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ABSTRACT
This is the first of a series of papers dedicated to unveiling the mass composition and dynamical
structure of a sample of flattened early-type galaxies in the Coma cluster. We describe our
modifications to the Schwarzschild code of Richstone et al. Applying a Voronoi tessellation
in the surface of section, we are able to assign accurate phase-space volumes to individual
orbits and to reconstruct the full three-integral phase-space distribution function (DF) of any
axisymmetric orbit library. Two types of tests have been performed to check the accuracy
with which DFs can be represented by appropriate orbit libraries. First, by mapping DFs of
spherical γ -models and flattened Plummer models onto the library, we show that the resulting
line-of-sight velocity distributions and internal velocity moments of the library match those
derived directly from the DF to a precision better than that of present-day observational errors.
Secondly, by fitting libraries to the projected kinematics of the same DFs, we show that the DF
reconstructed from the fitted library matches the input DF to a rms of about 15 per cent over a
region in phase space covering 90 per cent of the mass of the library. The accuracy achieved
allows us to implement effective entropy-based regularization to fit real, noisy and spatially
incomplete data.

Key words: stellar dynamics – galaxies: elliptical and lenticular, cD – galaxies: kinematics
and dynamics – galaxies: structure.

1 I N T RO D U C T I O N

Since the pioneering work of Schwarzschild (1979), orbit super-
position techniques have become an important tool in the dynami-
cal modelling of spheroidal stellar systems. Stationary distribution
functions (DFs) of such systems are subject to Jeans’ theorem and
hence depend on the phase-space coordinates only via the integrals
of motion. In the axisymmetric case these integrals are energy E,
angular momentum along the axis of symmetry Lz, and, for most
potentials, an additional, non-classical ‘third integral’ I3. Because
any set of integrals of motion essentially represents an orbit and,
conversely, any orbit can be represented by a set of integrals of mo-
tion, the DF can be approximated by the sum of single-orbit DFs,
with the only adjustable parameters being the total amount of light
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carried by each orbit. The main task that remains to describe hot
stellar systems adequately is to find an appropriate set of orbits.

Orbit superposition techniques have been used to model
spheroidal stellar systems in various symmetries (e.g. Rix et al.
1997; van der Marel et al. 1998; Cretton et al. 1999; Romanowsky
& Kochanek 2001; Cappellari et al. 2002; Verolme et al. 2002;
Gebhardt et al. 2003; van de Ven et al. 2003), with the goal of de-
termining dynamical parameters such as central black hole mass,
internal velocity anisotropy or global mass-to-light ratio. An orbit
library tracing the phase-space structure of a trial potential is fitted
to observed photometry and kinematics, to decide whether or not it
gives a valid model of the corresponding galaxy.

In the spherical case there exists a well-known mass–anisotropy
degeneracy, permitting in general convincing fits to the projected
velocity dispersion σ , even if the trial potential differs from the true
one (Binney & Mamon 1982). With complete knowledge of the full
line-of-sight velocity distributions (LOSVDs), however, it is possi-
ble to reconstruct the DF, given the potential is known (Dejonghe &
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Merritt 1992). Furthermore, even for the realistic case where the po-
tential is not known in advance, Merritt & Saha (1993) and Gerhard
(1993) have shown how the information contained in the LOSVDs
can constrain both the potential and the DF.

Likewise, in the axisymmetric case, Dehnen & Gerhard (1993)
have calculated realistic smooth DFs and have shown that a similarly
close relationship exists between the potential and internal kinemat-
ics on the one hand and the projected kinematics on the other. How-
ever, fits of axisymmetric libraries still pose some additional unan-
swered questions. Recently, Valluri, Merritt & Emsellem (2004)
discussed the indeterminacy of the reconstruction of the potential in
general axisymmetric systems from two- or three-dimensional data
sets by studying the shape of the χ 2-contours describing the quality
of the orbital fit. Cretton & Emsellem (2004) argued that, even in
the case of a mathematically non-degenerate f (E , Lz)-system, an
artificial degeneracy occurs, caused by the discreteness of the or-
bit library. They emphasized the role of appropriate smoothing, but
did not provide a definite solution. Richstone et al. (2004) critically
analysed their arguments and emphasized that both high-quality
comprehensive data sets and orbit libraries are needed to achieve a
reliable modelling of axisymmetric systems.

In view of this discussion concerning orbit-based dynamical mod-
els it seems worthwhile to step back and investigate how well orbit
libraries represent the phase-space structure of a given dynamical
system. This includes an examination of the choice of orbits, which
in the generic axisymmetric case is difficult, since part of the phase-
space structure is unknown due to our ignorance about I3. Central
to such an analysis are the orbital phase volumes, which accomplish
the transformation from the relative contributions of individual or-
bits to the library, the so-called orbital occupation numbers or orbital
weights, into phase-space densities (and vice versa). The availability
of such phase volumes offers several applications.

(i) Accurate phase volumes allow the calculation of internal and
projected properties such as density and velocity profiles, line-of-
sight velocity distributions (LOSVDs) etc. of general axisymmetric
DFs f (E , Lz, I 3) via orbit libraries. Besides the possibility of sys-
tematically studying the structure of general axisymmetric systems,
these profiles provide a direct check on the choice of orbits through
a comparison with the profiles calculated from directly integrating
the DFs.

(ii) From any fitted library one can reconstruct the corresponding
DF via the phase volumes, and thus reconstruct the DF from any
observed early-type galaxy in the axisymmetric approximation.

(iii) If the library is fitted to some reference data constructed from
a DF, then (ii) allows an investigation of how closely the fit matches
the input DF, and thus an effective regularization scheme can be
implemented, permitting real (noisy) data sets to be fitted.

Vandervoort (1984) touched on the problem by establishing the
transformation from cells of integrals to the corresponding phase-
space volumes. However, the resulting relations are only suitable
for explicitly known integrals, for example for single orbits only
in the rare case in which all integrals are known. For components
integrated about the unknown integrals they have been applied by,
for example, Rix et al. (1997), Cretton et al. (1999) and Verolme &
de Zeeuw (2002).

The aim of this paper is to introduce a general implementation
for the calculation of individual orbital phase volumes in any ax-
isymmetric potential, and, by following applications (i) and (iii), to
prove that our libraries accurately map given dynamical systems.
This directly supports our setup of the library and sets the basis for
our project to recover the dynamical structure and mass composi-

tion of a sample of flattened early-type galaxies in the Coma cluster.
In a subsequent paper we will focus on the question of how much
smoothing has to be applied in order to obtain an optimal estimate
of the dynamical system underlying a given set of noisy and spa-
tially incomplete observational data. The full analysis of the data
set (Mehlert et al. 2000; Wegner et al. 2002) will be addressed in a
future publication.

The paper is organized as follows. In Section 2 we define all
quantities related to the library used in the subsequent sections and
describe our orbit sampling. Section 3 outlines the relation between
orbital weights and orbital phase-space densities. Section 4 contains
a description of our implementation to calculate individual orbital
phase-space volumes. In a first application, we calculate internal and
projected properties of given DFs using orbit libraries in Section 5.
In Section 6 we discuss how the library is fitted to given data sets,
and in Section 7 we reconstruct reference DFs from their projected
kinematics. Finally, in Section 8, we summarize the results.

2 T H E O R B I T L I B R A RY

Our method of setting up the orbit libraries used for the dynamical
modelling is based on the procedure presented in Richstone et al.
(in preparation). There, the reader finds a description of the basic
properties of the program. In this section we define quantities that
are used later on in this paper.

In the following we assume that the luminosity density ν is known.
In an analysis of real data it has to be obtained by deprojection of
the measured photometry. With the stellar mass-to-light ratio � =
M/L , the mass density ρ l of the luminous material follows from ν

as ρ l = � ν.
The total mass density ρ possibly includes a dark component ρDM

and reads

ρ = � ν + ρDM. (1)

Once the mass profile is fixed, the potential � follows by in-
tegrating Poisson’s equation. With � known, a large set of orbits
is calculated, sampling homogeneously the phase-space connected
with �.

2.1 Spatial and velocity binning

As described in Richstone et al. (in preparation), we divide the
meridional plane into bins, equally spaced in sin ϑ ,1 linear in r near
the inner boundary rmin of the library, and logarithmic at the outer
boundary rmax. (If not stated otherwise, we use Nr = 20 radial bins,
N ϑ = 5 angular bins.) For the projection of the library we use
the same binning as for the meridional plane. Every spatial bin in
the plane of the sky is subdivided into N vel bins linearly spaced in
projected velocity between −vmax and vmax, leading to a bin-size
for the LOSVDs of


vLOSVD = 2
vmax

Nvel
. (2)

Even if the potential is spherical, our spatial binning tags an axis of
symmetry. Later, when referring to a ‘minor-axis’, we always mean
the axis ϑ = 90◦ of the library.

1 Throughout the paper, we use spherical coordinates (r , ϑ , ϕ), with ϑ =
0◦ corresponding to the equatorial plane. If not stated otherwise, we use
superscripts or subscripts h, i , j , k as indices, l, m, n as exponents.
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2.2 Orbital properties

Luminosity. The normalized contribution of orbit i to the lumi-
nosity in spatial bin 1 � j � Nr × N ϑ , dLj

i, equals the fraction of
time the orbit spends in bin j. Let 
t k

i denote the kth time-step in
the integration of orbit i, so that

t k
i ≡

∑
h�k


t h
i (3)

is the total time elapsed until time-step k, and

J j ≡ {
k :

(
r
(

t k
i

)
, ϑ

(
t k
i

)) ∈ bin j
}

(4)

contains all time-steps during which orbit i is located in spatial bin
j. Accordingly, we can write

dL j
i =

∑
k∈J j


t k
i

Ti
, (5)

with Ti ≡ ∑

t k

i being the total integration time of orbit i.
Given the orbit’s weight wi to the whole library – the integrated

luminosity along the orbit – the total luminosity of the library in
spatial bin j reads

dL j =
∑

i

wi dL j
i . (6)

Internal velocity moments. To obtain the internal velocity mo-
ments 〈vl

r vm
ϑ vn

ϕ〉 of the orbit library, we store for each orbit i and
each time-step 
t k

i the product of velocities vl
r vm

ϑ vn
ϕ and fractional

time 
t k
i /Ti. All contributions in spatial bin j are summed to yield〈

vl
r vm

ϑ vn
ϕ

〉 j

i
≡

∑
k∈J j

vl
r vm

ϑ vn
ϕ


t k
i

Ti
. (7)

Thus for the whole library the velocity moments in spatial bin j
follow as〈
vl

r vm
ϑ vn

ϕ

〉 j = 1

dL j

∑
i

wi

〈
vl

r vm
ϑ vn

ϕ

〉 j

i
. (8)

Projected kinematics. For the projected kinematics of the library
we record the normalized contribution to the kinematics LOSVD jk

i

at projected position j and projected velocity 1 � k � N vel for every
orbit. Again, for the whole library the LOSVD reads

LOSVD jk =
∑

i

wi LOSVD jk
i . (9)

By fitting a Gauss–Hermite series to the LOSVD jk we obtain the
Gauss–Hermite parameters (Gerhard 1993; van der Marel & Franx
1993),

GHP jk = {
γ jk, v jk, σ jk, H jk

3 , H jk
4

}
, (10)

of the LOSVD.

2.3 Choice of orbits

To obtain a reliable representation of phase space it is important
that any allowed combination of the integrals of motion (E , Lz, I 3)
is represented to some degree of approximation by an orbit in the
library. The absence of some orbit family in the library might cause
certain dynamical configurations to be misleadingly emphasized in
the final fit.

Sampling E and Lz. Richstone et al. (in preparation) adjust the
orbit sampling in (E , Lz)-space according to their spatial binning.

From the requirement that every pair of grid bins ri � rj in the
equatorial plane should be connected by at least one equatorial
orbit with r peri = ri and r apo = rj they derive a unique grid of orbital
energies E and z-angular momenta Lz. We experimented with
doubling the number of pericentres and/or apocentres per radial
bin, but found that the above-described method yields a sufficiently
dense sampling of the (E , Lz)-plane.

Sampling I3. It is common practice in the various existing
Schwarzschild codes to sample I3 by dropping orbits at given energy
E and angular momentum Lz from the zero-velocity curve [ZVC,
defined by E = L2

z/(2r 2cos2ϑ) + �(r , ϑ)]. Richstone et al. (in
preparation) use the intersections of the angular rays of the merid-
ional grid with the ZVC as starting points. This sampling ensures
that each sequence of orbits with common E and Lz contains at
least one orbit that is roughly confined to the region between the
equatorial plane and each angular ray of the meridional grid.

If we consider only those potentials symmetrical about the equa-
torial plane with d�/dz > 0, then every orbit eventually crosses the
equatorial plane and leaves a footstep in the surface of section (SOS)
given by the radii r and radial velocities vr of the upward equato-
rial crossings. Orbits respecting a third integral show up in the SOS
as nested invariant curves, sometimes with embedded resonances
(e.g. Binney & Tremaine 1987). Fig. 1 shows an example of a SOS.
The dots mark representative points of invariant curves obtained by
numerically following orbits with common E and Lz in a flattened
Hernquist potential with total mass M = 1011 M�, scaling radius
r s = 10 kpc, and a flattening of q = 0.5 (see Section 5.1 for further
details).

The SOS encompasses all available orbital shapes, and a repre-
sentative sampling of orbits should result in the SOSs being ho-
mogeneously filled with orbital imprints. Unfortunately, we are not
aware of any simple relationship between the drop-point of an orbit
on the ZVC and its corresponding appearance in the SOS, as long
as I3 is not known explicitly. In order to guarantee a representative
collection of orbits in any potential, we sample the orbits as follows.

In a first step we drop orbits from the (outer) intersections of
the angular rays of our spatial grid with the ZVC as described in
Richstone et al. (in preparation). Then, for any pair (E , Lz) included
in the library we choose NL radii rl, 1 � l � NL, equally spaced in
log(r ) on the equatorial plane between r peri and r apo of the equatorial

Figure 1. Example of a surface of section for a flattened Hernquist model
(details in the text). All orbits have been integrated for N SOS = 80 intersec-
tions with the SOS.
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radial orbit with energy E and angular momentum Lz. We start with
the smallest of these radii rl and launch an orbit i from the equatorial
plane with the maximal radial velocity

vr ,i =
√

2 [E − �(rl )] − L2
z

r 2
l

≡ vmax(E, Lz, rl ). (11)

For the subsequent orbits i′ we step-wise decrease vr,i ′ by 
vr,i ′

(see equation 13 below) until we reach vr,i ′ = 0 and pass over to the
next radius r l+1.

With (E , Lz) and (rl, vr,i ) fixed, the orbital vϑ,i is determined by

vϑ,i (E, Lz, rl , vr ,i ) =
√

2 [E − �(rl )] − v2
r ,i − L2

z

r 2
l

. (12)

When vr,i = 0, then vϑ,i (E , Lz, rl, vr,i ) = vmax(E , Lz, rl). For each
velocity pair we launch an orbit from the equatorial plane at the
actual rl with the actual velocities vr,i and vϑ,i . This procedure is
repeated for each of the NL radii. If, at a specific launch position,
we find an imprint in the SOS of a previously integrated orbit that
differs from the current launch position by less than 10 per cent in
radius and radial velocity, we regard this part of the SOS as already
sampled and discard the orbit.

The velocity step-size 
vr,i is set as


vr ,i = min{
vLOSVD , ξ vm,i−1}, (13)

where 
vLOSVD is the width of the LOSVD bins (cf. equation 2),
and

vm,i = max
1�s�Nsos

{
vs

i :
(
r s

i , v
s
i

) ∈ SOS
}
. (14)

Here SOS denotes the set of the N sos orbital imprints in the SOS
and i is the index of the actual orbit. We usually take ξ = 1/3.5.
From trying different values for NL we found that NL = 30 was
sufficient to yield a dense filling of the SOS with approximately
one invariant curve crossing the r-axis of the SOS in each of the
equatorial meridional grid bins.

The velocity step-size is largest for the radial orbits and gradually
decreases when the SOS is filled with orbits (note that vm,i−1 is the
maximum of the radial velocities in the SOS of the ‘precursor’ orbit
i − 1). For the shell orbits, the step-size becomes smallest. The
adjustment of the step-size in each step ensures that we sample
the more radial orbits with a resolution that corresponds at least
to the width of the LOSVD bins and that the sampling is refined
for the shell orbits. The shell orbits have a large ϑ-motion and need
to be included in the library to avoid a radially biased collection of
orbits.

After the above sampling, we measure the maximum f s of all
r min,i/r max,i , with

rmin,i = min
1�s�Nsos

{
r s

i :
(
r s

i , v
s
i

) ∈ SOS
}

(15)

and r max,i defined analogously. To ensure that the sequence contains
all orbits up to (approximately) the thin-shell orbit, we complete the
library if necessary by launching orbits from the equatorial plane
with vr = 0 at

r = 3 rmin,i ′ + rmax,i ′

4
, (16)

where f s = r min,i ′/r max,i ′, until f s > 0.9.
Fig. 1 illustrates for a flattened Hernquist potential the dense

coverage of the SOS with invariant curves after all orbits are
integrated.

2.4 Use of the library

If the relative contribution of each orbit to the whole library, the
orbital weight wi, is specified, then according to equations (6), (8)
and (9) the library provides a specific model including the LOSVDs,
internal density distribution, internal velocity moments and so on of
this particular orbit superposition.

If the library is constructed to test whether or not a given trial mass
distribution leads to a consistent model of an observed galaxy, then
the model and in particular the LOSVDs have to be compared with
the observations. If the comparison turns out not to yield a satisfac-
tory fit, then either the weights can be recalculated (see Section 6
for details) or the actual mass distribution has to be rejected. If, on
the other hand, the fit shows that the actual set of weights seems to
be a valid model of the galaxy, then one can reconstruct the internal
velocity structure and DF from the wi.

Conversely, if one has a DF at hand and wants to calculate, for
example, its projected kinematics without going through the ap-
propriate integrals, one can assign the orbital weights according to
the DF (see Section 5) without any fitting procedure, and analyse
the output of the library. This can be useful in systematic studies
of the projected properties of stationary axisymmetric distribution
functions depending on all three integrals (E , Lz, I 3).

In the following we will make use of both applications with the
goal of investigating the accuracy of our orbit libraries.

3 O R B I TA L W E I G H T S A N D
P H A S E - S PAC E D E N S I T I E S

In order to reconstruct the DF from the library or to calculate spatial
profiles of internal or projected properties of some given DF, it is
necessary to convert orbital weights into phase-space densities and
vice versa. This section summarizes the connection between orbital
weights and orbital phase-space densities under the regime of Jeans’
theorem.

3.1 Phase-space densities of orbits

Consider a system in which the orbits respect n integrals of mo-
tion I 1, . . . , In. Because the phase-space density of stationary sys-
tems is constant along individual orbits (Jeans’ theorem), the phase-
space density along orbit i is given as the orbital weight wi di-
vided by the phase-space volume Vi. More formally, let I denote
the n-dimensional set of orbital integrals (I 1, . . . , In), let V de-
note the six-dimensional phase space, P(V) its power set, and let
ξ : I → P(V) map an n-tuple of orbital integrals (I1, . . . , In) ∈ I
onto the hypersurface ξ (I1, . . . , In) ⊆ V in phase space covered by
the corresponding orbit,

ξ (I1, . . . , In) ≡ {p ∈ V : I1(p) = I1, . . . , In(p) = In}. (17)

With Ui ⊆ I being the small cell in integral space represented by
the orbit i,

Ui ≡ {(I1, . . . , In) ∈ I : I1 ∈ [I1,i − 
I1,i , I1,i + 
I1,i ],

. . . , In ∈ [In,i − 
In,i , In,i + 
In,i ]}, (18)

we define the characteristic function

χi ≡
{

1 : (r , ϑ, ϕ, vr , vϑ , vϕ) ∈ Oi

0 : (r , ϑ, ϕ, vr , vϑ , vϕ) /∈ Oi

(19)

of the image set

Oi ≡
⋃

W∈ξ (Ui )

W (20)
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of Ui in phase space. The volume of the phase-space region repre-
sented by orbit i then follows as

Vi =
∫

χi d3r d3v, (21)

and accordingly the phase-space density along the orbit reads

fi ≡ wi

Vi
. (22)

3.2 Orbital weights from DFs

If we reverse the application of equation (22), and assign the orbital
weights according to some given DF f ,

wi = fi Vi , (23)

with fi ≡ f (I 1,i , . . . , I n,i ) now being the DF f evaluated at the
orbit’s position in integral space, then the DF f lib of the entire library,
which consists of the combined contributions of all orbits

flib =
∑

i

fiχi , (24)

will be the mapped version of f onto the library. Equation (23)
together with equations (6), (8) and (9) can be used to calculate the
LOSVDs, internal velocity profiles and density distribution of any
axisymmetric DF with known potential.

4 O R B I TA L P H A S E VO L U M E S

Two degrees of freedom. Binney, Gerhard & Hut (1985) have
shown that, for autonomous Hamiltonian systems with two degrees
of freedom, the phase volume of any orbit can be derived from the
SOS by integrating the times between successive orbital visits of
the SOS:

V ≈ 
E

∫
SOS

T (r , vr ) dr dvr , (25)

where T (r , vr) is the time the orbit needs from (r , vr) to the next
intersection with the SOS, and 
E defines a small but finite cell
around the orbit’s actual energy E characterizing the hypersurface
in phase space represented by the orbit.

Axisymmetric case. Richstone et al. (in preparation) carry over this
result to axisymmetric systems and approximate the phase volumes
as

V ≈ 
Lz 
E

∫
SOS

T (r , vr ) dr dvr . (26)

Here 
Lz and 
E denote the range of energies and angular mo-
menta represented by the orbit under consideration. Equation (26)
is valid whether the orbit is regular or chaotic.

Calculating the SOS integral. In what follows we describe our
novel implementation of equation (26), which improves on the
method of Richstone et al. (in preparation) to deliver higher-
precision phase-space volumes.

For all orbits in a sequence with common energy E and angular
momentum Lz we obtain a representative sample S of the SOS by
storing N sos imprints of each orbit in the SOS given by the radial
positions and velocities2 at the times t k(s)

i of the orbital equatorial
crossings:

2 To reduce the computational effort we take the absolute values of the radial
velocities, thereby exploiting the symmetry of the SOS with respect to the
r-axis in our application.

Figure 2. A Voronoi tessellation of the SOS of Fig. 1. Open circles mark
individual intersections of orbits with the SOS; solid dots are points added
to make the Voronoi cells well behaved at the boundaries.

S ≡ {(
r s

i , v
s
i

)
: r s

i ≡ r
(

t k(s)
i

)
, vs

i ≡
∣∣vr

(
t k(s)
i

)∣∣,
Ei = E, Lz,i = Lz, 1 � s � Nsos

}
. (27)

Typically, we integrate each orbit up to N sos = 80 intersections with
the SOS and choose N ′

sos = 60 points for the calculation of the
phase volumes randomly out of the whole set of intersections. We
also store the time intervals

t
(
r s

i , v
s
i

) ≡ t k(s+1)
i − t k(s)

i (28)

between two successive intersections.
Inspection of Fig. 1 shows that only a tessellation approach can

be used to numerically integrate equation (26) in the general case,
including regular, resonant and chaotic orbits. To this end we de-
cided to perform a Voronoi tessellation of S using the software of
Shewchuk (1996). This tessellation uniquely allocates a polygon to
each element of S. The edges of the polygon are located on the
perpendicular bisections of pairs containing the element under con-
sideration and one of its neighbours, and are equidistant to the actual
pair and a third element. For almost all elements the polygons are
closed and encompass an area containing the actual element and
all points that are closer to it than to any other element. The areas
enclosed by the polygons completely cover the space between the
elements and therefore characterize the fractional area inside the
SOS occupied by each orbit.

Fig. 2 shows the same SOS as in Fig. 1. The open circles represent
r and vr at the orbital equatorial crossings. The thin lines around
these circles mark the Voronoi cells allocated to the elements of S
and the solid dots show boundary points (see below).

With 
As
i denoting the surface area enclosed by the polygon

around (r s
i , v

s
i ) ∈ S, the integral expression in the phase volume of

orbit i (cf. equation 26) can be approximated3 as∫
SOS

T (r , vr ) dr dvr ≈
∑

s

t
(
r s

i , v
s
i

)

As

i . (29)

At the boundary of the distribution of sampled points, there may
not be enough neighbours around a given element of S to close its

3 Note that the Poincaré map of the SOS onto itself is area-preserving, and

As

i should be independent of s. The Voronoi tessellation, however, yields
only approximately constant 
As

i . Nevertheless, as Section 5 shows, the
resulting phase volumes are of high accuracy.
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polygon. In order to ensure that every Voronoi polygon is closed
and confined to an area enclosed by the ZVC of the SOS (given by
vr of equation 11), we construct an envelope around the distribution
of sampled orbital intersections. In Fig. 2 the points of the envelope
are marked by solid dots. They are constructed as follows.

The first step is to determine the maximum v̂0 of radial velocities
in S:

v̂0 ≡ max {vr : (r , vr ) ∈ S} . (30)

To ensure that no Voronoi cell exceeds below the axis vr = 0, all
imprints in the SOS with vs

i � ε v̂0 are mirrored about the axis
vr = 0 (typically ε = 0.1). For the rest of the SOS we construct an
envelope in an iterative loop starting from

(r̂0, v̂0) ≡ (r , vr ) ∈ S, vr = v̂0. (31)

In each iteration n + 1 we search for (r̂n+1, v̂n+1) ∈ S obeying

v̂n+1 = max {vr : (r , vr ) ∈ S, r > r̂n} . (32)

The envelope consists of points densely sampled from the line seg-
ment connecting (r ′

n , v′
n) and (r ′

n+1, v′
n+1), where the prime indicates

that the coordinates are slightly shifted outwards, i.e. r ′
n = (1+ δ)r̂n

and v′
n = (1 + δ)v̂n , with a typical value of δ = 0.01. The loop

eventually stops after N iterations at r̂N = rup and is followed by an
analogous procedure running from r̂0 to r lo to complete the envelope
along the left part of the SOS. The points on the envelope are used
as additional seeds for the Voronoi tessellation.

As Fig. 2 shows, the apposition of the boundary points as de-
scribed above ensures that all orbital Voronoi cells are closed and
confined to an area roughly bounded by the outermost invariant
curve of the SOS. The definition of the boundary is purely geo-
metrical and is insensitive to numerical uncertainties in the orbit
integration. The spiky cells along the upper boundary belong to
seeds of the envelope and do not affect the calculation of the orbital
phase volumes.

The Voronoi tessellation used to approximate the integral
expression in equation (26) via equation (29) defines a robust
method to calculate the relative phase volume of any orbit inside
a particular sequence of orbits with common E and Lz, including
resonances and chaotic orbits. The areas assigned to the individual
orbital imprints in the SOS completely fill the area below the ZVC
of the SOS. Thus, a cruder sampling of the SOS is compensated by
larger individual orbital phase volumes. In the limit of an infinitely
dense sampling, the assigned ‘phase-space weights’ obtained by
the tessellation approach single-orbit phase volumes.

Calculating 
E 
Lz. For a complete determination of the phase
volumes we also need the relative contributions of a whole sequence
of orbits with common (E , Lz), as compared with other sequences
with different energies and angular momenta. These are described by
the factors 
Lz 
E of the orbital phase volumes (cf. equation 26).
They are in fact equal for all orbits in the same sequence and need
to be calculated only once for each sequence.

Fig. 3 gives an example of the (E , Lz)-plane of a typical library.
The dots show the grid of sampled orbital energies and angular
momenta. Each dot represents a sequence of orbits with common
E and Lz but different I3. To calculate 
Lz 
E for a particular
sequence, we construct a quadrangle around the sequence’s (E , Lz)
and estimate the product 
Lz 
E as the surface area enclosed by
this quadrangle. The thin lines in Fig. 3 show the boundaries of these
quadrangles, which are constructed as follows.

As described in Section 2.1, the grid in (E , Lz)-space is derived
from the requirement that, for every pair ri < rj of equatorial grid

Figure 3. Typical distribution of sampled energies E and angular momenta
Lz of an orbit library. The thin red lines show the boundaries of small cells
assigned to each sequence. Their surface area is taken to estimate 
E 
Lz.
The potential equals that of Figs 1 and 2.

bins, the library contains at least one equatorial orbit with r peri = ri

and r apo = rj. Consider now a sequence of orbits with (E seq, L z,seq)
and corresponding r peri,seq and r apo,seq of the equatorial orbit. In (E ,
Lz)-space all sequences inside the boundary of the sampled area
are surrounded by four other sequences having both their pericentre
and their apocentre in adjacent spatial bins. Let r peri, j and r apo, j ,
1 � j � 4, denote the corresponding pericentres and apocentres of
the equatorial orbits of these sequences. We construct a quadrangle
around the sequence (E seq, L z,seq) by connecting the energies and
angular momenta of four fictitious orbit sequences characterized by
the pericentre r̂peri, j and apocentre r̂apo, j of their equatorial orbits:

r̂peri, j = 1

2
(rperi, j + rperi,seq) (33)

and

r̂apo, j = 1

2
(rapo, j + rapo,seq). (34)

The sequences with the largest apocentres and the smallest peri-
centres are surrounded by less than four sequences having both their
pericentre and their apocentre in adjacent spatial bins. For these se-
quences we calculate the edges of the quadrangle as if there were
further sequences around, whose energies and angular momenta fol-
low from our spatial grid at smaller radii than rmin and larger radii
than rmax.

Sequences with r peri,seq ≈ r apo,seq (lying on the upper boundary of
the sampled area in Fig. 3 and usually containing only one, approx-
imately circular, orbit) are also not surrounded by four sequences
as described above. For these sequences we take the (E seq, L z,seq)
of the actual sequence as the upper right edge of the quadrangle.

As can be seen in Fig. 3, the quadrangles around the sequences’
energies and angular momenta completely cover the sampled part of
the allowed area in (E , Lz)-space below the curve Lz(E) = L z,circ.
They give a reasonable measure of the fractional area in (E , Lz)-
space, occupied by each orbit sequence.

5 M A P P I N G D I S T R I BU T I O N F U N C T I O N S
O N TO T H E L I B R A RY

In this section we describe how to use the phase volumes from
the previous section to calculate internal and projected properties
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of stationary DFs using an orbit library. To this end, starting with a
density profile ρ and a stationary distribution function f ρ connected
to ρ through ρ = ∫

fρ d3v, a library is constructed as described in
Section 2. Instead of fitting the library to the kinematics of f ρ ,

LOSVD f (vlos) = 1

ρ

∫
fρ d2v⊥, (35)

we assign an appropriate weight to each orbit such that the superpo-
sition of all orbits represents f ρ (see Section 3.2). We then compare
the internal density distribution ρ lib and the anisotropy profile β lib, as
well as the projected kinematics GHPlib, obtained from the library
with the same properties ρ, β and GHP calculated directly from
the DF (see Sections 5.1 and 5.2). Thereby we can check to what
accuracy the orbit library reproduces a given dynamical system.

5.1 Spherical γ-models

As a first reference case, we explore spherical γ -models.

Properties of the input model. The stellar body of the reference
model is constructed from γ -models (Dehnen 1993) with density

ργ (r ) = M

4π

rs(3 − γ )

r γ (rs + r )4−γ
. (36)

These models approximate the de Vaucouleurs law of ellipticals
quite well for γ ∈ [1, 2]. The DF is assumed to be of the Osipkov–
Merritt type f OM = f OM(E − L2/2r 2

a) (Osipkov 1979; Mer-
ritt 1985a,b). The corresponding systems are isotropic inside the
anisotropy radius ra , at r  r a, and radially anisotropic at r � r a:

β ≡ 1 − σ 2
ϑ + σ 2

φ

2 σ 2
r

= r 2

r 2 + r 2
a

. (37)

We tested various combinations of the parameters (γ , r s, r a). How-
ever, since the conclusions drawn from the comparisons do not de-
pend strongly on γ , the following contains only a discussion of the
results for the Hernquist model (γ = 1), where the DF can be written
in terms of elementary functions and reads (Hernquist 1990)

f (E, L) ∝ 1

8(1 − q2)5/2
− 3 arcsin q + (1 − 2q2)

×
[

q
√

1 − q2(8q4 − 8q2 − 3) + r 2
s

r 2
a

q

]
, (38)

with q =
√

rs(E − L2/2r 2
a )/G M .

Comparison of model and library. Fig. 4 shows the GHPs, density
and anisotropy profiles of a library with ≈ 2 × 8800 orbits, extend-
ing from ≈ 5 × 10−4 r s to ≈ 28 r s. For this library we used a closed
meshed sampling containing two different pericentres for each ra-
dial bin. The weights for the orbits were directly derived from equa-
tion (23) and the Hernquist DF of equation (38) with r s = 10.5 kpc,
a total mass of M = 7.5 × 1011 M�, and r a = ∞ (isotropic model).
The big dots show the expected kinematics, density and anisotropy
of the Hernquist model. The GHPs were obtained by first calcu-
lating the LOSVDs at the position of the corresponding spatial bin
from the DF using the method described in Carollo, de Zeeuw &
van der Marel (1995) and then fitting a Gauss–Hermite (GH) series
to the LOSVDs. For the density distribution and anisotropy we used
equations (36) and (37), respectively.

As the figure shows, the library is able to reproduce the GHP
and internal density distribution of the model to a high degree of
accuracy. The mean fractional difference in σ is below 
σ < 1 per
cent, and the mean difference in H4 is below 
H 4 < 0.01. The

Figure 4. Comparison of a Hernquist model (big dots) and a library with
weights directly derived from the spherical, isotropic Hernquist DF (lines).
The upper panel shows the projected kinematics along the major axis (solid
line) and minor axis (dashed line). The lower panel shows the density dis-
tribution (upper two rows, [ρ] = M�/pc3) and the anisotropy parameter
(lower two rows) for the minor and major axis, respectively.

largest deviations between model and library occur in the anisotropy
profile with rms(β) = 0.06 (taken over a whole angular ray). The
individual differences, however, are smaller than 
β = 0.1 over
almost the whole spatial range covered by the library. Near the
inner and outer boundaries of the library the orbit sampling becomes
incomplete, with mostly radial orbits coming either from outside
the outer boundary or from inside the inner boundary are missing.
Consequently, the anisotrophy of the library is lower than in the
isotropic reference model.

Fig. 5 is as Fig. 4, but for an anisotropic Hernquist model with
r a = 4 r s. It confirms the results from the isotropic model. The offset
in the H4-profiles at large radii is due to errors in the GH fit. At these
radii the resolution of our LOSVD bins is too low to give reliable
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Figure 5. As Fig. 4, but for an anisotropic Hernquist model with r a = 4 r s.

GHPs. However, the match of the individual LOSVDs itself is as
good as at smaller radii.

Again the largest deviations show up in theβ-profiles, with a mean
rms(β hern − β lib) = 0.03. As in the isotropic case the differences
between model and library increase when approaching the edges
of the library, where the radial velocity dispersion of the library is
systematically lower than expected.

5.2 Flattened plummer model

We now go one step further and use a flattened test object, namely the
flattened Plummer model of Lynden-Bell (1962) (normalized such
that in the spherical limit M defines the total mass of the model):

ρpl(r , ϑ) = Mλ−9/4

4π
[(3a2 − 2b2)(r 2 + a2)2

+ (4a2 − b2)b2r 2 cos2(ϑ)], (39)

λ= (r 2 +a2)2 −2 b2 r 2 cos2 (ϑ). The parameters a and b describe the
extension of the core and the flattening. The part of the distribution
function that is even in Lz is

fpl(E, Lz) =
√

2

4π3/2

[
�(6)

�
(

9
2

) DE
7
2 + �(10)

�
(

15
2

)C L2
z E

13
2

]
, (40)

where C ∝ (3a2 − 2 b2) and D ∝ 5 b2 (2 a2 − b2). The Plummer
models do not rotate as long as the uneven part of f pl vanishes and
prograde and retrograde orbits exactly balance each other.

Comparison of model and library. Fig. 6 shows a flattened Plum-
mer model with a = 5.0 kpc, b = a/2 and M = 7.5 × 1011 M�

Figure 6. Comparison of a flattened Plummer model (big dots) and a library
with weights directly derived from the DF (lines). Upper panel: projected
kinematics along the major axis (solid lines) and minor axis (dashed lines).
Only moments independent from the uneven part of the DF are shown.
Lower panel: density distribution (upper two rows, [ρ] = M� pc−3) and the
anisotropy parameter (lower two rows) for the two axes.
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(big dots) and profiles obtained from a library with ≈ 2 × 4400
orbits, extending from ≈ 10−3 a to ≈ 20 a (solid and dashed lines
as in Figs 4 and 5). The weights were derived from f pl via equa-
tion (23). The kinematics along the major and the minor axes have
been calculated from higher-order Jeans equations (Magorrian &
Binney 1994). Before the GH parameters were determined, the pro-
jected moments were integrated along a 3.6-arcsec wide major-axis
slit and a 2.0-arcsec wide minor-axis slit. (Note that for the axisym-
metric case we take β = 1 − σ 2

ϑ/σ 2
r .)

As in the spherical case, the Gauss–Hermite parameters of the
projected kinematics are reproduced to better than a few per cent.
Deviations in the outer parts of the H4-profile stem from the GH fit
and are not seen in the LOSVDs. The density distribution is also
well reproduced down to ≈ a/10, and the anisotropy parameter is
|β| < 0.1 from the outer edge of the library down to ≈ a/10.

5.3 Changing the spatial coverage of the library

The library only discretely represents a finite part of the available
phase space. To check how this affects the accuracy of the calculation
of phase-space integrals of a given DF with the library, we did the
profile comparisons described in Sections 5.1 and 5.2 for libraries
with different spatial extents and for different resolutions in the
space of orbital integrals.

The upper panel of Fig. 7 shows σ and H4 along the major and
minor axes for the isotropic Hernquist model (big dots). The four
lines show the outcomes of four libraries with different spatial cov-
erages. For the solid line r min = 2.5 × 10−4, r max = 10 (in units of
the effective radius); for the dotted line r min = 2.5 × 10−3, r max =
10; for the short-dashed line r min = 2.5 × 10−4, r max = 5; and for
the long-dashed line r min = 2.5 × 10−3, r max = 5.

As expected, the less extended libraries fail to reproduce the inner-
most or outermost data points. In the vicinity of the equatorial plane
(along the major axis and the central parts of the minor axis), the
library becomes dominated by azimuthal motion when approach-
ing rmin or rmax, since orbits coming from further outside or inside
are missing. Consequently, the LOSVDs are too flat (H4 too small)
as compared with the expectations (see for example the outermost
parts of the dashed lines of the libraries with small rmax along the
major axis, and the innermost parts of the long-dashed and dotted
lines of the libraries with large rmin in the minor-axis H4-profile).

The effect can also be seen in the internal dynamical structure,
which is illustrated in the lower panel of Fig. 7, where the anisotropy
of the library with respect to ϕ and to ϑ is plotted:

βϕ ≡ 1 − σ 2
ϕ

σ 2
r

, βϑ ≡ 1 − σ 2
ϑ

σ 2
r

. (41)

Near the centre βϕ < 0 along the major and minor axes, confirm-
ing the dominance of ϕ-motion brought about by the dominance
of orbits having their inner turning points there and consequently
rotating rapidly around the axis of symmetry. The effect is less pro-
nounced at the outer points of the major axis, where the effective
potential of the meridional-plane motion is less dominated by the
Lz-term.

The βϑ -profiles lack boundary effects because they are indepen-
dent from the (E , Lz)-sampling and simply reflect the degree to
which the SOSs are filled with orbital invariant curves.

Along the minor axis the agreement of library and model in pro-
jected σ is quite good. Near the centre the library’s σ is enhanced
because the orbits have their pericentre there.

Figure 7. σ and H4 (upper panel) and anisotropy (lower panel) along the
major and minor axes for the isotropic Hernquist model (big dots) and four
libraries with different spatial extensions (r min/r eff, r max/r eff): (2.5 × 10−4,
10) solid line; (2.5 × 10−3, 10) dotted line; (2.5 × 10−4, 5) short-dashed
line; (2.5 × 10−3, 5) long-dashed line.

5.4 Changing the number of orbits in the library

Fig. 8 shows the same comparison as Fig. 7, but for libraries in
which we have omitted every second rperi, resulting in only ≈2 ×
4700 orbits per library. The overall appearance of Fig. 8 is quite
similar to that of Fig. 7, but there are some minor differences. First,
the scatter in the GHPs has increased slightly; however, the match
of predictions and library is still at a level of a few per cent.

The most striking difference is the increase of radial relative to
azimuthal motion near the centre of the library. This probably re-
flects the fact that the pericentres of the orbit sequences are located
at the inner edge of each radial bin. Therefore the most radial orbits,
which contribute significantly to vφ near their turning points, move
through the whole bin before turning around and thus raise the radial
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Figure 8. Same profiles as in Fig. 7, but the libraries have been set up with
a coarser sampling with roughly half the number of orbits as compared with
Fig. 7.

velocity dispersion. This effect is strongest in the centre, since our
binning there becomes relatively large compared with the variation
of the potential. The balance between radial and meridional motion
is not affected by this resolution effect, because the sampling inside
each sequence (in the SOS) is independent from the (E , Lz)-grid,
and thus independent from the resolution of the sampled pericentres
and apocentres.

6 F I T T I N G T H E L I B R A RY

So far we have not tackled the problem of finding the orbital weights
wi according to some given kinematical constraints. This section
contains a brief description of our use of the maximum entropy
technique of Richstone & Tremaine (1988) to fit the library to some
LOSVDs.

6.1 Maximum entropy technique

Given a set of kinematic constraints, we seek the orbital weights
that best fit the library to the constraints. These weights are derived
from the maximization of an entropy-like quantity (Richstone &
Tremaine 1988)

Ŝ ≡ S − αχ2, (42)

where

χ 2 =
∑

j,k

[
LOSVD(lib) jk − LOSVD(data) jk


LOSVD(data) jk

]2

(43)

gives the departure between the predicted kinematics of the library
LOSVD(lib) (cf. equation 9) and the data kinematics LOSVD(data).
Note that the luminosity density ν is not fitted, but used as a boundary
condition (see Richstone et al. in preparation for details). S is an
approximation to the usual Boltzmann entropy:

S ≡
∫

flib ln ( flib) d3r d3v =
∑

i

wi ln

(
wi

Vi

)
. (44)

In the absence of any other condition, the maximization of S forces
the weights wi to be proportional to the phase volumes Vi. This fact
can be used to bias the library towards any set of predefined weights.
If, for example, we substitute for the phase volumes in equation (44)
using Vi → fi Vi, then

S → S′ =
∑

i

wi ln

(
wi

fi Vi

)
, (45)

and the maximization of S′ yields weights wi proportional to fi Vi.
According to equation (23) the factors fi can be chosen to bias the
library towards any given DF f . The Boltzmann entropy corresponds
to the case of equal a priori probabilities fi = fj in phase space.

6.2 The smoothing parameter α

The smoothing parameter α controls the influence of the entropy S
on the fitted weights. If α is small, the maximum of Ŝ is less affected
by χ 2 and the library gives a poor fit to the data. Consequently, it will
not represent the true structure of the object to which it is fitted. If, on
the other hand, α is large, the maximum of Ŝ is largely determined
by the minimum of χ2. In this case the library fits the noise in the
data. The DF of the library is then highly unsmooth, and again does
not represent the true DF of the corresponding object.

The problem of how much smoothing has to be applied in order to
obtain an optimal estimate of the true underlying DF for a given set of
observational data with specific errors and spatial sampling will be
the subject of a forthcoming paper. Here, we focus on illustrating the
accuracy of our method to set up the orbit libraries. In the following,
we will always choose α such that the library yields the best match
to the input DF.

7 R E C O N S T RU C T I N G D I S T R I BU T I O N
F U N C T I O N S F RO M F I T T E D L I B R A R I E S

In this section we use the DFs of Section 5, but instead of exploiting
equation (23) to assign the orbital weights and to compare spatial
profiles of the library and the original DF, we now fit the library to
the DF as follows. First, we calculate the density profile and GHPs
connected with the DF:

ρ =
∫

f d3v (46)
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and

LOSVD f (vlos) = 1

ρ

∫
f d2v⊥, (47)

where the GHPs are obtained from the LOSVDs as described in
Section 5.1. We compose a library as described in Section 2 and fit
it to the GHPs via the maximum entropy technique of Section 6.
Finally, we compare the orbital weights wi(α) resulting from the fit
with those expected from the DF via equation (23). By showing that
the fitted weights approximate the input DF over a large region in
phase space, we justify the decision that we can use the degree to
which the library approximates the DF as a criterion to determine
the optimal amount of smoothing, a fact that we will exploit in a
subsequent paper in more detail.

In order to find the best-fit weights that minimize the χ 2 of equa-
tion (43), we derived error bars for the LOSVDs by first assigning
error bars to the GHPs and then determining LOSVD errors by
means of Monte Carlo simulations. The error for σ was chosen to
increase linearly with r from 2 per cent at the innermost data point
to 10 per cent at the outermost data point. For H3 and H4 the errors
increase from 0.01 to 0.05. The definition of the errors is somewhat
arbitrary since we do not add noise to the data points, but they are
roughly comparable with real data error bars. Since v = 0 in the
models, the error for v is set to 
v = 2 km s−1. A detailed inves-
tigation of the influence of realistic errors on the accuracy of the
reconstructed internal properties of a fitted library will be presented
in a forthcoming paper.

7.1 Hernquist model

Fig. 9 shows a comparison of characteristic properties of a library
fitted to the kinematics corresponding to the dots in the upper panel
and the original DF. The definition of the lines and dots as well as
the input DF are the same as for Fig. 4, and the fit was obtained
with α = 0.0046. As expected, the match to the kinematics and the
internal density profile is excellent after the fit. The anisotropy is
smaller than |β| < 0.1 over a spatial region greatly exceeding the
area where the LOSVDs were fitted. Only near the very centre does
the minor-axis β-profile drop significantly because of the lack of
radial orbits coming from inside the inner boundary of the library
(see Section 5).

Fig. 10 shows the DF reconstructed from the fitted weights via
equation (22) (dots) together with the input DF (thick line). Each
dot represents the phase-space density along one single orbit, and
the densities are scaled according to

∑
wi = ∑

Vi = 1. Over a
region covering 90 per cent of the library’s mass, the rms difference
between the Hernquist DF and the orbital phase-space densities is
12.1 per cent. The remaining departures between model and fit are
mostly due to boundary effects arising from the discrete and finite
nature of the library.

Fig. 11 shows the fractional differences of input model and library
as a function of orbital energy E and angular momentum Lz. For
each dot, the contributions of individual orbits with common E and
Lz have been integrated. Larger dots correspond to larger differences
between the input DF and fitted library. From Fig. 11 it can be seen
that the remaining deviations between library and input DF mostly
stem from orbits lying at the boundary of the phase-space region
covered by the library. Since the library only contains a finite number
of all orbits, the fit to the kinematics with the density as a boundary
condition enforces some redistribution of orbits as compared with
the original DF. For example, at the outer boundary of the library
(E ≈ 0) the fitted orbital phase-space densities are too large as
compared with the input DF. These orbits compensate the cut-off

Figure 9. Comparison of a library fitted to the LOSVDs of a spherical,
isotropic Hernquist DF (lines) and the Hernquist model itself (big dots). The
upper panel shows the projected kinematics along the major axis (solid line)
and minor axis (dashed line). The lower panel shows the density distribution
(upper two rows, [ρ] = M� pc−3) and the anisotropy parameter (lower two
rows) for the two axes.

in energy and contain all the light that should have been distributed
along even less bound orbits. For the same reason, the library fails
to reproduce the Hernquist DF near the most bound orbits.

Fig. 12 shows the results when fitting the same library to the pro-
jected kinematics of the anisotropic Hernquist model with r a = 4 r s,
corresponding to the dots in the upper panel of the figure. Again, af-
ter the fit the library perfectly reproduces the internal density profile
and the projected kinematics. The mismatch in the outer parts of the
H4-profiles result from errors in the GHP fit (see Section 5.1). How-
ever, we do not fit the library to the GHP, but directly to the LOSVD.
The β-profiles of the library follow the expected curves well inside
the region covered by kinematical constraints. In the outer parts,
however, they do not follow the input model to a predominantly
radial motion but turn back to an isotropic appearance. This is a
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Figure 10. Comparison of the DF of a spherical Hernquist model (solid
line, units defined in the text) with the phase-space densities obtained from
a library fitted to GHPs along two perpendicular axes in the galaxy (details
in the text). Each dot represents a single orbit. The rms between the library
and model is 12.1 per cent over a region covering 90 per cent of the library’s
mass.

Figure 11. The fractional difference between a spherical Hernquist model
and a fitted library as a function of orbital energy E and z-angular momentum
Lz. Larger dots corresponds to larger differences. For open dots the DF of
the library overestimates the real DF, and for solid dots it underestimates the
DF.

reflection of the entropy maximization used in the fit, which forces
those parts of the library that are not constrained by data points to
isotropy.

To confirm this effect of entropy maximization, we refitted the
library, but replaced the Vi in equation (44) by the weights of the
anisotropic Hernquist DF following from equation (23). Since for
the maximum entropy solution of equation (44) (without any other
condition) the weights wi are proportional to the values Vi, now be-
ing the weights of the anisotropic DF instead of the phase volumes,
the fit is biased towards the anisotropic Hernquist model. The char-
acteristics of the corresponding fit are shown by the dotted lines in
Fig. 12. The projected kinematics and internal density are indistin-
guishable from the maximum entropy fit, but now the anisotropy
profile is in perfect agreement with the input model.

7.2 Flattened plummer model

Fig. 13 shows the GHPs and internal density and anisotropy of
the Plummer model with b = a/2 of Section 5.2, together with a

Figure 12. As Fig. 9, but for an anisotropic Hernquist model with r a =
4 r s. The dotted line shows the result of a fit with ‘biased weights’ (see text
for details).

fitted library containing ≈ 2 × 4400 orbits. The library was fitted
to the LOSVDs corresponding to the dots of the upper panel of the
figure with a smoothing parameter of α ≈ 0.03. The small deviations
between the library’s kinematics and the model in the upper panel
of the figure are due to the low resolution in the GH fit, and are
not seen in the LOSVDs used for the fit. The anisotropy parameter
is confined to |β| < 0.1 over all the region where the library is
constrained by kinematic data.

The rms difference between the reconstructed DF and the input
model is ≈15 per cent over a region covering 90 per cent of the
library’s mass. As Fig. 14 shows, differences between the model
and library are confined to the boundaries of the sampled (E , Lz)-
region of the phase space. As for the Hernquist model, the reason
for these differences is the incomplete orbit sampling at the edges
of the library.
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Figure 13. Comparison of a flattened Plummer model (big dots) and a
fitted library (lines). The upper panel shows the projected kinematics along
the major axis (solid lines) and minor axis (dashed lines). The lower panel
shows internal moments along the minor and major axis, respectively (units
as in Fig. 6).

8 S U M M A RY

We have presented a modified version of the Schwarzschild code
of Richstone et al. (in preparation). The code involves a new orbit
sampling at given energy E and angular momentum Lz and a new
implementation for the calculation of the orbital phase volumes.

For our libraries we supplement the drop of orbits with common
energy E and angular momentum Lz from the ZVC as described
in Richstone et al. (in preparation) by scanning the SOS with a
resolution that varies as the sampling progresses from the more
radial to the more shell-type orbits. This sampling has been shown
to completely fill the SOS connected with a pair (E , Lz) with orbital
imprints.

A Voronoi tessellation of the SOSs of orbits with common E
and Lz allows us to calculate the phase-space volumes of individual

Figure 14. Deviations from the reconstructed DF of a fitted library and the
Plummer DF of Fig. 13. Each dot represents one sequence of orbits with
common E and Lz. For the open dots the DF of the library overestimates
the real DF, and for the solid dots it underestimates it. Larger dots indicate
larger differences.

orbits in any axisymmetric potential. With the phase volumes we
can convert the orbital weights describing the relative contribution
of the orbits to the whole library into phase-space densities and vice
versa. As a first application we use the densities to check our method
of setting up the library in two different ways.

First, we calculate the spatial profiles of internal and projected
properties of isotropic and anisotropic DFs of spherical γ -models as
well as of the flattened Plummer model with the library. The density
profiles, anisotropy profiles and projected kinematics of the library
closely match those inferred directly from the corresponding DF.
The errors in the higher-order GH parameters Hn, 
Hn < 0.01 for
n = 3, 4, and the fractional error in the projected dispersion, 
σ <

1 per cent, are accurate on a level better than that of present-day
observational errors. The largest deviations occur in the anisotropy
profile, but are smaller than 
β < 0.1 at almost all positions in
the library; however, they increase towards the edges of the spatial
region that is covered by the orbits. This boundary effect is caused
by the locally incomplete orbit sampling there. If in practical appli-
cations the libraries are constructed to extend beyond the area with
observational constraints, these inaccuracies are negligible. Hence,
our libraries fairly represent the phase-space structure of the models
considered.

As a second application we fitted libraries to the GHPs of the
same spherical γ -models and flattened Plummer models. The re-
constructed DFs match the input DF with a rms of about 15 per cent
over a region covering 90 per cent of the library’s mass. The re-
maining deviations are mostly restricted to orbits at the boundary of
the phase-space volume represented by the library. This is not unex-
pected since the library only discretely represents a finite subregion
of the input system. Consequently some redistribution of orbits is
necessary to compensate for orbits not included in the library.

We will investigate the influence of observational errors on the
reconstructed DFs and of the amount of smoothing applied in the fit
in a forthcoming publication. In a further step we will reconstruct
the internal structure and mass composition of a sample of flattened
early-type galaxies in the axisymmetric approximation.
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