection of the matter bispectrum:

Bκδ
gκ

i j (`1, `2, `3) = Bκδ
gκ

ii j (`1, `2, `3) + Bκδ
gκ

i j j (`1, `2, `3)

=

∫ χh

0

dχ
S 4

K(χ)
[bi ni(χ) + b j n j(χ)]Wi(χ)W j(χ)

× Bδδδ(k1, k2, k3, χ), (27)

where bi and b j are the galaxy biases for tomographic bins i
and j, respectively. While more complex models of the galaxy
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bias exist, we proceed with the linear bias in this work, in
order to mitigate the already significant computational load of
these three-point terms. We note that modelling the galaxy bias
requires more complexity at smaller scales, where the SLC effect
is most relevant. When ultimately computing this term in the
Euclid cosmological analysis, the final Euclid galaxy bias model
should be used. The linear galaxy bias for each tomographic bin
is given by:

bi =
√

1 + z̄i, (28)

where z̄i is tomographic bin i’s central redshift. For a review of
galaxy bias models, we refer to Desjacques et al. (2018).

In addition to this contribution to the E-mode angular power
spectra, source-lens clustering produces a B-mode signal as well.
This term is comparable to the E-mode correction in magnitude,
and accordingly, its detection in the absence of other B-mode
contributions could allow for a direct correction of the E-mode
signal, rather than requiring the computation of Eq. (26). How-
ever, typical B-mode signals are dominated by other contribu-
tions (Schneider et al. 2002; Yu et al. 2015).

We note that there are two main references to ‘source-lens
clustering’ in the literature. One is the correlation between the
shear and density in the source plane (see e.g. Krause et al. 2021,
Eqs. (47)–(49)); otherwise referred to as an intrinsic lens-source
density correlation. In general, this should be expected to be
zero, since the shear should not be correlated with the source
density distribution.

The other effect is that described in Schmidt et al. (2009),
namely, the sampling effect (or source number-density weight-
ing) caused by the use of estimators (Schmidt et al. 2009 Eq. (3))
for the two-point statistics of the shear field that leads to their
Eq. (7) (and Eq. (24) of this paper). This is different from the
‘intrinsic lens-source density’ correlation, as it is caused only as
a result of a sampling effect in the estimator. In this case, the
form of the correction is exactly the same form as the reduced
shear, except the weight functions are different (since the shear
is modified by delta rather than kappa). However, as noted by
Schmidt et al. (2009) ‘for a sufficiently narrow redshift distri-
bution of source galaxies, this source-lens clustering is negligi-
ble’. This is because the distribution of sources and lenses do not
overlap’.

In Krause et al. (2021) the second effect is referred to as the
‘source clustering ansatz’. It is noted that ‘in the limit of narrow
tomographic bins considered by Schmidt et al., both approaches
yield the same power spectrum corrections’ and that their equa-
tions are ‘partially cancelled out’ (i.e. account for) biases caused
by the sampling effect. They also noted that the DES Y3 galaxy-
galaxy lensing analysis corrects for sampling effects at the mea-
surement level through so-called ’Boost factors’ that cancel the
effect of source number density weighting.

In this paper, we only consider the sampling effect but we
note that it may be possible to use ‘de-biased’ estimators to mit-
igate the effect; this requires further work to demonstrate that
such approaches are sufficient for Stage IV experiments. How-
ever, it should be noted that in the rest of this paper, the ‘SLC’
terms are dependent on the estimator used in the analysis. Thus,
what we are showing here is the worst case where no estimator-
level correction has been applied.

Finally, we note that computing the source number den-
sity weighting term relies on the bispectrum Bκδ

gκ
i j j (`), whose

amplitude will need to be determined from simulations and

could therefore could deviate from the ansatz used in this paper
(Eq. (27)). This is being further investigated in Linke et al. (prep.,
and priv. comm.) and could result in the raw (not de-biased)
source number density weighting also being small.

Therefore, for all cases we show the results with and without
the ‘SLC’ terms to reflect the case that all SLC terms (intrinsic
source-lens clustering and source number density weighting) are
zero, which is likely to be the case.

2.5. Magnification bias

An additional consequence of gravitational lensing is that the
density of galaxies observed by a particular survey is no longer
representative of the true underlying galaxy density (Turner et al.
1984). In particular, magnification resulting from the conver-
gence modifies the density in two contrasting ways.

One manifestation of the effect is that individual sources are
magnified and as a consequence of this, their flux increases.
Accordingly, any sources lying just beyond the flux limit of
the survey may have their fluxes increased to the point of then
being within the flux limit; increasing the observed density. As
sources are magnified, the patch of sky around them is also mag-
nified. This causes the second, competing manifestation. Within
the magnified patch of sky, the galaxy density is reduced. The
total effect, known as magnification bias, is dependent on the
slope of the unlensed galaxy luminosity function. This assumes
that the magnification µ > 1.

Assuming that, on our scales of interest, fluctuations in the
intrinsic galaxy overdensity are small, and taking into account
that, for weak lensing, |κ| � 1, the observed galaxy overdensity
for a given tomographic bin, δgobs;i, is given by (Hui et al. 2007;
Schmidt et al. 2009):

δ
g
obs;i(θ) = δ

g
i (θ) + (5si − 2)κi(θ), (29)

where δgi is the intrinsic galaxy overdensity in the absence of
magnification or any other systematic effects, and si is the slope
of the luminosity function for a redshift bin, i. This is given
by the derivative of the cumulative galaxy number counts with
respect to magnitude, m, evaluated at the survey’s limiting mag-
nitude, mlim, such that

si =
∂log10 n(z̄i,m)

∂m

∣∣∣∣∣
mlim

, (30)

where n(z̄i,m) is the true, underlying distribution of galaxies,
evaluated at the tomographic bin’s central redshift, z̄i. Here, we
have suppressed an additional dependence on the wavelength
band in which the galaxy is observed. This should be considered
when determining the slope from observational data.

Accordingly, Eq. (25) gains an extra term:

γαobs;i = γαi (θ) + γαi (θ) δgi (θ) + (5si − 2) γαi (θ)κi(θ). (31)

This additional term is near-identical to the second term in
Eq. (20), but for the prefactor of (5si − 2). Accordingly, it also
spawns a correction to the angular power spectra. This correction
for magnification bias, δCMB

`;i j , takes a similar form to the reduced
shear correction of Eq. (22),

δCMB
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )[(5si − 2)Bκκκii j (`, `′,−` − `′)

+ (5s j − 2)Bκκκi j j (`, `′,−` − `′)]. (32)
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Given the similarity of the magnification bias correction to
the source-lens clustering and reduced shear corrections, it too
would produce a contribution to the B-mode signal. While this
has not been explicitly evaluated, we would expect this term (as
in the case of its reduced shear and source-lens clustering coun-
terparts) to be sub-dominant.

2.6. Source obscuration

There is another systematic effect which can change the
observed galaxy number density. Blending of close galaxy pairs
can lead to multiple galaxies being discarded or counted as a
lower number than they are (Hartlap et al. 2011). The resulting
change in the observed number density of galaxies, ∆ nSO(z, θ),
can be modelled by:

∆ nSO(z, θ)
n(z, θ)

= −π

[
(2ϑ)2 ntot +

A n(z)
2 − ζ

(2ϑ)2−ζ
]
, (33)

where ntot is the total number density of galaxies at all redshifts,
n(z) is the observed density of galaxies at redshift z ignoring
source-lens clustering, we assume a redshift-independent radius,
ϑ, for all galaxies as in Hartlap et al. (2011), and A and ζ are the
amplitude and power-law index of a power-law model for the
two-point galaxy angular correlation function. This expression
is obtained by considering the probability that the centroid of
another source lies within 2ϑ of a given one by integrating over
the probability that another source centroid lies in an annulus of
dθ around the centroid of another one.

Instead, we assume that the blending strategy for Euclid will
account for blended pairs sufficiently well, such that the only
obscuration of concern is substantial overlap; when the centroid
of a source is behind another source (i.e. within ϑ rather than
2ϑ). In this case, we are only concerned with the probability of
this overlap. We note that in reality this blending has a com-
plex interaction with shape measurement, but evaluating this is
out of the scope of this work. Then, assuming that sources are
approximately circular, the probability, dp, of a galaxy at red-
shift z overlapping with one at redshift z′ is:

dp(z, z′, θ) = π ϑ2 n(z′, θ) dz. (34)

Here, it is also assumed that the expected number of galaxies
overlapping with a given galaxy is� 1, such that the probability
of at least one galaxy overlapping a given source (resulting in
the removal of that source from the sample) is equal to the prob-
ability of just one overlap, which by Poisson statistics is then the
expected number of overlaps. Accordingly, the total change in
the number of sources at z is then given by:

∆ nSO(z, θ) = −π ϑ2 n(z, θ)
∫ ∞

0
dz′n(z′, θ)

= −π ϑ2 n(z, θ) [1 + δg(θ)]
∫ ∞

0
dz′n(z′)

= −π ϑ2 n(z, θ) [1 + δg(θ)] ntot. (35)

We neglect the second term on the right-hand side of
Eq. (33), as it specifically accounts for the correlated overlap
of galaxies at the same redshift within a fixed disk around the
source, in addition to the random one already included. Given
that the fractional change is calculated by integrating over red-
shift slices, that this term would only appear for the slice where
z′ = z, and that the source obscuration term itself is small (see
Sect. 4), we expect it to be safely negligible.

Adopting the tomographic redshift binning approach, for a
given source can be obscured by another in the same bin, or by
sources in lower redshift bins than the one the source belongs
in. The fractional change in the number density of galaxies in
redshift bin i then becomes:

∆ nSO
i (z, θ)

ni(z, θ)
= −π ϑ2

i∑
q=1

[1 + δ
g
q(θ)] ntot; q

= −π ϑ2
i∑

q=1

[1 + bqδ
g(θ)] ntot; q

= −π ϑ2 ncumul.;i − π ϑ
2 δg fSO;i, (36)

where the ntot; q is the total surface density of galaxies for redshift
bin q (that is the integral over nq(z) for bin q), ncumul.;i is the
cumulative total surface density of galaxies for all redshift bins
up to and including bin i, and

fSO;i =

i∑
ρ=1

bρ ntot; ρ. (37)

Including the effect of source obscuration in addition to
source-lens clustering and magnification bias, the observed num-
ber density for a given tomographic redshift bin, i, becomes

nobs
i (θ, χ) = ni(χ)

[
1 + (5si − 2) κi(θ) + δ

g
i (θ)

]
×

[
1 − π ϑ2ncumul.;i − π ϑ

2δg(θ) fSO;i
]
. (38)

From here, only terms to first-order in the lensing potential are
retained in order to suppress fourth-order or higher terms appear-
ing in the two-point statistic. Then, it can be seen that source
obscuration adds prefactors to the base angular shear power
spectra: the source-lens clustering correction from Eq. (26)
and the magnification bias correction of Eq. (32). Accordingly,
source obscuration produces three new correction terms:

δCSO
`;i j =

(
π2 ϑ4ncumul.;incumul.; j − π ϑ

2ncumul.;i

− π ϑ2ncumul.; j
)
Cγγ
`;i j, (39)

δCSO−SLC
`;i j =

∫ ∞

0

d2`′

(2π)2 cos(2φ`′ )

×

[(
π2 ϑ4ncumul.;incumul.; j − π ϑ

2ncumul.;ibi

− π ϑ2ncumul.; jbi − π ϑ
2(1 − ncumul.; j)

× fSO;i
)

Bκδ
gκ

ii j (`1, `2, `3) + i↔ j
]
, (40)

δCSO−MB
`;i j =

(
π2 ϑ4ncumul.;incumul.; j − π ϑ

2ncumul.;i

− π ϑ2ncumul.; j
)
δCMB

`;i j , (41)

where i ↔ j indicates a repetition of the preceding bispectrum
term and its pre-factor, with all instances of the i and j bin indices
exchanged.

2.7. Local Universe effects

A further effect to consider is that the observed two-point
statistic at our location may be biased due to local over or
under-densities. Accordingly, the angular power spectra must
be calculated conditioned on the local density (Hall 2020). The
local density contrast, δ0, can be defined as the matter density
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contrast smoothed by a top-hat kernel of comoving radius R
according to

δ0(R, χ) ≡
3

4πR3

∫
d3r Θ(R − |r|) δ(r, χ), (42)

where the matter density contrast is now expressed in terms of
spatial distance, r, rather than angle on the sky, and Θ is the
Heaviside step-function.

Then, the conditional angular power spectra can be obtained
using the Edgeworth expansion for conditional distributions.
This calculation is mathematically intensive and, accordingly,
it is not reproduced here. The full derivation can be found in
Hall (2020). Under the Limber approximation, and assuming
` � 1 (and note that cosmic shear is only defined for ` ≥ 2),
this expression consists of two terms, the standard power spectra
of Eq. (12) and a correction term, δCLU

`;i j, which is defined as

δCLU
`;i j = 2

δ0(R, χ)
σ2(R, χ)

∫ χh

0
dχ

Wi(χ)W j(χ)
χ2

×

{ [
34
21
ξR(χ) −

4
21
ψR(χ)

]
Pδδ(k, χ)

+

[
χ

`
ξ′R(χ) −

`

χ
ΩR(χ)

]
∂Pδδ(k, χ)

∂k
1
χ

−
4
7
ψR(χ)

∂2Pδδ(k, χ)
∂k2

1
χ2

}
, (43)

where σ2 is the variance of the local density contrast, it is
assumed the ratio of the local density contrast to its variance
is constant with comoving distance, ξR, ψR, ξ

′
R, and ΩR are cor-

relation functions defined in Hall (2020). Also, the expression
assumes a flat-geometry, which is valid under the current con-
straints on ΩK , as lenses are much less far away than the cur-
vature distance. Additionally, we note that this expression is
derived using only the tree-level Eulerian perturbation theory
expression for the matter bispectrum.

2.8. The flat Universe assumption

Typically when computing cosmic shear angular power spectra,
spatially non-flat universes are accounted for through modifying
comoving distances based on curvature, as described by Eq. (4).
In practice, however, curvature also modifies the projection ker-
nel (Taylor et al. 2018b).

Under the assumption of a spatially flat Universe, the Pois-
son equation gives the relationship between the comoving New-
tonian gravitational potential, φ, and the matter density contrast,

∇2
χ φ(r, χ) =

3ΩmH2
0

2 c2a(t)
δ(r, χ), (44)

where ∇2
χ is the Laplacian for a spatially flat Universe. This

allows for the shear angular power spectra to be expressed in
terms of the matter power spectrum, as in Eq. (12). However,
the matter density contrast has rectilinear coordinates, whereas
the lensing potential is defined in terms of angular coordinates
(r, θ, ϕ), from the observer’s frame of reference. Relating the two
as above requires expressing the potential in spherical Bessel
space as:

φ`m(k) =

√
2
π

∫
d3r φ(r) j`(kr)Y`m(θ, ϕ), (45)

where j` refers to the spherical Bessel functions and Y`m to
the spherical harmonics. Owing to the fact that these spherical
Bessel functions and spherical harmonics are eigenfunctions of
the Laplacian, the following relationship is obtained:(
∇2

r + k2
)

j`(kr)Y`m(θ, ϕ) = 0. (46)

This allows for the relation of the lensing potential to the
matter density contrast in the spherical harmonic space to be
expressed, as well as the eventual calculation of Eq. (12) under
the Limber approximation. We refer to Kitching et al. (2017) for
a full derivation.

However, in the case of a spatially non-flat Universe, the
Laplacian in Eqs. (44)–(46) must be replaced by one correspond-
ing to a curved geometry, ∇2

S K
. Accordingly, the projection ker-

nel must also be modified; by replacing the spherical Bessel
functions in Eq. (46) with hyper-spherical Bessel functions, Φ

β
`
,

so that(
∇2

S K
+ k2

)
Φ
β
`
(r) Y`m(θ, ϕ) = 0, (47)

where β =
√

(k2 + K) / |K| (Lesgourgues & Tram 2014). Con-
sequently, the shear angular power spectra for a spatially non-
flat Universe, Cγγ;NF

`;i j , under the Limber approximation,under the
Limber approximation, is given by modifying Eq. (12) to be:

Cγγ
`;i j =

∫ χh

0
dχWNF

` (χ; K)
Wi(χ)W j(χ)

S 2
K(χ)

Pδδ(k, χ), (48)

where

WNF
` (χ; K) =

1 − sgn(K)
`2

(` + 1/2)2/S 2
K(χ) + K

−1/2

. (49)

Here, sgn(K) is the sign of the curvature, K. Alternatively, for
consistency with the previously discussed corrections, this can
be expressed as a correction term, δCNF

`;i j, to the spatially flat
angular power spectra such that

δCNF
`;i j = Cγγ;NF

`;i j −Cγγ
`;i j. (50)

2.9. The Fisher matrix and bias formalism

The constraining power of cosmological surveys, in terms of
the uncertainties on inferred cosmological parameters, is often
predicted by using the Fisher matrix formalism. It also allows
for the quantification of biases in this inference resulting from
neglecting systematic effects within the signal itself. Here, we
use this technique to predict how biased cosmological param-
eters inferred from Euclid would be when the previously dis-
cussed systematic effects are neglected. We have followed the
conventions of Euclid Collaboration (2020) in all calculations
and validated the code with respect to those results6.

Explicitly, the Fisher matrix is defined as the expected value
of the Hessian of the log likelihood (defined for a Gaussian
likelihood, and applied to CMB data in Tegmark et al. 2015).
For Stage IV weak lensing cosmology, it has been demon-
strated that the likelihood can safely be assumed to be Gaus-
sian (Lin et al. 2020; Taylor et al. 2019; Upham et al. 2021;

6 Code for this paper is available at: https://github.com/
desh1701/Euclid-Estimators-WL-Approximations-KP.
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Hall & Taylor 2022). Accordingly, the Fisher matrix for cosmic
shear is defined as:

Fµν =

`max∑
`′=`min

`max∑
`=`min

∑
i j,mn

∂Cεε
`;i j

∂θµ
Cov−1

[
C εε
`;i j,C

εε
`′;mn

] ∂Cεε
`′;mn

∂θν
, (51)

where the µ and ν indices denote element in the Fisher matrix
associated with cosmological parameters, θµ and θν, respectively,
`min is the minimum angular wavenumber of the survey, `max is
the maximum angular wavenumber used, the sums are over the
`-blocks of power spectrum bands, and Cov−1

[
C εε
`;i j,C

εε
`′;mn

]
is the

inverse of the covariance of the angular power spectra signal.
In practice, this covariance term is non-Gaussian

(Barreira et al. 2018a; Takada & Hu 2013; Upham et al. 2022),
with an additional contribution arising from the super-sample
covariance (SSC; Hu & Kravtsov 2003). This SSC term encap-
sulates the effects on the covariance of density fluctuations
with wavelengths larger than the extent of the galaxy survey.
Such fluctuations result in the background density of the survey
ceasing to be representative of the underlying density of the
Universe. The total covariance is then the sum of the Gaussian,
CovG and SSC, and CovSSC terms, as follows:

Cov
[
Cεε
`;i j,C

εε
`′;mn

]
= CovG

[
Cεε
`;i j,C

εε
`′;mn

]
+ CovSSC

[
Cεε
`;i j,C

εε
`′;mn

]
, (52)

where the Gaussian component is given by

CovG

[
Cεε
`;i j,C

εε
`′;mn

]
=

Cεε
`;im Cεε

`′; jn + Cεε
`;in C εε

`′; jm

(2` + 1) fsky∆`
δK
``′ , (53)

where fsky is the fraction of the sky observed by the galaxy sur-
vey, ∆` is the bandwidth of the `-modes sampled, and δK is the
Kronecker delta. Other non-Gaussian terms in the covariance can
be neglected (see e.g. Barreira et al. 2018b). The SSC compo-
nent is well approximated by (Lacasa & Grain 2019)

CovSSC

[
Cεε
`;i j,C

εε
`′;mn

]
≈ R` Cεε

`;i j R`′ Cεε
`′;mn S i jmn, (54)

where S i jmn is the dimensionless volume-averaged covariance of
the background matter density contrast, and R` is the effective
relative response of the observed power spectrum. We assume
that there is no interrelation between local Universe effects and
the SSC, but this is a caveat that should be verified in the future.

The diagonal of the inverse of the Fisher matrix is used to
predict the 1σ uncertainties on each of the parameters. Explic-
itly, the uncertainty, σµ, on parameter θµ is given by:

σµ =

√
Fµµ

−1. (55)

By extending this formalism, biases on inferred the param-
eters resulting from neglecting systematic effects can also be
predicted (Taylor et al. 2007). For a given systematic, δC`;i j, the
bias, bµ, on parameter θµ, is given by:

bµ =
∑
ν

(F−1)µν Bν, (56)

where

Bν =

`max∑
`′=`min

`max∑
`=`min

∑
i j,mn

δC`;i j Cov−1
[
C εε
`;i j,C

εε
`′;mn

] ∂C`′;mn

∂θν
. (57)

We note that we assume a Gaussian likelihood function
but with a correlated covariance matrix (which includes non-
Gaussian contributions). The extent to which this assumption
is robust to relaxing the Gaussian likelihood assumption was
explored in Martinelli et al. (2021), who found good agreement
between Fisher matrix (Gaussian likelihood) predictions and full
Markov chain Monte Carlo (MCMC) predictions. Additionally,
Taylor et al. (2019) found a similar result that also allows for the
possible derivation of a fully non-Gaussian likelihood function.

3. Methodology

In this section, we review the computational and modelling
specifics used within this investigation. We begin by describ-
ing the survey specifications adopted. Then, details are given
about our choice of fiducial cosmology, modelling of back-
ground quantities, and Fisher matrices. Lastly, we describe mod-
elling choices made in the computation of the magnification bias,
source obscuration, and local Universe effect corrections.

3.1. Survey specifications

For Euclid, forecasting specifications are specified in EC20; we
adopted these here, but we note that our IA model is simpler (see
Sect. 2.2),and we vary ΩK , rather than the dark energy’s criti-
cal density. Specifically, we considered the ‘optimistic’ scenario
described in that work, as this is the case where the cosmic shear
probe is able to meet its precision goals by itself. Under this sce-
nario, the survey is taken to extend up to `-modes of 5000.

Additionally, the intrinsic variance of observed ellipticities is
taken toconsistof twocomponents; eachwithamagnitudeof0.21.
Correspondingly, the root mean square (RMS) intrinsic ellipticity
variance isσε =

√
2×0.21 ≈ 0.37. Euclid is also expected to have

a survey area such that fsky = 0.36. The survey’s galaxy surface
density is anticipated to be n̄g = 30 arcmin−2.

The cosmic shear probe of Euclid is planned to observe
sources between redshifts of 0 and 2.5, and utilise 10 equipop-
ulated tomographic redshift bins with the following edges:
{0.001, 0.418, 0.560, 0.678, 0.789, 0.900, 1.019, 1.155, 1.324,
1.576, and 2.50}.

Given that Euclid will use photometric redshifts, the model
for the source distributions within these tomographic bins must
account for photometric redshift uncertainties. Accordingly, for
a particular bin, i, the galaxy redshift distribution, ni(z), is
described as follows:

ni(z) =

∫ z+
i

z−i
dzp n(z)pph(zp|z)∫ zmax

zmin
dz

∫ z+
i

z−i
dzp n(z)pph(zp|z)

, (58)

where zp is measured photometric redshift, z−i and z+
i are the lim-

its of the ith redshift bin, and zmin and zmax are the redshift limits
of the survey itself. Additionally, n(z) is the underlying distribu-
tion of galaxies which here we modeled according to the formal-
ism established in Laureijs et al. (2011):

n(z) ∝
( z
z0

)2
exp

[
−

( z
z0

)3/2]
, (59)

7 We use the specification in EC20, but note that Euclid Collaboration
(2019) uses a value of 0.26 per component. Since we are looking at biases
caused by the differences in the signal the shot noise component does not
affect the reported biases, however the relative significance (bias divided
by error) will be lower for a larger shot noise term.
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Table 2. Values of model parameters used in defining the uncertainty of
photometric redshift estimates through Eq. (60).

Parameter Fiducial Value

cb 1.0
zb 0.0
σb 0.05
co 1.0
zo 0.1
σo 0.05
fout 0.1

Notes. Chosen according to EC20.

where z0 = zm/
√

2, and zm = 0.9 is the median redshift of the
survey. The remaining function in Eq. (58), pph(zp|z), encapsu-
lates the probability that a source measured to have a photomet-
ric redshift of zp actually has a redshift of z. This distribution
takes the form (Kitching et al. 2008):

pph(zp|z) =
1 − fout

√
2πσb(1 + z)

exp
{
−

1
2

[ z − cbzp − zb

σb(1 + z)

]2}
+

fout
√

2πσo(1 + z)
exp

{
−

1
2

[ z − cozp − zo

σo(1 + z)

]2}
. (60)

Here, the distribution is expressed as the sum of two terms – the
first is the uncertainty resulting from multiplicative and additive
bias in redshift determination for the fraction of sources with a
well measured redshift, whilst the second represents the same,
but for a fraction of catastrophic outliers in the sample, fout. The
values used for the individual parameters in this parameterisation
match the selection of EC20, and are stated in Table 2, which are
fixed throughout our analysis.

3.2. Cosmological modelling and Fisher matrices

Throughout this investigation, we consider the ΛCDM cosmo-
logical model and its extension: the w0waCDM model, which
also allows for varying dark energy pressure and a separately
parameterised dark energy equation of state at early times. The
ΛCDM model uses seven parameters, which are defined thusly:
the present-day total matter density parameter Ωm, the present-
day baryonic matter density parameter Ωb, the dimensionless
curvature parameter ΩK = −K(c/H0)2, the Hubble parameter
h = H0/100 km s−1 Mpc−1, the spectral index ns, the RMS value
of density fluctuations on 8 h−1 Mpc scales σ8, and massive neu-
trinos with a sum of masses

∑
mν , 0. The w0waCDM model

additionally adds in the present-day value of the dark energy
equation of state w0, and the high-redshift value of the dark
energy equation of state, wa. Typically, the present-day densi-
ties Ωi, i ∈ {m, b,K}, are denoted with an additional subscript
0; we omit this here for brevity. Primarily, we are interested the
w0waCDM case when discussing corrections in this investiga-
tion, as a key goal of Stage IV surveys is exploring models of
dark energy. However, when examining the cosmological param-
eter biases, we also present the ΛCDM case, for completeness.

The specific values used for each of these parameters were
also chosen for consistency with EC20 (shown in Table 3). As in
EC20, the value of

∑
mν , 0 was treated as fixed, and we did not

calculate uncertainties or biases for it. When computing biases
for all corrections except for the non-flat Universe term, we set
ΩK to 0. Only when testing the significance of the additional

Table 3. ΛCDM and w0waCDM cosmological parameter fiducial values
used in this investigation.

Cosmological parameter Fiducial value

Ωm 0.32
Ωb 0.05
h 0.67
ns 0.96
σ8 0.816
w0 −1
wa 0∑

mν (eV) 0.06
ΩK {0, 0.05}

Notes. These values correspond to EC20. It should be noted that
∑

mν ,
0 is assumed to be fixed, and uncertainties and biases are not calculated
for it. Additionally, two possible values are provided for ΩK , because
the non-zero value must be used when evaluating the non-flat Uni-
verse correction. This value is selected using the upper-bound of the
Planck Collaboration VI (2020) 1σ uncertainty.

non-flat Universe correction term was it set to 0.05. In this case,
the selected value serves as the upper-limit of 1σ constraint on
the parameter from Planck Collaboration VI (2020).

In cases where the non-flat Universe correction were
not evaluated, our Fisher matrices matched those of the
Euclid forecasting specification (EC20). Thus, they contain:
Ωm,Ωb, h, ns, σ8 and AIA for the ΛCDM case and, addition-
ally, w0 and wa, for the w0waCDM case. When the correction for
spatially curvature needed to be tested, the Fisher matrices also
include ΩK . It was not necessary to include any further nuisance
parameters within the matrix, as EC20 showed that the inclu-
sion of various different nuisance parameters (e.g. those mod-
elling the non-linear part of the matter power spectrum) typically
altered the forecasted uncertainties on the cosmological parame-
ters by less than 10%. The S i jmn were calculated using the pub-
licly available PySSC8 code (Lacasa & Grain 2019), with an R`

of 3.
To calculate the cosmological background quantities

required for the investigation, including the matter power spec-
trum and growth factor, we used the CAMB9 software pack-
age (Lewis et al. 2000). Additionally, we utilised the Halofit
(Takahashi et al. 2012) implementation of the non-linear part of
the power spectrum, and included additional corrections iden-
tified by Bird et al. (2012). Where necessary, we additionally
employed Astropy10 (Astropy Collaboration 2013, 2018) to
compute the cosmological distances. The NLA model IA param-
eters were set to AIA = 1.72 and CIA = 0.0134, again in accor-
dance with EC20. The required partial derivatives required were
computed numerically, using the procedure described in EC20.
Throughout this work, all quantities were evaluated for 200 `-
bands. The limits for these were logarithmically spaced, with an
`min of 10 and an `max of 5000.

3.3. Modelling the higher order corrections

To model the matter bispectrum required by the reduced shear,
magnification bias, source-lens clustering, and source obscu-

8 https://github.com/fabienlacasa/PySSC
9 https://camb.info/
10 http://www.astropy.org
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Table 4. Values of the slope of the luminosity function used in comput-
ing the magnification bias correction.

Bin i Central redshift Slope si

1 0.2095 0.108
2 0.489 0.180
3 0.619 0.229
4 0.7335 0.279
5 0.8445 0.335
6 0.9595 0.400
7 1.087 0.480
8 1.2395 0.586
9 1.45 0.753
10 2.038 1.335

Notes. These are calculated at the central redshift of each tomographic
bin. The limiting magnitude is taken to be 24.5, and the slopes are cal-
culated with a fitting function (Euclid Collaboration 2022b) determined
from the Euclid Flagship simulation.

ration corrections, we used the BiHalofit model and code11

(Takahashi et al. 2020). This represents the matter bispectrum
using one-halo and three-halo terms, which have been deter-
mined via a fitting to N-body simulations.

For the magnification bias correction, we used the slope of
the luminosity function as calculated from the fitting formula
given in Appendix C of Euclid Collaboration (2022b). This is
determined from the Euclid Flagship simulation (Potter et al.
2017) and for the limiting magnitude 24.5 of the VIS instru-
ment (AB in the Euclid VIS band; Cropper et al. 2012). There-
fore, it provides the most Euclid specific estimate of this quan-
tity to date. However, once the Euclid survey is in-progress, we
note that this quantity should be calculated directly from the
observed data. We used a single value for the slope for each
tomographic redshift bin. This value was calculated at the cen-
tral redshift of the bin. The slopes for all bins, together with their
central redshifts, can be found in Table 4. We note that the mag-
nification bias from Euclid Collaboration (2022b) was obtained
for the n(z) from Euclid Collaboration (2021) but we use the
Euclid Collaboration (2020) n(z), however the effect of the small
changes in the assumed n(z) should be small, which is consistent
with the small differences in the results between this paper and
Deshpande et al. (2020a).

In order to evaluate the source obscuration terms, we set the
total number of observed galaxies to 2 × 109, so that the total
number of galaxies per redshift bin was 2 × 108. We also took
the mean galaxy radius to be ϑ = 0.32′′ (1.55 × 10−6 rad). This
value is the mean half-light radius of galaxies from the Euclid
Flagship mock data (Euclid Collaboration 2022a).

To evaluate the impact of the local Universe correction,
we used a smoothing scale of 120 h−1 Mpc. This is the pri-
mary value used in Hall (2020), as it is just large enough
for the local overdensity to be linear, while still possessing
full-sky spherical coverage within the 2M++ galaxy redshift
catalogue (Lavaux & Hudson 2011) used to measure the local
overdensity. Accordingly, δ0

(
R = 120 h−1 Mpc

)
= 0.045 and

δ0

(
R = 120 h−1 Mpc

)
/σ

(
R = 120 h−1 Mpc

)
= 0.85. Different

choices of smoothing scale result in different values of the local
overdensity, δ0, with some choices consistent with zero. As the
LU effect scales linearly with the local overdensity, we do not

11 http://cosmo.phys.hirosaki-u.ac.jp/takahasi/codes_
e.htm

rule out the LU bias as being exactly zero. Furthermore, it might
be expected that the LU effect is mostly subsumed within the
SSC uncertainty for any choice of smoothing scale, since it is
mostly affected by modes that are outside of the survey. Detailed
investigation of these points is beyond the scope of the paper,
and our intention here is merely to assess how much bias would
result from a nominal amplitude for the local overdensity com-
bined with a fiducial implementation of the SSC covariance. In
this work, we compared the magnitude of the studied correction
terms to the Gaussian sample variance, ∆C`/C`. This was calcu-
lated according to Kaiser (1992), and took the form

∆C`/C` =
√

2
[
fsky(2` + 1)

]−1/2
. (61)

4. Results and discussion

This section presents and discusses the computed values for the
studied corrections. First, we show the magnitudes of the correc-
tion relative to the magnitude of the cosmic shear angular power
spectra, and compare them to the sample variance. Through-
out this section, we include the SLC and SO-SLC terms; how-
ever, due to the lingering uncertainty around the magnitude of
the source number density weighting term, we also show results
without these terms in Appendix A.

In Fig. 1, the magnitudes of the reduced shear, source-lens
clustering, magnification bias, source obscuration, local Uni-
verse effect, and non-flat Universe corrections (relative to the
angular power spectra0 are shown. The combined correction
is also shown, and we note that this is the sum of the signed
values of the corrections (rather than the absolute values) that
are shown here for comparison. These terms are displayed for
the auto-correlations of four redshift bins across the survey’s
range; specifically, bins 1, 4, 7, and 10. These particular bins are
presented for illustrative purposes, and the remaining bins and
cross-correlations display consistent trends. It can be seen that
all corrections are typically below sample variance both individ-
ually and when combined, with the exception of at small physi-
cal scales at the lowest and highest redshifts. A noteworthy detail
from this figure is that while individual corrections are either
consistently well below sample variance (or higher at low red-
shifts and reduce significantly at high redshifts or vice versa), the
total magnitude of the corrections is consistently high. In Fig. 1
we compare changes in the power spectrum to the “cosmic vari-
ance” term. However, this is only for visualisation purposes. The
overall result is computed using the covariance as described, that
results in specific bias values.

Furthermore, another immediately noticeable feature is that
the source obscuration cross terms with magnification bias and
source-lens clustering are always multiple orders of magnitude
smaller than the sample variance; these are typically the other
terms as well; suggesting that these cross-terms are negligible.

Despite the fact that these terms are generally below sam-
ple variance because they make contributions consistently across
`-modes, they can still cause significant biases in inferred cos-
mological parameters. The bias in an estimated parameter result-
ing from neglecting a systematic effect is typically considered
significant if it exceeds 25% of the 1σ uncertainty on that param-
eter (Taylor et al. 2007). This is because at that point, the biased
and unbiased 1σ confidence contours overlap by less than 90%.

The predicted cosmological parameter biases resulting from
neglecting all corrections except for the non-flat Universe term
are stated in Tables 5 and 6, for the ΛCDM and w0waCDM
cases, respectively. These are also represented visually in Fig. 2.
The biases from the non-flat Universe correction (which requires
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Fig. 1. Absolute magnitudes of the reduced shear, source-lens clustering, magnification bias, local Universe, source obscuration, and non-flat
Universe corrections to the shear angular power spectra, relative to those angular power spectra, for Euclid. The corrections to the angular power
spectra for four redshift bin auto-correlations are shown as representative examples, spanning the redshift range of Euclid. The remaining auto
and cross-correlations exhibit the same patterns. The absolute value of the signed sum of the corrections is also shown. These are all compared
to the sample variance, calculated according to Eq. (61). Notably, while the magnitudes of individual corrections are either higher at lower
redshifts or vice-versa, the magnitude of the sum of the corrections is consistently high. Additionally, the cross-terms between source obscuration,
and magnification bias and source-lens clustering are multiple orders of magnitude below other terms and sample variance, suggesting they are
negligible. The remainder of the terms are typically of similar magnitudes across redshifts, suggesting they must all be accounted for. We note
that these magnitudes are for both the ΛCDM and w0waCDM cases, as the choice of fiducial values for the latter matches the former, and that the
non-flat Universe correction here has been computed for a cosmology with ΩK = 0.05, whilst other corrections are when ΩK = 0. The markers
for the SO-MB, SO-SLC, SO, Non-flat Universe, and total lines are only used to distinguish those from the other terms, and do not have any other
significance. The symbols (points) are only included to allow a reader to distinguish the lines (in particular if printing in gray-scale) and do not
indicate the `-modes where a computation was made; all quantities were evaluated for 200 `-bands, logarithmically spaced, with an `min of 10, and
an `max of 5000.

a fiducial cosmology with non-zero curvature) are stated in
Table 7, for both choices of cosmology. From these tables we see
that the source-lens clustering, magnification bias, source obscu-
ration, and local Universe terms are individually significant in
the ΛCDM case, while instead only the source-lens clustering,
magnification bias, and source obscuration corrections are indi-
vidually of concern in the w0waCDM case. This difference is
likely due to the presence of the variable dark energy parameters
in the wowaCDM scenario reducing sensitivity to scales where
the local Universe term is important. Of these, the source-lens
clustering term is particularly concerning, as for this term all but
two of the parameters have significant biases.

Also shown in these tables are the combined biases when all
of the individually significant corrections are taken into account,
and when all of these corrections are taken into account. The
full total is also shown in Fig. 2. Owing to the fact that some
biases are additive, while others are subtractive, the total biases
in the ΛCDM scenario are, in fact, less severe than some of the
individual ones; in particular, source-lens clustering. However,
the totals are still significant and because they do not strongly
resemble any one of the biases uniquely, multiple terms must
still be computed. In the w0waCDM case, the magnification bias
no longer suppresses the source-lens clustering term; in fact it
is adding to it instead, which means that the total biases in this
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Table 5. Uncertainties on, and biases induced from neglecting the various corrections, in the ΛCDM parameters of Table 3 for Euclid.

Cosm. Uncertainty RS SLC MB SO SO-SLC SO-MB LU Total Total
param. (1σ) Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ All Sig.

Ωm 0.0051 −0.032 1.14 −0.75 0.36 0.0032 0.0047 0.26 0.76 0.73
Ωb 0.021 0.0035 0.28 0.080 −0.044 6.5 × 10−4 −6.6 × 10−4 −0.016 0.26 0.28
h 0.13 0.0084 0.15 0.19 −0.11 2.8 × 10−4 −0.0013 −0.042 0.23 0.25
ns 0.029 0.017 0.0065 −0.23 0.18 2.1 × 10−4 0.0016 0.038 2.6 × 10−4 −0.07
σ8 0.0072 0.076 −1.10 0.78 −0.54 −0.0031 −0.0050 −0.22 −0.78 −0.79

Notes. This table considers the case when ΩK = 0, and accordingly lists the biases resulting from all corrections except the non-flat Universe
correction. That can be found in Table 7. All biases are given as a fraction of the 1σ uncertainty on each parameter. A bias is considered significant
if it reaches or exceeds 0.25σ, as at this point its uncorrected and corrected confidence contours overlap by less than 90%. ‘RS’ denotes the reduced
shear correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration
correction, ‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’
is the local Universe correction. The total biases from the sum of all corrections, as well as the total biases from only the individually significant
corrections are also given.

Table 6. Uncertainties (along with the biases induced from neglecting the various corrections) on the w0waCDM parameters of Table 3 for Euclid.

Cosm. Uncertainty RS SLC MB SO SO-SLC SO-MB LU Total Total
Param. (1σ) Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ Bias/σ All Sig.

Ωm 0.010 −0.079 1.25 0.12 0.12 0.0025 −0.0022 0.14 1.55 1.49
Ωb 0.021 −0.0013 0.30 0.069 −0.021 7.2 × 10−4 −5.8 × 10−4 −0.0032 0.35 0.35
h 0.13 0.0057 0.11 0.11 −0.053 3.2 × 10−4 −6.3 × 10−4 −0.015 0.16 0.17
ns 0.031 0.051 −0.19 −0.19 0.026 −3.0 × 10−4 0.0015 −0.045 −0.35 −0.35
σ8 0.012 0.081 −1.19 0.017 −0.19 −0.0024 0.0011 −0.093 −1.38 −1.36
w0 0.13 −0.076 0.81 0.55 −0.039 0.0011 −0.0051 0.032 1.28 1.31
wa 0.36 0.022 −0.51 −0.60 0.27 −3.3 × 10−4 0.0053 0.097 −0.72 −0.84

Notes. This table considers the case when ΩK = 0, and accordingly lists the biases resulting from all corrections except the non-flat Universe
correction. That can be found in Table 7. All biases are given as a fraction of the 1σ uncertainty on each parameter. A bias is considered significant
if it reaches or exceeds 0.25σ, as at this point its uncorrected and corrected confidence contours overlap by less than 90%. ‘RS’ denotes the reduced
shear correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration
correction, ‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’
is the local Universe correction. The total biases from the sum of all corrections, as well as the total biases from only the individually significant
corrections are also given.

case are more severe than the individual ones. This change likely
occurs due to the dark energy terms increasing sensitivity to
scales where the opposite component of the magnification bias
(e.g. decrease in galaxy number density due to dilution rather
than increase due to increased flux) is dominant.

At inference time, the computational load can be reduced
by noting that only the individually significant terms (source-
lens clustering, magnification bias, source obscuration, and local
Universe) need to be computed in both cases, because this total
does not significantly differ from the full total. Although, given
that the reduced shear correction is also obtained at no additional
cost when computing the magnification bias correction, we rec-
ommend including this as well. The bias in the two-parameter
confidence contours resulting from neglecting the combined
effect of the significant biases is shown in Figs. 3 and 4 for
the ΛCDM and w0waCDM scenarios, respectively. These figures
display the contours in the case where corrections have been
made and where they have not been made. As with Tables 5
and 6, we see that the cumulative corrections must be accounted
for.

We note that many of the modelling specifics used here, for
example, the slope of the luminosity function or the smoothing
scale of local overdensity, will need to be determined directly
from the Euclid survey itself for self-consistency when these cor-

rections are computed at inference time. Accordingly, it would
not be meaningful to place constraints on them here, due to the
variable survey specifics.

Additionally, we note that the true value of the local den-
sity contrast and, accordingly, the radius of the smoothing kernel
used to calculate it are still open questions. Accordingly, there is
a large uncertainty in the local Universe correction which cannot
be meaningfully constrained and it is possible that it may even
be zero. Accurate measurements of the local density contrast are
required for this.

Similarly, the source obscuration correction as computed in
this work represents a worst-case scenario where ’every’ galaxy
in the foreground of a given redshift slice has an overlap. This
represents an upper limit on the bias from this effect; however,
in practice, the number of sources with overlap will be a smaller
fraction. Accordingly, it is likely that source obscuration will not
result in significant biases for true Euclid observations, particu-
larly if a robust mitigation strategy is employed.

However, the dominant source of quantifiable modelling
uncertainty comes from the modelling of the matter bispec-
trum and given that the bispectrum is not currently well con-
strained by observations, this model is likely to continue to
evolve. Accordingly, it is important to constrain the impact
of a change in bispectrum model on these terms. To date,
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Fig. 2. Stacked bar chart of cosmological parameter biases resulting from the studied higher-order effects, for the flat ΛCDM case (left) of Table 5,
and the flat w0waCDM case (right) of Table 6. The non-flat Universe term is not shown here, due to the different cosmology. Biases are presented
here as a fraction of the 1σ parameter uncertainty. A bias is non-negligble if its absolute value reaches or exceeds 0.25σ. ‘RS’ denotes the reduced
shear correction, ‘SLC’ is the source-lens clustering term, ‘MB’ is the magnification bias correction, ‘SO’ is the two-point source obscuration
correction, ‘SO-MB’ and ‘SO-SLC’ are the source obscuration-magnification bias and source-lens clustering cross terms respectively, and ‘LU’ is
the local Universe correction The segments with the dashed outlines show the total parameter biases from these corrections for each parameter.

Table 7. Uncertainties on the fiducial ΛCDM and w0waCDM cosmologies of Table 3 when ΩK = 0.05, and biases induced from neglecting the
non-flat Universe correction for the Euclid cosmic shear probe.

Cosmo. ΛCDM Uncertainty ΛCDM Non-flat Universe w0waCDM Uncertainty w0waCDM Non-flat Universe
Param. (1σ) Bias/σ (1σ) Bias/σ

Ωm 0.0050 0.043 0.014 −0.062
Ωb 0.021 −0.0070 0.021 8.1 × 10−4

ΩK 0.034 0.043 0.062 −0.054
h 0.12 −0.012 0.12 0.012
ns 0.029 −0.010 0.030 0.012
σ8 0.028 0.026 0.042 −0.044
w0 N/A N/A 0.14 −0.090
wa N/A N/A 0.56 0.10

Notes. The biases are given as a fraction of the 1σ uncertainty on each parameter. A bias is considered significant if it reaches or exceeds 0.25σ, as
at this point its uncorrected and corrected confidence contours overlap by less than 90%. The predicted biases from this correction are well below
significance for all parameters.

three widely used matter bispectrum models have been pro-
duced (Scoccimarro & Couchman 2001; Gil-Marín et al. 2012;
Takahashi et al. 2020). As each subsequent model has become
more complex and improved upon the accuracy of its prede-
cessor, comparing correction magnitudes using each of these
models would not realistically constrain the uncertainty from the
bispectrum model.

Instead, it is useful to set a threshold around the latest of
these models (Takahashi et al. 2020), within which any change
in the model must be contained to avoid producing a signifi-
cant change in the correction terms. We do this by determin-
ing the minimum fractional increase or decrease in the matter
bispectrum required across all triangle configurations, for each
correction individually, to cause a significant change in any of
the cosmological parameter biases, in the w0waCDM case. This
corresponds to a change of ±0.25σ in any one of the biases.

Given that we are placing multiplicative limits on the change in
the bispectrum, for each correction the smallest limits are found
when considering the cosmological parameter that already has
the largest bias. The resulting limits are stated in Table 8, along-
side the parameter which would see the corresponding signifi-
cant change in its bias. From this, we see that the corrections
most susceptible to a change in the bispectrum model are the
source-lens clustering and magnification bias terms, as neglect-
ing these already creates the most significant biases individu-
ally. Additionally, the two source obscuration cross terms are
the least sensitive, requiring a change of an order-of-magnitude.
This further reinforces the fact that these terms are safely negli-
gible. We stress that these multiplicative limits are not exhaustive
cut-offs on when a bispectrum model would cause a significant
change, because a model with a sufficiently large change for
only a select sub-range of scales or configurations could still
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Fig. 3. Projected 1σ and 2σ 2-parameter uncertainty contours for Euclid under a ΛCDM cosmology, with and without correcting for the source-
lens clustering, magnification bias, source obscuration, and local Universe terms. These are predicted using the Fisher matrix formalism, using the
cosmology specified in Table 3, in the case where ΩK = 0 and is kept fixed. The true location of the constraints is denoted by the blue-dashed
contours, while the biased locations if the corrections are not made are given by the solid-gold contours. Significant biases are predicted for Ωm,
Ωb, h, and σ8, and their values can be found in Table 5

cause a significant difference in the parameter biases. We rec-
ommend an explicit revaluation with any future updated bispec-
trum models, should they non-trivially exceed these thresholds
frequently.

Another consideration is how the inclusion of the stud-
ied effects would affect the size of the cosmological parame-
ter uncertainty constraints themselves. In this work, we do not
explicitly calculate this resulting change. However, it has pre-
viously been shown that for the bispectrum-dependent terms,
even corrections that cause biases of greater than 1σ result in

negligible changes to the uncertainty constraints (Shapiro 2009;
Deshpande et al. 2020a).

5. Conclusions

In this investigation, we have examined the higher-order cor-
rections to the cosmic shear angular power spectra that must
be modelled when performing inference with Euclid. By first
reviewing the literature, we identified 24 correction terms and
gathered representative values to facilitate comparison. From
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Fig. 4. Projected 1σ and 2σ 2-parameter uncertainty contours for Euclid, with and without correcting for source-lens clustering, magnification
bias, and source obscuration. These are predicted using the Fisher matrix formalism, for the w0waCDM cosmology specified in Table 3, in the
case when ΩK = 0 and is kept fixed. The true location of the constraints is denoted by the blue-dashed contours, while the biased locations if the
corrections are not made are given by the solid-orange contours. Significant biases are predicted for Ωm, Ωb, ns, σ8, w0, and wa, and their values
can be found in Table 6.

these, we identified six corrections which were potentially
important for Euclid and evaluated them explicitly. These were:
the relaxation of the reduced shear approximation, the source-
lens clustering correction, the magnification bias correction, the
source obscuration correction, the local Universe correction, and
the non-flat Universe correction.

After calculating these corrections, we used the Fisher matrix
formalism to predict the biases in cosmological parameter biases
if each of these terms were to be neglected, in order to identify
which ones are necessary to be modelled for Euclid. This was

done for two scenarios: a ΛCDM cosmology, and a w0waCDM
cosmology. For the first of these scenarios, we found that the
source-lens clustering, magnification bias, source obscuration,
and local Universe terms were significant, while for the second
case we found that the source-lens clustering, magnification bias,
and source obscuration corrections each produced significant
biases in multiple parameters individually. The source-lens clus-
tering term was noted as being of particular concern as multiple
biases approached or exceeded 1σ. However, in the ΛCDM case
we found that when the biases are combined, they frequently
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Table 8. Increasing and decreasing multiplicative changes required in
the matter bispectrum, across all configurations and all `-modes, to sig-
nificantly affect the biases from each relevant correction term.

Correction Min. change Bispec. mult. Bispec. mult.
param increase decrease

RS Ωm −2.16 −4.16
SLC Ωm 1.20 0.80
MB wa 0.58 1.41
SO-SLC Ωm 100.63 −99.67
SO-MB wa 47.00 −47.00

Notes. A significant change is when any one of the biases on the cos-
mological parameters changes by ±0.25σ. These values encapsulate the
fractional change for a fixed cosmology, in this case the w0waCDM cos-
mology of Table 3, with ΩK = 0. It should be noted that these values
are not exhaustive thresholds, as sufficiently significant changes to the
model at a particular sub-range of scales may also be problematic.

suppressed each other, leading the total bias to be lower than
many of the individual biases. Despite this, the total biases were
still significant, and did not strongly represent the exact biases
from any correction individually. In the w0waCDM case, the total
of the three biases was higher than the individual terms. Accord-
ingly, we recommend that the source-lens clustering, magnifica-
tion bias, source obscuration, and local Universe corrections are
all taken into account when modelling the shear angular power
spectra for Euclid. Additionally, given that the reduced shear cor-
rection is obtained at no additional cost when computing the
magnification bias correction, we recommend that this too be
included.

In the case the source number density weighting term (a
contribution to source lens clustering) is zero, we find that for
the ΛCDM case we find that none of the overall total bias-to-
uncertainty ratios exceed 0.25σ, however this only occurs if all
corrections are applied or not applied. Hence, we should either
include all corrections or none, but including only some could
result in biased results. In the w0waCDM case we find signifi-
cant biases could be caused by neglecting any of terms, but, in
particular, the magnification bias.

To provide some constraints on the predictive ability of this
work, we quantified how much the matter bispectrum would
have to change by in order to illicit a significant change in the
biases predicted in this work. We identified that a ∼20−40%
increase or decrease in the amplitude of the matter bispectrum
at all scales and for all triangle configurations would be required
in such a case.

We note that this work did not investigate the impact of
higher-order corrections on the IA spectra. Typically, even for
effects which, when neglected, produce high biases, namely,
∼O(1σ), the corresponding corrections to the IA spectra cause
negligible biases (Deshpande et al. 2020a). Accordingly, an
explicit evaluation should not be necessary. Furthermore, we did
not consider the impact of baryonic feedback on the bispectrum
and, therefore, on its dependent corrections. The impact of this
remains poorly understood, with inconsistent findings from dif-
ferent simulations (Semboloni et al. 2013; Barreira et al. 2019).
Accordingly, this is beyond the scope of this investigation. How-
ever, we note that given the magnitude of change required to the
matter bispectrum in order to cause a significant change in the
cosmological parameter biases, it is unlikely baryonic feedback
would significantly alter the predictions of this investigation.

Given that we find it is necessary to include these higher
order terms in the modelling of the shear power spectra, the opti-
mal strategy to do so remains an open question. It has repeatedly
been shown that computing these corrections for just one cos-
mology is relatively time consuming (Deshpande et al. 2020a;
Duncan et al. 2022), posing a serious challenge to carrying out
computations at the inference time. While it may be possible
to sufficiently optimise the required evaluation code, alternate
strategies may also prove useful. Scale-cutting techniques such
as k-cut cosmic shear (Taylor et al. 2018a) have been shown
to mitigate the need to make such corrections without signifi-
cantly compromising the constraining power of Stage IV surveys
(Deshpande et al. 2020b). Alternatively, emulation has recently
become a popular tool in cosmology for reducing computation
times at the moment of inference by replacing analytical mod-
els with emulators (see e.g. recent work emulating the matter
power spectrum within Spurio Mancini et al. 2022). Emulators
could also be developed directly for these correction terms, or
intermediate quantities such as the matter or convergence bis-
pectra. Further work on `-mode weighting and/or k-cut cosmic
shear approaches are required to optimise the trade-off between
accuracy, precision, and computational expense.

Furthermore, while our analysis here is limited to the angu-
lar power spectra, significant corrections for this statistic are
also likely to be significant for the two-point correlation func-
tion. In fact, due to the mode-mixing that occurs when trans-
forming the power spectra to correlation functions, the effect
of the discussed approximations is likely to be more severe.
This, combined with the sensitivity of the correlation function
to higher `-modes and the additional approximations required
(e.g. the flat Hankel transform; Kitching et al. 2017), means that
if correlation functions were to be used a similar but separate
study would be required to demonstrate modelling of the corre-
lation function to higher order corrections.
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Appendix A: Excluding the SLC contributions

In this appendix, we reproduce the results shown in Figures 1
and 2, except with the SLC and SO-SLC terms removed (dis-
cussed in Section 2.4). With future studies, when calibrating
the source number density weighting term, these terms could
be negligible. In this case, we find that for the ΛCDM case

we find that none of the overall total bias-to-uncertainty ratios
exceed 0.25σ; however, this only occurs if all corrections are
applied/not applied. Hence, one should either include all correc-
tions, or none, but including only some could result in biased
results. In the w0waCDM case, we find significant biases could
be caused by neglecting any of terms – in particular, the magni-
fication bias.
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Fig. A.1. Similar to Figure 1 except excluding SLC and SO-SLC terms.
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Fig. A.2. Similar to Figure 2 except excluding SLC and SO-SLC terms.
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