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ABSTRACT
We model mock observations of collisionless N-body disc–disc mergers with the same axisym-

metric orbit superposition program that has been used to model elliptical galaxies in Coma.

The remnants sample representatively the shape distribution of disc–disc mergers, including

the most extreme cases, like highly prolate, maximally triaxial and dominantly oblate objects.

The aim of our study is to better understand how the assumption of axial symmetry affects

reconstructed masses and stellar motions of systems which are intrinsically not axisymmetric,

whether the axisymmetry assumption then leads to a bias and how such a potential bias can

be recognized in models of real galaxies. The mass recovery at the half-light radius depends

on viewing angle and intrinsic shape: edge-on views allow to reconstruct total masses with

an accuracy between 20 per cent (triaxial/prolate remnants) and 3 per cent (oblate remnant).

Masses of highly flattened, face-on systems are underestimated by up to 50 per cent. Devi-

ations in local mass densities can be larger where remnants are strongly triaxial or prolate.

Luminous mass-to-light ratios are sensitive to box orbits in the remnants. Box orbits cause the

central value of the Gauss–Hermite parameter H4 to vary with viewing angle. Reconstructed

luminous mass-to-light ratios, as well as reconstructed central masses, follow this variation.

Luminous mass-to-light ratios are always underestimated (up to a factor of 2.5). Respective

dark haloes in the models can be overestimated by about the same amount, depending again

on viewing angle. Reconstructed velocity anisotropies β depend on viewing angle as well as

on the orbital composition of the remnant and are mostly accurate to about �β = 0.2. Larger

deviations can occur towards the centre or the outer regions, respectively. We construct N-body

realizations of the Schwarzschild models to discuss chaotic orbits and the virial equilibrium in

our models. In this study we explore the extreme limits of axisymmetric models. Apparently

flattened, rotating ellipticals of intermediate mass are likely close to both, axial symmetry and

edge-on orientation. Our results imply that Schwarzschild models allow a reconstruction of

their masses and stellar anisotropies with high accuracy.

Key words: galaxies: elliptical and lenticular, cD – galaxies: formation – galaxies: kinematics

and dynamics.

1 I N T RO D U C T I O N

Subject of this paper is the reconstruction of synthetic dynamical

systems – N-body merger remnants – with orbit models. The mo-

tivation behind is to better understand models of real dynamical

systems, especially those of elliptical galaxies.

Elliptical galaxies are optically smooth stellar systems in approx-

imate dynamical equilibrium. They can result from various kinds of

merging processes – e.g. the merging of two discs (e.g. Toomre

�E-mail: jthomas@mpe.mpg.de (JT); jesseit@usm.uni-muenchen.de (RJ)

& Toomre 1972) – or from some kind of monolithic collapse

(e.g. Eggen, Lynden-Bell & Sandage 1962; Larson 1974). In a

cosmological context an early-type can go through several distinct

phases of the above prototypical forms (e.g. Naab et al. 2007).

Apart from following the cosmic evolution of potential progeni-

tor systems the only way to determine elliptical galaxy evolutionary

histories is to scan their present structure for characteristic finger-

prints of different evolutionary events. This concerns both, scaling

relations of ellipticals as a class and internal properties of individual

systems. For example, the cold collapse of a stellar system results

in a typical gradient from central isotropy to strong outer radial

anisotropy in stellar orbits (van Albada 1982). Galaxy mergers, on
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the other hand, can produce a variety of dynamical systems. The final

structure of disc–disc merger remnants depends, e.g. on progenitor

properties (Barnes 1992; Hernquist 1992, 1993), the merging geom-

etry (Weil & Hernquist 1996; Dubinski 1998) and on the mass ratio

of the progenitors (Naab & Burkert 2003; Jesseit, Naab & Burkert

2007). Ellipticals as progenitors can be merged as well (Naab,

Khochfar & Burkert 2006a).

The difficulty with real galaxies is that their intrinsic properties,

like the intrinsic shape, the distribution of mass or the geometry of

stellar orbits, are not directly observable. They have to be inferred

from observations through dynamical modelling.

The state-of-the-art method for such modelling is

Schwarzschild’s orbit superposition technique (Schwarzschild

1979). In very rough terms (1) the photometry of a galaxy is

deprojected into the 3D internal light distribution; (2) the light

distribution is multiplied with the stellar mass-to-light ratio (M/L)

and – depending on the specific application – a black hole or

dark halo is added to obtain the composite mass distribution; (3)

thousands of orbits are calculated in the resulting gravitational

potential; (4) the orbits are added together to fit the kinematic

and photometric observations of the galaxy. Thereby each orbit is

weighted individually to optimize the match with the data.

Schwarzschild’s method can be read as a numerical implemen-

tation of Jeans’ theorem, which states that stationary distribution

functions (DFs) (the density of stars in 6D phase space) of colli-

sionless systems are necessarily functions of the integrals of mo-

tion (e.g. Binney & Tremaine 1987). In other words – since in-

tegrals of motion label orbits (and vice versa) – the phase-space

density in a stationary system is constant along individual orbits.

This explains why the fundamental building blocks of stationary

dynamical systems are entire orbits and no density variation along

individual orbits needs to be considered. In principle then, the only

assumption underlying Schwarzschild modelling is that galaxies are

stationary and collisionless. In practice, however, applications also

assume a specific internal symmetry for each object under study.

This is to reduce the degrees of freedom in the deprojection and to

simplify the sampling of phase space with orbits. Axial symmetry

is the simplest geometry to account for intrinsic flattening, incli-

nation effects, rotation and the presence of disc-like subsystems in

real galaxies. Several implementations of Schwarzschild’s method

for axially symmetric potentials have been developed (Cretton

et al. 1999; Gebhardt et al. 2000; Häfner et al. 2000; Thomas et al.

2004; Valluri, Merritt & Emsellem 2004; Cappellari et al. 2006) and

have been used to analyse surveys of elliptical galaxy kinematics

(Gebhardt et al. 2003; Cappellari et al. 2006; Thomas et al. 2007).

Comparison with phase-space DFs of synthetic galaxy models

has proven that an accuracy level of better than 10 per cent can be

achieved in the numerical construction of axisymmetric orbit super

positions involving all three integrals of motion (Cretton et al.

1999; Krajnovic et al. 2005; Thomas et al. 2004, 2005). Concerning

applications to real galaxies, however, the distribution of appar-

ent ellipticities, isophotal twists and/or minor-axis rotation indicate

that ellipticals cannot be exactly axisymmetric (e.g. Bertola & Gal-

letta 1979; Franx, Illingworth & Heckman 1989; Jedrzejewski &

Schechter 1989; Tremblay & Merritt 1996). Up to now, it is not

clear how such intrinsic deviations from rotational symmetry in real

galaxies affect the results of axisymmetric dynamical modelling.

In this paper, we present first results of a project aimed to sys-

tematically survey the properties of axisymmetric Schwarzschild

models that are applied to non-axisymmetric test objects. Specifi-

cally, we imitate realistic photometric and kinematical observations

(realistic in terms of spatial coverage and resolution) of collisionless

N-body merger remnants and fit them with the same Schwarzschild

code that has been used for a study of Coma ellipticals (Thomas

et al. 2007). We determine internal mass distributions and veloc-

ity anisotropies just as for real galaxies, but since we know the

corresponding properties of our test objects, we can examine the

models.

The final goal of our project is twofold. First, we want to explore

possible systematic deviations that are caused by applying axisym-

metric models to objects that do not respect any internal symmetry.

Thereby, we want to understand how such deviations can be rec-

ognized when modelling a real galaxy, whose internal structure is

not known a priori. Collisionless disc mergers are ideal for such a

study, because they represent physically motivated dynamical sys-

tems that cover a large range of intrinsic shapes and dynamical

structures.

By investigating how intrinsically non-axisymmetric systems are

mapped on to axisymmetric models we also gain templates for the

interpretation of real galaxy models. A second goal of our study is

therefore to compare the resulting Schwarzschild models of merger

remnants with Schwarzschild models of real galaxies. Since we use

the same modelling code in both cases, differences are indicative

for structural differences between galaxies and the analysed merger

remnants. Knowing such differences allows a deeper understanding

of the physical mechanisms involved in elliptical galaxy build-up.

The present paper focuses on the first part of the project. A detailed

discussion of the results with respect to observations and models of

real galaxies is planed for a future publication. We further plan to

extend our survey of Schwarzschild models to samples of mergers

involving gas physics and/or dynamical systems developing from

cosmological initial conditions.

The paper is organized as follows. Section 2 describes the

sample of merger remnants used for this work. Our implemen-

tation of Schwarzschild’s technique is reviewed in Section 3.

Section 4 summarizes tests with a Hernquist sphere. The modelling

results are detailed in Section 5 (general notes), Section 6 (recon-

structed masses) and Section 7 (reconstructed velocity anisotropies).

In Section 8 we discuss various modelling uncertainties.

Section 9 deals with the viewing-angle dependency of the total

mass recovery and Section 10 discusses the relation between re-

constructed luminous M/L values and the central orbital structure of

the merger remnants. Implications for models of real galaxies are

briefly discussed in Section 11. The paper closes with a summary

in Section 12.

2 M E R G E R S A M P L E

A careful selection of the sample of merger remnants is crucial for

our study. The merger remnants for this paper are taken from the

collisionless disc–disc merger sample of Naab & Burkert (2003),

which is consistent with expectations from cosmological simula-

tions (Khochfar & Burkert 2006). Their progenitor galaxies consist

of exponential discs and Hernquist bulges with a bulge-to-disc ratio

of 1:3, embedded in pseudo-isothermal dark matter haloes such that

the overall circular velocity curve is approximately flat in the outer

parts. With respect to their global kinematical and photometrical

properties, these merger remnants resemble giant ellipticals of in-

termediate mass (Naab & Trujillo 2006). For further details on the

general properties and numerical details of how the merger remnants

have formed we refer the reader to Naab & Burkert (2003).

Different merger remnants result from different merging geome-

tries, but here we select them only according to their shape and do

not care how they have formed. As the shape of the merger remnants
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is very closely correlated to their orbital content (Jesseit et al. 2005),

we know that sampling different shapes ensures that we explore a

range of different orbital makeups as well.

2.1 Orbital composition and shape of remnants

According to rotational symmetry, all orbits in axisymmetric po-

tentials conserve the z component Lz of angular momentum and are

minor-axis tubes, or Z tubes. Such Z tubes can have various shapes

between equatorial–radial, equatorial–circular, shell-like and polar–

radial (e.g. Richstone 1982).

In triaxial dynamical systems we will expect more orbit classes

(e.g. de Zeeuw 1985). In particular box orbits (most frequent in

the centre) without net angular momentum, boxlets (resonant boxes

found at larger radii) and inner and outer major-axis tubes (also X
tubes in the following). Major-axis tubes have significant angular

momentum around the long axis. As in axisymmetric potentials, also

triaxial force fields support minor-axis tubes, which have a non-zero

angular momentum with respect to the short axis. The abundances of

different orbit classes will depend on the exact shape of the merger

remnant.

The shape is determined by the ratio of the three principal axes of

the inertial tensor calculated from the particle positions in the merger

remnants. The main axes are denoted: X (long), Y (intermediate)

and Z (short), respectively. The corresponding values of the inertial

tensor are a, b and c, respectively.

2.2 Sample selection

We choose six remnants that representatively sample the range of

shapes realized by the collisionless mergers of Naab & Burkert

(2003), including the most extreme cases: (1) a box orbit dominated

remnant (TRIAX); (2) one with a high X tube fraction (PROLATE);

(3) a nearly round object (ROUND); (4, 5) two very flattened rem-

nants with different inner shape profiles (FLAT and ELONG); (6)

one oblate remnant, dominated by Z tubes (OBLATE). Modelling

of further remnants from this sample would bring little additional

information.

Table 1 summarizes orbital abundances. Respective ellipticity

profiles εX , εY and εZ that result from projecting the remnants along

the three principal axes X, Y and Z are shown in Fig. 1.

The Schwarzschild models considered in this work always as-

sume oblate axial symmetry. Concerning projected ellipticities, ax-

ial symmetry implies either

εZ ≡ 0, εX ≡ εY (oblate) (1)

Table 1. Selected merger remnants. (1) Merger remnant; (2) progenitor

mass ratio; (3) merging geometry according to table 1 of Naab & Burkert

(2003); (4–6) abundances of major orbit classes among the 40 per cent most

bound particles (from Jesseit et al. 2005). Irregular orbits and orbits without

classification are not included in the table.

Merger remnant Box and Z tube Inner and outer

boxlet X tube

(1) (2) (3) (4) (5) (6)

TRIAX 1:1 5 0.57 0.24 0.06

PROLATE 1:1 7 0.40 0.21 0.29

ROUND 2:1 12 0.23 0.40 0.25

FLAT 2:1 17 0.47 0.35 0.04

ELONG 3:1 29 0.53 0.29 0.05

OBLATE 4:1 11 0.12 0.76 0.03

Figure 1. Projected ellipticities of merger remnants. From top to bottom:

X, Y and Z projections. Radii are scaled by the half-light radius reff of the

respective projection.

Figure 2. Internal axis ratios of the merger remnants shown in Fig. 1 as

function of the fraction NE/Ntot of particles with the highest binding energy.

From top to bottom: c/b, c/a and b/a.

or

εX ≡ 0, εY ≡ εZ (prolate). (2)

Fig. 1 reveals that one of the six modelled merger remnants is con-

sistent with oblate axial symmetry (OBLATE), while two others

are marginally consistent with prolate axial symmetry (ROUND,

PROLATE).

Generally, the remnant sample of Naab & Burkert (2003) is de-

viant from oblate rotational symmetry in the inner regions. This can

be inferred from Fig. 2, which shows profiles of internal axis ratios,

calculated from the spatial distribution of the NE most bound (lu-

minous) particles (Ntot is the total number of luminous particles in
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the remnant; cf. Jesseit et al. 2005). In terms of intrinsic axis ratios,

oblate axial symmetry implies c < a and a ≡ b.

2.3 Mock observations

We will model the ‘observational’ data of the projections along

the three principal axes for each remnant. Almost all observational

properties, photometric or kinematic, will reach their maximum or

minimum values at these projections. This is so because the principal

axes are also the symmetry axes of the various orbit classes which

means that particles will move perpendicular or parallel to one of the

axes, depending on orbit class and projection. Consequently, the mo-

ments of the line-of-sight velocity distribution (LOSVD) will reach

extreme values for the respective projections. Similar reasoning can

be applied to the photometric properties, e.g. the isophotal shape

parameter a4 (Bender & Möllenhoff 1987). Concerning Z tubes in

triaxial potentials, e.g. a4 reaches its extreme values in the long-

axis projection (most boxy) and intermediate-axis projection (most

discy), respectively (cf. Jesseit et al. 2005 for detailed discussion).

In summary: by modelling the principal projections, we are testing

the extreme cases, where the influence of certain orbit classes on

the observables is visible (or not). Influence of the viewing angle on

our results will be discussed in detail in the following sections.

As we want to make meaningful statements about the recovery of

real galaxy structure, we try to imitate observational conditions of a

comparison sample of Coma ellipticals modelled by Thomas et al.

(2007) with the same Schwarzschild code. This comparison sample

consists of long-slit major and minor-axis spectra (Mehlert et al.

2000; Wegner et al. 2002). The photometry for the Coma galaxy

models is constructed as a composite of Hubble Space Telescope
(HST) (centre) and ground-based imaging (outer parts; cf. Thomas

et al. 2005).

The photometry of the N-body mergers is obtained for two dif-

ferent resolutions as well. The coarse one is mimicking ground-

based observations and extends to large radii. The one with higher

resolution simulates HST data at small radii. We include seeing by

smoothing the particle distribution with a Gaussian of width 1/20reff

(roughly the size of the numerical softening parameter) in the high-

resolution case. In the coarse resolution case the seeing amounts

to three quarters of the effective radius. Low- and high-resolution

photometry are combined into one continuous profile, as described

in Thomas et al. (2005).

To match the observational conditions of the Coma comparison

sample the kinematic information is extracted at an intermediate

resolution (smoothing width 1.2 arcsec ≈ 1/6 reff) along the appar-

ent photometric major and minor axes (cf. Section 3.2). We have

kinematic data out to about two effective radii (see Naab & Burk-

ert 2003, for extensive discussion on how artificial observations are

performed on N-body remnants).

3 S C H WA R Z S C H I L D M O D E L L I N G

Our Schwarzschild models are described in Thomas et al. (2004)

where a thorough discussion of the modelling implementation is

given.

3.1 Model set-up

In the following, we briefly recall the basic steps of the

Schwarzschild technique.

(i) The surface brightness of each remnant projection is depro-

jected at three inclination angles: the edge-on deprojection probes

the inclination where the Schwarzschild model is least flattened.

The other extreme, the most flattened Schwarzschild model, is con-

structed at an inclination angle, for which the deprojection appears

as an E7 galaxy (when seen from the side). Inclination angles result-

ing in intrinsically even flatter models are unreasonable because (1)

ellipticals flatter than E7 are not observed and (2) remnants flatter

than E7 are not in our merger remnant sample. As an intermediate

case we also probe an inclination angle that leads to a Schwarzschild

model resembling an E5 galaxy (when seen from the side).

The luminosity distribution ν is assumed to be axisymmetric and

we include surface brightness, ellipticity and a4 profiles in the de-

projection, which is performed with the non-parametric program of

Magorrian (1999).

(ii) Based on the deprojected luminosity profile ν a mass distri-

bution is constructed via

ρ = ϒ ν + ρDM, (3)

where ϒ determines the amount of mass that follows the light (we

will denote ϒ the stellar mass-to-light ratio in the following). For

the additional dark matter density ρDM we adopt a Navarro–Frenk–

White (NFW) profile and the relation between concentration and

mass given in Navarro, Frenk & White (1996). The dark haloes of

the merger remnants do not follow these profiles exactly. The pro-

genitor galaxies are embedded in pseudo-isothermal haloes with a

flat central density core. After the merging the central dark mat-

ter slope steepens, but is still shallower than in NFW profiles (cf.

Section 6.2).

Our choice for NFW haloes is motivated by results of Monte Carlo

simulations showing that one can always find an NFW halo among

the above introduced family which mimics an (non-singular) isother-

mal distribution sufficiently well over the radial region considered

here (Thomas et al. 2005). Moreover, for a few remnant projections

we have also calculated cored logarithmic haloes, and the results

do not change significantly (cf. Section 6.2). Then, since we do not

lose generality, it is convenient to use the one-parameter family of

NFW haloes. To explore possible effects of halo shapes we model

each halo once with a spherical mass distribution and once with a

flattening of the density distribution of c/b ≡ c/a = 0.7, where a, b
and c are the long, intermediate and short axes of the halo mass dis-

tribution, respectively. The haloes of the merger remnants are close

to oblate-axial symmetry, with b/a > 0.9 and 0.7 � c/a � 1.0.

With the mass density fixed, the gravitational potential 	 follows

by solving Poisson’s equation.

(iii) In the gravitational potential 	 a representative set of orbits

is calculated. The orbit sampling is described in detail in Thomas

et al. (2004).

(iv) In the final step the orbits are superposed to fit the photometric

and kinematical constraints. The maximum entropy technique of

Richstone & Tremaine (1988) is applied and the kinematic data are

fitted by solving for the maximum of

S − αχ 2 → max. (4)

S is the entropy of the model and

χ2 ≡
NL∑
j=1

Nvel∑
k=1

(
L jk

mod − L jk
in

�L jk
in

)2

(5)

measures the difference between input LOSVDs Lin and model

LOSVDs Lmod (see Thomas et al. 2004, for more details about the

calculation of S and L in this context). Each LOSVD is binned into

Nvel velocity bins and the input data consist of NL LOSVDs in total

(cf. Section 3.2 for further details). The luminosity density is treated
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as a boundary condition to equation (4). The regularization parame-

ter α in equation (4) allows to control the relative importance of χ2

minimization (fit to data) and entropy maximization (smoothness of

the distribution function).

In the following we will consider two cases for α. First, models

obtained with α = 0 will be called Smax models, because for α = 0

the χ 2 term vanishes and the orbital weights are entirely determined

by the maximization of S (under the boundary condition related to

ν). In order to fit an orbit library to a given set of kinematical data,

α has to be positive. The larger α, the better the fit will be. In case of

real observations, very large α can result in models that fit the noise

in the data. Concerning our merger remnant fits, we assume that the

input data are not affected significantly by noise (cf. Section 3.2).

Therefore, as the second case for α, we consider a value large enough

such that the minimum of χ2 is reached (χ2
min models). This usually

occurs around α ≈ 1.1 Larger α values do not change χ2 or other

model properties significantly.

3.2 Definition of χ2

To solve equation (4) one needs to evaluate the χ2 term and, thus,

to specify the �L jk
in of equation (5). Insofar as the N-body sim-

ulations are viewed as a discrete N-particle realization of an un-

derlying continuous phase-space DF, the mock observations should

be interpreted to have some intrinsic Poisson scatter that decreases

with increasing the number of particles. This describes the case of

Section 4, where we test our modelling machinery with an N-body

representation of a Hernquist sphere. It is also valid for the set-up

of the progenitor systems. In both cases, the N-body system is an

imperfect representation of an underlying continuous phase-space

DF. The merger remnants, however, are not such an N-body sam-

pling of some unknown DF. Instead, they just reflect the dynamical

evolution of N particles from their particular initial conditions – irre-

spective of how these have been constructed. In this sense, after the

relaxation induced by the merging, we treat the mock observations

as ‘ideal’ observations of a discrete (N ≈ 105 particle) dynamical

system, that we try to represent by Schwarzschild models. There is

no obvious way to define �L jk
in in this case, however.

For a statistical analysis the proper way to proceed is to add

random fluctuations to the raw observations. The resulting noisy

‘data’ together with the ‘error bars’ from which the noise has been

constructed provide a statistically consistent input to the models.

However, our merger sample is small and it would be necessary

to model several random realizations of the original raw data in

order to avoid any influence of a particular noise pattern on the

results. This is computationally too expansive as it means to model

effectively dozens of data sets. Moreover, it is not the goal of this

study to quantify uncertainties that originate from observational

errors (which has been done elsewhere, e.g. Thomas et al. 2005).

Instead, our aim is to explore possible systematic biases arising

when treating non-axisymmetric objects with axisymmetric models.

Therefore, we set up our model input as follows.

First, Gauss–Hermite moments v, σ , H3 and H4 (Gerhard 1993;

van der Marel & Franx 1993) of the merger remnants are calcu-

lated as in Naab & Burkert (2001). The Gauss–Hermite moments

are then used to calculate the LOSVDs Lin at a set of radii typical

for our comparison sample of Coma ellipticals. Corresponding ob-

servational errors of Coma galaxies at these radii are scaled to the

1 The exact value we will use is α = 0.9143 and arises from the iterative

solution of equation (4); see e.g. Thomas et al. (2005).

mock data.2 The Gauss–Hermite ‘error bars’ are propagated into

�L jk
in by means of Monte Carlo simulations. The resulting LOSVDs

Lin ±�L jk
in are used as input for the Schwarzschild models without

adding noise explicitly. Neglecting the noise makes uncertainties of

derived model quantities (masses, internal velocity moments) un-

reliable. But for our purpose of identifying systematic trends it is

only important to flag a best-fitting model in a similar way as a

best-fitting model is determined for a real galaxy. The role of �L jk
in

is to specify the relative weight of different data points. The usage

of error bars from real observations ensures that in our models data

from different spatial regions are weighted similar as in models of

real galaxies.

3.3 The best-fitting model

To obtain the best-fitting dynamical model we calculate

Schwarzschild models on a grid in the 2D parameter space (ϒ , c).

Thereby we probe 0.3 � ϒ � 1.3 with �ϒ = 0.1 and 2.5 � c �
30.0 with �c = 2.5. For each pair (ϒ , c) on the grid one model is

calculated with a spherical halo and another one with a halo flatten-

ing of q = 0.7. The procedure is repeated for up to three inclinations

(cf. Section 3.1).

For this first set of models we use a coarse library set-up with 2 ×
3500 orbits, roughly half the number used to model Coma ellipticals

(Thomas et al. 2007) and roughly twice the number that has been

used by the Nuker team for models of galaxy centres (Gebhardt et al.

2000). Among the low-resolution models one, say with parameters

(ϒ f , cf , qf ), yields the lowest χ2. Around these parameter values we

recalculate models with a larger number of orbits (2 × 9000 orbits

as used for models of Coma galaxies by Thomas et al. 2007). The

overall best-fitting model is chosen among these high-resolution fits

according to the minimum of χ 2.

For the high-resolution models we adjust the modelling strategy

as follows. (1) As it will be discussed in Section 5.3, the best-fitting

(low-resolution) model is always at an inclination i = 90◦. For the

high-resolution case we therefore only consider edge-on geometries.

(2) We examine the same grid for (ϒ , q) as in the low-resolution

case, but restrict concentrations around cf , usually probing the re-

gion between cf − 2�c and cf + 2�c. If necessary we extend

the concentration interval such that the best-fitting high-resolution

model never occurs at the boundary of the sampled parameter space.

When resampling with a larger number of orbits, we vary the halo

concentrations in smaller steps of �c = 1.0.

We do not find systematic differences between the models with

2 × 3500 orbits and those with 2 × 9000 orbits, respectively. For

example, 12 out of 18 best-fitting luminous mass-to-light ratios ϒfit

are the same in low-resolution and high-resolution models. In the

remaining cases they change by �ϒfit = 0.1 (four models) and

�ϒfit = 0.2 (two models), respectively. There is no preferred direc-

tion for the change �ϒfit.

4 VA L I DAT I O N : A H E R N QU I S T S P H E R E

To check all conversions from N-body systems to Schwarzschild

models and back we first model a self-consistent Hernquist sphere

(Hernquist 1990): we sample the isotropic Hernquist DF with

2 We use fractional errors in v and σ but absolute errors for H3 and H4.

As template to create the error bars we use the observations of NGC 4807,

which are prototypical for the Coma sample in terms of radial coverage and

signal-to-noise ratio.
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N = 1.6 × 105 particles and ‘observe’ the resulting N-body re-

alization in exactly the same way as the merger remnants. The

number of particles N = 1.6 × 105 resembles the number of lu-

minous particles in the 1:1 merger remnants, analysed later on. For

the goal of verifying our machinery by reconstructing the Hern-

quist sphere we modify the modelling procedure as follows. (1) We

only consider an inclination of i = 90◦, such that the deprojection

is unique. (2) We only fit self-consistent Schwarzschild models,

because the Hernquist sphere is set up self-consistently (without

dark matter). Finally, in order to evaluate the influence of noise

in the N-body representation, we combine Schwarzschild fits to

10 different Monte Carlo realizations of the Hernquist sphere. The

only free mass parameter in this test run is the stellar mass-to-light

ratio ϒ .

Application of our Schwarzschild models to the Hernquist sphere

yields ϒfit/ϒ in = 0.993 ± 0.037, where ϒfit and ϒ in are the M/L
of the Schwarzschild models (averaged over fits to 10 realizations

of the Hernquist sphere) and the N-body input, respectively. The

quoted uncertainties reflect the variance about the mean.

Internal velocity moments of Schwarzschild fits are shown in

Fig. 3 together with the analytic profiles for the isotropic Hernquist

sphere (Hernquist 1990). Results from Schwarzschild modelling

are spherically averaged. For the χ2
min models in the left-hand pan-

els of Fig. 3 a regularization parameter α ≈ 1 has been used (cf.

Section 3.1; the same value is used for the merger remnant fits).

Apart from some noise in the Schwarzschild models, the overall

agreement between analytic calculations and Schwarzschild fits is

very good.

To understand whether the scatter in ϒfit/ϒ in and the internal

moments originates from uncertainties in the Schwarzschild code or

whether it comes from noise in the N-body realization, we also tried

to reconstruct the Hernquist sphere by a method that is independent

Figure 3. Schwarzschild models for a Hernquist sphere. In each panel

10 solid grey lines represent models for 10 Monte Carlo samplings of a

Hernquist sphere. The analytically derived reference profiles of the Hern-

quist sphere are shown by black, dashed lines. Three top rows: radial (σ r ,

top), meridional (σϑ , middle) and azimuthal (σϕ , bottom) velocity dis-

persions (luminosity-weighted, spherical averages); bottom row: density.

Left-hand column: χ2
min fits; right-hand column: Smax models (details in

the text).

of noise in the N-body kinematics: the solution of equation (4) for

α = 0. As stated in Section 3.1, with α = 0 the χ2 term vanishes

and the orbit distribution is determined entirely by maximizing its

entropy (Smax model). The idea behind considering Smax models

here is the following: the maximization of S yields, in a sense,

the smoothest DF for the given density profile. Assuming that this

smoothing isotropizes stellar velocities then the Smax model would

be identical to the (unique) isotropic DF, which is connected to

any self-consistent spherical density profile. Maximizing S would

therefore determine the orbital weights (and internal moments etc.)

of our orbit representation of the Hernquist sphere without any fit

to the kinematics.

Since the orbital weights in the Smax models are fixed, the only

degree of freedom is the velocity scale ϒ . Results of the correspond-

ing fits are shown in the right-hand panels of Fig. 3. As can be seen,

the internal moments of the Smax models follow closely the analytic

profiles, confirming the above speculations about the connection

between entropy and isotropy in spherical systems. That the Smax

models in fact match better with the analytical Hernquist profiles

than the fits on the left-hand panels implies that the scatter in the fits

is mainly caused by noise in the N-body LOSVDs. Uncertainties in

the Schwarzschild code (finite number of orbits and finite numer-

ical resolution) are instead negligible, as otherwise deviations be-

tween reference moments and orbit representation would be larger.

Likewise, since the Smax models in the right-hand panels of Fig. 3

are based upon the deprojected N-body light profiles, noise in the

N-body light profiles is also not the dominant driver for scatter in

the left-hand panels.

Concerning M/L values we find ϒfit/ϒ in = 1.007 ± 0.016 in the

mean over all 10 Smax models. As stated above, the remaining scatter

of about 1.5 per cent is due to noise in the N-body kinematics. We do

not expect this scatter to have a significant influence on our results

of fits to the merger remnants.

5 S C H WA R Z S C H I L D F I T S O F M E R G E R
R E M NA N T S : G E N E R A L N OT E S

Now we discuss the models of simulated merger remnants. This

section contains notes on general properties of the Schwarzschild

fits and the deprojections.

5.1 Luminosity densities

Fig. 4 compares the axisymmetric deprojections with the internal

luminosity density profiles of the merger remnants. The figure only

compares densities along the projected major axis. Results along

other position angles are similar. For the merger remnants, the den-

sity is averaged over a plan-parallel wedge of size �r ≈ 0.05 reff

along the major axis, �z ≈ 0.2 reff perpendicular to this axis (in the

plane of the sky) and �φ = 45◦ in the plane defined by the line of

sight and the projected major axis.

If a remnant is seen along its long axis (left-hand panels), then

the axisymmetric deprojection overestimates the density – espe-

cially near the centre. The opposite occurs if a merger is seen

along the intermediate axis (middle panels): the axisymmetric de-

projection of the Y projections underestimates the remnant den-

sity. Note that for the remnant in the bottom row (OBLATE) X and

Y deprojections are almost equal, consistent with its oblate shape

(b ≈ a).

Fig. 5 illustrates that the viewing-angle dependency of the de-

projections reflects the intrinsic non-oblateness b/a �= 1 of most of
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Figure 4. Luminosity density of merger remnants (black, dashed) and

merger models (coloured, solid). From left- to right-hand panels: models

of X, Y and Z projections. Densities are evaluated along the projected major

axis.

Figure 5. Schematic view on to the (X, Y) plane of a prolate body (b/a <

1). If the body is seen along the X-axis, then a deprojection assuming axial

symmetry with the symmetry axis being perpendicular to the (X, Y) plane,

overestimates the density inside r < b (small circle, red). Correspondingly,

if the body is seen from the Y-axis, an axisymmetric deprojection underes-

timates the density inside r < a (large circle, blue).

our merger remnants.3 The light inside an ellipse with b < a, if

seen along the long axis, is quenched into the region r < b in the

axisymmetric deprojection. Accordingly, the mean density of the

deprojection inside b must be larger than the original density inside

the same spatial region. Conversely, if the ellipse is viewed side-

on, the axisymmetric deprojection stretches the light into the larger

region r < a and, hence, underestimates the true density.

3 We restrict the discussion to the edge-on case, since all our best-fitting

Schwarzschild models have i = 90◦ (cf. Section 5.3).

Concerning our merger remnants, deviations between deprojec-

tion and intrinsic light profile are the largest where b/a is the smallest

(cf. Fig. 2) – in accordance with the above reasoning. At large radii,

the intermediate-to-long axis ratio becomes b/a ≈ 1 and the depro-

jections of X and Y projections approach the luminosity profiles of

the remnants.

Concerning the short axis, c/a quantifies the quenching of light

along the line of sight as much as b/a quantifies it along the inter-

mediate axis. Insofar, the Z projection is similar to the Y projection,

which explains why Z deprojections underestimate luminosity den-

sities of the mergers as well. A difference arises at large radii because

b/a → 1, whereas c/a stays roughly constant (e.g. FLAT, ELONG,

OBLATE). Consequently, Z deprojections deviate over the whole

radial range plotted in Fig. 4 and have a steeper slope than the lu-

minosity profiles of the mergers.

5.2 Kinematic fits

Because the merger remnants do not obey oblate axial symmetry it

is not clear whether their kinematics can be fitted by our models –

which respect this symmetry – at all. Residuals in the kinematic fits

are shown in Fig. 6. Except from minor-axis rotation v and asym-

metry of the LOSVD H3 Schwarzschild models reproduce the data

very well, to an accuracy of about a tenth of the assigned ‘error bars’.

Since these ‘error bars’ are taken from observations, a comparable

degree of triaxiality in real galaxies would be hardly recognisable

in terms of a systematic offset between models and data.

Discrepancies between merger remnants and Schwarzschild mod-

els in minor-axis profiles of v and H3 are the result of oblate axial

symmetry enforcing v ≡ H3 ≡ 0 in the models. Hence, the upper

right-hand panel of Fig. 6 in fact shows the amount of minor-axis

rotation in the remnants. Neglecting the latter in our fits implies

that part of the kinetic energy of the merger remnants is missing in

the Schwarzschild models. This could lead to an underestimation of

the mass. However, the minor-axis rotation in Fig. 6 is of the order

of the assigned error bars (d v � 1), e.g. below 10 per cent of the

Figure 6. Residuals between Schwarzschild fits and remnant LOSVDs nor-

malized to the assigned error bars: dv ≡ (vfit − vin)/�vin (and analogously

for σ , H3 and H4). Left-hand panels: major axis; right-hand panels: minor

axis; red/solid: X projections; blue/dashed: Y projections; green/dotted: Z
projections.
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kinetic energy in the dispersion (cf. radial profiles of v, σ , H3 and

H4 and their assigned errors in Appendix B). We therefore do not

expect that neglecting minor-axis rotation of the merger remnants

has a dominant effect on our results.

5.3 Inclinations of best-fitting models

Although we probe models at three different inclinations for each

remnant projection, the best-fitting model (with 2 × 3500 orbits; cf.

Section 3.3) always occurs at an inclination of i = 90◦ (edge-on).

This is not surprising for X and Y projections. However, Z projections

could have been expected to be better represented by nearly face-on

models, e.g. with i ≈ 0◦.

However, according to the lower panel of Fig. 1 all remnants ex-

cept the OBLATE one appear flattened when projected along the

Z-axis (εZ > 0). Axisymmetric models, on the other hand, are nec-

essarily round when seen along the axis of symmetry. Thus, an

axisymmetric i = 0◦ model cannot fit the Z projection of most rem-

nants.

Only one remnant (OBLATE) is close enough to axial symmetry

that its Z projection is almost round. Why is the best-fitting model

for this remnant again achieved for i = 90◦? The main reason is

probably the small rotation signal v �= 0 and H3 �= 0 along the ap-

parent major axis of its Z projection (the face-on view is not exactly

round, cf. Fig. 1). At a viewing angle of i = 90◦ the model can adjust

the balance between prograde and retrograde orbits to fit v �= 0 and

H3 �= 0. Instead, any rotation and asymmetric deviation from a

Gaussian LOSVD disappear when looking at an axisymmetric sys-

tem face-on: v ≡ H3 ≡ 0 (for all position angles). Thus, everything

else being equal, a face-on model will necessarily have a larger χ2

than an edge-on model. In fact 83 per cent of the �χ2 between

the best-fitting edge-on and the best-fitting face-on model4 of the

OBLATE remnant, respectively, is due to differences in the fit to v

and H3. This is not a proof, but a strong indication that the residual

rotation in the Z projection of the OBLATE remnant is the main

driver for the best-fitting model to occur at an inclination of i = 90◦.

A triaxial dynamical system can exhibit various degrees of ro-

tation in the Z projection. If this indeed causes the corresponding

axisymmetric fit to prefer an inclination of i = 90◦, then the inclina-

tion mismatch is an unavoidable consequence of the false symmetry

assumption. Concerning models of real galaxies, an additional com-

plication enters through measurement errors: even for an exactly

axisymmetric face-on galaxy one would determine v �= 0 and H3 �=
0 due to measurement uncertainties. In such a case, a best-fitting

axisymmetric inclination of 90◦ would be an artefact related to the

ability of the modelling machinery to fit the noise in the data. Proper

regularization could provide a way out of the inclination mismatch

then. For the Z models of the OBLATE remnant we find indeed a

best-fitting inclination i = 0◦ for α < 0.005 (strong regularization).

A systematic investigation of the question whether noise in real

data can bias axisymmetric models towards i = 90◦ and whether this

possible bias can be reduced by using proper regularization is out of

the scope of this paper. For simplicity, we adopt the same regular-

ization scheme to all merger remnants in the following. We expect

this to significantly affect only the fits to the face-on projection of

4 The deprojection of axisymmetric bodies at i = 0◦ is infinitely uncertain

(Rybicki 1987; Gerhard & Binney 1996). For the above comparison a face-on

model has been constructed using the (i = 90◦) deprojection of the X projec-

tion. If the remnant would be exactly axisymmetric, then this deprojection

would uniquely recover its intrinsic luminosity distribution.

the OBLATE remnant. Specifically, assuming the wrong inclination

makes our Z model worse than it could possibly be with optimized

regularization. In all other remnants the inclination mismatch is due

to intrinsic non-axisymmetry.

6 M A S S D I S T R I BU T I O N I N R E M NA N T S
A N D M O D E L S

Having discussed general features of the Schwarzschild models we

now turn to the comparison of the mass distribution in models and

the corresponding merger remnants.

6.1 Stellar mass-to-light ratio

Fig. 7 shows the distribution of (scaled) M/L values ϒfit/ϒ in obtained

from our best-fitting Schwarzschild models. The reconstructed ϒfit

systematically underestimate ϒ in. 17 out of the 18 models have M/L
values in the range 0.5 � ϒfit/ϒ in � 0.9, one model has ϒfit/ϒ in =
0.4. Separating the results according to the viewing angle yields that

models of X projections (shortly X models below) recover the true

M/L very well (ϒfit = 0.9 ϒ in in all but one case; cf. upper right-

hand panel of Fig. 7). In contrast, Schwarzschild models of Y and

Z projections have M/L values distributed almost homogeneously

in the range ϒfit/ϒ in = 0.5–0.9 (bottom panels of Fig. 7). Although
the luminosity density of the deprojection predicts less light in the

corresponding models than there is in the merger. The reason for

this behaviour will be further discussed in Sections 9 and 10.

It should be restated that our mock observations are not drawn

from random projections. Therefore, Fig. 7 does not equal the distri-

bution of M/L values that would result from modelling real galaxies

(even if they would be structurally similar to the merger remnants).

The most significant result here is that axisymmetric models tend to

underestimate the mass fraction that follows the light. We have no

proof for the generality of this result, but since we have modelled

all three principal projections for each remnant we do not expect

models from other viewing angles to deliver ϒfit > ϒ in.

Figure 7. Distribution of best-fitting mass-to-light ratios ϒfit (scaled by the

input value ϒ in). Top left-hand panel: whole sample; other panels: results for

different projections (indicated in each panel; dashed lines: total distribution

for comparison).
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6.2 Mass densities

Our Schwarzschild models (and the merger remnants as well) con-

tain both luminous as well as dark mass and ϒ only represents a

fraction of the total mass. The next question is how well total and

dark matter density profiles are represented in the Schwarzschild

models. To explore this, Figs 8–10 survey radial density profiles of

models and remnants separately for the three principal projections.

The figures show intrinsic densities along the projected major axis.

The middle panels (luminous mass density) differ from the ν pro-

files of Fig. 4 only in the scaling (the stellar mass density equals

ϒfit ν; cf. equation 3).

Evidently, in X models not only the luminosity density, but also

the total mass in the inner regions is overestimated. Exceptional is

the X model of the OBLATE remnant: because the remnant is close

Figure 8. Comparison of remnant (black/dashed) and Schwarzschild model

(coloured/solid) mass density profiles (along projected major axis). Left-

hand/middle/right-hand panels: total/luminous/dark mass. The figure sur-

veys results from modelling X projections.

Figure 9. As Fig. 8, but for Y projections.

Figure 10. As Fig. 8, but for Z projections.

to axial symmetry, no overestimation of the central density occurs.

In Y and Z models – parallel to the underestimation of the light – also

the total mass density is underestimated. Again exceptional is the

Y model of the OBLATE remnant: the total mass is well recovered.

This reflects again the axial symmetry of the remnant, according to

which X and Y projections are equivalent and both should allow a

good reconstruction with our models.

The case of the OBLATE remnant also reveals a slight degeneracy

in the mass recovery. The best-fitting X model has ϒfit = 0.7, while

the best-fitting Y model is obtained with ϒfit = 0.9. Despite these

different ϒfit, the total mass inside reff is recovered with high accu-

racy in both models: 2.8 per cent fractional accuracy in the X model

and 0.4 per cent in the Y model, respectively. Thus, the total mass

can be recovered with about the same accuracy, even if luminous

masses differ by about 20 per cent.

Independent of projection, central dark matter densities are over-

estimated in all Schwarzschild models. Most likely, this reflects

our choice of NFW profiles for the haloes of the models (cf.

Section 3.1). In principle, an overestimation of the central dark mat-

ter density could cause an underestimation of the luminous mass

for compensation. Near the centre, where the dark matter excess is

most prominent, the luminous matter is, however, still a factor of

10 larger than the dark matter density (at 0.1reff, for example). We

therefore do not expect the central overprediction of dark matter to

be important for the recovery of ϒ . Moreover, while the dark matter

excess is projection independent, the underestimation of ϒfit/ϒ in is

projection dependent.
Nevertheless we have additionally calculated a set of logarithmic

(LOG) haloes for one merger remnant (OBLATE; the grid used to

sample the haloes is described in Thomas et al. 2007). In case of

the X and Y projections LOG haloes allow a slightly better fit than

NFW haloes (cf. bottom right-hand panels of Figs 8 and 9). As will

become clear from the discussions in the next sections, these models

are in no respect systematically different from the models of other

remnants which are calculated with NFW haloes.

We have also calculated logarithmic haloes for the X models of

the TRIAX, PROLATE and ELONG remnants. In these cases as

well as concerning the Z model of the OBLATE remnant, LOG

haloes do not provide better fits. As a consequence, considering
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LOG haloes does not change ϒfit of this models. It follows that the

particular choice of the halo profile (between NFW and LOG) has

little effect on our results. It merely influences the match to the dark

matter component in a spatial region, where dark matter is a minor

contributor to the total mass.

Towards the outer edge of the kinematical data (reff � r � 2 reff),

mass densities of Schwarzschild models and merger remnants agree

reasonably well. This holds for the total mass, as well as for lu-

minous and dark components, separately. Around 1–2 reff, inte-

grated total masses of Schwarzschild models are accurate to about

20 per cent. The Z models of the most flattened remnants (FLAT,

ELONG, OBLATE) are deviant by up to 40–50 per cent.

7 V E L O C I T Y A N I S OT RO P I E S I N R E M NA N T S
A N D M O D E L S

We now consider in more detail the internal dynamical structure of

the merger remnants and how it is represented by our Schwarzschild

fits.

7.1 Anisotropy profiles

Figs 11–13 compare profiles of meridional anisotropy

βϑ ≡ 1 − σ 2
ϑ

σ 2
r

(6)

and azimuthal anisotropy

βϕ ≡ 1 − σ 2
ϕ

σ 2
r

(7)

of Schwarzschild models and merger remnants. We use spherical

coordinates r, ϑ and ϕ, oriented along the principal axes such that ϕ

is the azimuth in the (X, Y) plane and ϑ is the latitude. The velocity

dispersions are luminosity-weighted spherical averages.

Figure 11. Comparison of velocity anisotropies. Left-hand panels: merid-

ional βϑ of Schwarzschild models (solid/coloured) and of merger

remnants (short-dashed/black); right-hand panels: azimuthal βϕ of

Schwarzschild models (long-dashed/coloured) and of merger remnants

(short-dashed/black); grey: ±0.2 absolute deviations from merger values

for comparison. The figure shows results of X models.

Figure 12. As Fig. 11, but for Y models.

Figure 13. As Fig. 11, but for Z models.

In Figs 11–13 �β = ±0.2 margins are highlighted. The choice

of these margins is arbitrary, and is only to guide a quantification

of deviations between mergers and models. In most cases these are

smaller than �β < 0.2. But there are some outliers (mostly among

Z models). As a general rule, X and Y models fit better with the

intrinsic properties of the merger remnants than Z models.

The mismatch of the Z models is partly due to the fact that the best-

fitting Schwarzschild models are always achieved for an inclination

i = 90◦ (cf. Section 5.3). Apart from the related mismatch in the

deprojection it raises a complication concerning the comparison

of the internal moments: in the Z projection of a merger remnant,

according to the above definitions, the azimuthϕ appears as the angle

in the plane of the sky. In the Schwarzschild models, however, ϑ as

defined above is the angle in the plane of the sky, as long as i = 90◦.

Much of the discrepancies between Schwarzschild models and

merger remnants can be attributed to these different coordinate

definitions. To show this Fig. 14 replicates the same profiles as
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Figure 14. As Fig. 13, but Schwarzschild βϕ (long-dashed) are compared

to merger remnant βϑ (left-hand panels) and Schwarzschild βϑ (solid) are

compared with βϕ of the remnants (right-hand panels).

Fig. 13, but βϕ of the Schwarzschild models is now compared to βϑ

of the merger remnants and vice versa. The differences between the

mergers and the models are significantly smaller in Fig. 14 than in

Fig. 13, especially among the most strongly flattened remnants.

7.2 Interpretation in terms of orbits

The remaining deviations between the anisotropy profiles of merger

remnants and their corresponding Schwarzschild fits are most likely

related to the different orbit families supported by N-body potentials

on one side and axisymmetric potentials on the other.

Figs 15 and 16 review principal projections of orbits numerically

integrated in an N-body potential (Fig. 15) and in an axisymmetric

potential (Fig. 16). Regions with vlos > v⊥ are plotted dark and

regions with vlos < v⊥ are plotted grey. Thereby vlos is the absolute

line-of-sight velocity in the given projection and v⊥ is the absolute

magnitude of the velocity perpendicular to the line of sight. In dark

areas most of the kinetic energy of an orbit is directed towards the

observer, whereas in grey areas most of the kinetic energy is in

motion perpendicular to the line of sight.

The tangential anisotropy of the X model for the PROLATE rem-

nant can be explained by the dominance of X tubes in this remnant.

According to Fig. 15 their round appearance in the X projection

makes them most similar to the edge-on projection of axisymmetric

shell orbits (cf. Fig. 16). The latter, in turn, have large σϑ and low

σ r and cause the tangential anisotropy in the Schwarzschild model.

Likewise, the similarity of βϑ in Z models with βϕ of the merger

remnants discussed at the end of Section 7.1 can be explained by the

fact that the dominant orbits in the outer parts of merger remnants,

Z tubes, appear nearly round when seen face-on. Again, they are

likely mapped on to axisymmetric shell orbits, with the same con-

sequence for the model’s anisotropy as discussed for the X model

of the PROLATE remnant.

8 M O D E L L I N G U N C E RTA I N T I E S

Up to now we have presented the viewing-angle dependency of

the masses and anisotropies which we reconstructed with our ax-

isymmetric orbit models. The behaviour of the anisotropy could be

X-projection (i=90)

Y-projection (i=90)

Z-projection (i=0)

Figure 15. Numerically integrated orbits in an N-body potential. From left-

to right-hand panels: box orbit, X tube and Z tube. From top to bottom: X,

Y and Z projections. Coordinate definitions are illustrated on the left-hand

side. Black: vlos > v⊥; light grey: vlos < v⊥ (details in the text).

X-projection (i=90)

Y-projection (i=90)

Z-projection (i=0)

Figure 16. As Fig. 15, but for the case of an axisymmetric potential. From

left- to right-hand panels: radial, shell-like and nearly circular orbit.

explained by the way in which projected properties of major rem-

nant orbit families match with different axisymmetric orbits. The

recovered masses are less easy to understand, in particular the low

ϒfit. This section and Sections 9 and 10 are aimed to discuss the

mass recovery in more detail. We start this discussion here by inves-

tigating whether the projection dependency of the mass recovery in

our axisymmetric dynamical models is an artefact of the modelling

machinery.
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8.1 Stationarity assumption

As it has been stated in Section 1, the Schwarzschild method is

based on Jeans’ theorem and the assumption that the object to be

modelled is stationary. Non-stationarity of the merger remnants can

have a significant influence on the recovered masses. For example,

if a remnant contracts because the ratio of its kinetic and potential

energies is smaller than in virial equilibrium then a stationary model

could deliver a mass smaller than the true one. Likewise, if a remnant

expands then the recovered M/L could be too large.

Stationarity or virial equilibrium, respectively, implies that

2Ti j = −Wi j , (8)

where Tij denotes the kinetic energy tensor and Wij denotes the

potential energy tensor. Equation (8) holds for the luminous and the

dark components separately, if both are stationary. In the following

we only consider the luminous component. The calculation of its

kinetic and potential energies is straightforward:

Ti j = 1

2

Nl∑
α=1

mα ẋ (α)
i ẋ (α)

j , (9)

where the sum extends over all the Nl luminous particles of the

merger remnant (with mass mα each) and ẋ (α)
i is the i component

of the velocity of particle α. The potential energy of the luminous

component comprises the two contributions

Wi j = W (ll)
i j + W (ld)

i j , (10)

where

W (ll)
i j = −G

Nl−1∑
α=1

mα

Nl∑
β=α+1

mβ

ξ
(αβ)
i j

r 3
αβ

(11)

and

ξ
(αβ)
i j ≡ (

x (α)
i − x (β)

i

) (
x (α)

j − x (β)
j

)
. (12)

The sum extends over luminous particles only and rαβ is the distance

between particles α and β, respectively. The contribution of dark

matter comes in through

W (ld)
i j = −G

Nl∑
α=1

mα

Nd∑
β=1

Mβ

ξ
(αβ)
i j

r 3
αβ

. (13)

In the last sum Nd denotes the total number of dark matter particles

in the remnant (with mass Mβ each). In virial equilibrium total

potential energy W = ∑
Wii and total kinetic energy T = ∑

Tii

obey 2T/|W| = 1.

The six modelled merger remnants have 2T/|W| ∈ [0.960, 0.981]

with the lowest value for the FLAT remnant and the largest value

for the OBLATE one. Thus, the remnants are very close to virial

equilibrium and we expect that the assumption of stationarity in the

models should affect the models’ masses at most at the 5 per cent

level. Hence it is not the main driver for the low ϒfit/ϒ in in our

models. In addition ϒfit/ϒ in is projection dependent whereas 2T/|W|
is projection independent.

8.2 Phase-space sampling

Another potential uncertainty in the modelling procedure is the dif-

ference in phase-space structure of merger remnants on one side

and Schwarzschild models on the other: while the remnants are

composed of a relatively large number of particles, each sampling

a different orbit at one point, the Schwarzschild model is composed

of a relatively low number of orbits, each sampled very densely (we

use about 105 time-steps for each orbit integration).

Concerning the sampling of the orbit (the time-step and total inte-

gration time used), our implementation of Schwarzschild’s method

has been successfully tested on continuous analytical dynamical

models, like e.g. a Hernquist sphere (Thomas et al. 2004). To check

whether a similarly good agreement can be achieved when mod-

elling N-body systems, we have repeated the tests with discrete

N-body realizations as modelling targets (cf. Section 4). The small

uncertainties that we find imply that differences in phase-space

structure are negligible.

8.3 Chaotic orbits

In the implementation of Schwarzschild’s method applied here (as in

most others) chaotic orbits are treated in the same way as regular or-

bits. This is not necessary in Schwarzschild models, but makes them

computationally more efficient. A chaotic region in phase space at

fixed E and Lz has to have a constant phase-space density according

to Jeans’ theorem. If such a region is represented by one (chaotic)

orbit in the library, then the method works fine. However, it may hap-

pen that the (finite) integration time of the first orbit that is launched

in the chaotic region is insufficient to cover the accessible phase-

space volume entirely. Then the program will launch one or more

other orbits to fill up the rest of the chaotic region. It is then likely

(although not necessary) that these fractional orbits will have dif-

ferent phase-space densities in the final model. As a consequence,

the model no longer satisfies Jeans’ theorem. Several suggestions

have been made to overcome this problem (e.g. Merritt & Fridman

1996; Häfner et al. 2000).

Since the main consequence of chaos in phase space is to break the

stationarity of the Schwarzschild models, it should manifest itself

in deviations from virial equilibrium and, thus, can be quantified

by evaluating the virial equations of the Schwarzschild models. To

calculate the kinetic energy tensors Tij and Wij defined in equations

(9) and (10) we have constructed N-body realizations of each best-

fitting Schwarzschild model as described in Appendix A.

For the obtained virial ratios we find 2T/|W| ≈ 1 to within 15

per cent. This limits the amount of chaos in our orbit libraries.

Deviations from 2T/|W| = 1 are not correlated with viewing angle

but with halo concentration, which is an artefact of the N-body

realization and further discussed in Appendix A. Thus, the margins

for intrinsic non-stationarity are even smaller than the above quoted

15 per cent. The related uncertainties are not sufficient to explain

the trends in the mass recovery.

9 T H E V I E W I N G A N G L E D E P E N D E N C Y
O F T H E TOTA L M A S S R E C OV E RY

The last section has ruled out modelling uncertainties as the main

source for the magnitude and projection dependency of the mass

recovery. We now investigate whether the different 3D shapes of

models and merger remnants are the main driver of this dependency.

Globally, mass and kinetic energy are linked by the virial the-

orem, 2T = |W| = κ M, where κ depends on the density profile.

Accordingly, reconstructed masses M(fit) and input masses M(in) are

related via

M (fit)

M (in)
= κ (in)

κ (fit)

T (fit) + T (fit)
DM

T (in) + T (in)
DM

, (14)

with T (fit) and T(fit)
DM denoting the kinetic energy of luminous and dark

matter in the Schwarzschild fit and T (in) and T(in)
DM being the analogue
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Figure 17. Correlation between kinetic energies of merger remnants (in)

and Schwarzschild models (fit; along the line of sight). Dotted line: one-to-

one relation for comparison.

quantities of the merger remnant, respectively. Since it is basically

T (fit) that is constrained by the LOSVD fits, it is instructive to study

first the energy budget of the Schwarzschild models in comparison

to the merger remnants. Then, equation (14) can be used to evaluate

the implications on the reconstructed masses.

Because the virial theorem relates energies to total masses this

section deals with the viewing-angle dependency of the total mass

recovery. The M/L of the stellar component will be discussed sepa-

rately in Section 10.

9.1 Energy budget of the Schwarzschild models

In the merger remnants, by definition of the axes (cf. Section 2)

Txx � Tyy � Tzz, whereas oblate axial symmetry implies Txx ≡
Tyy � Tzz in the Schwarzschild fits.5 In the following, it is conve-

nient to switch from axis labels referring to the intrinsic shape of the

remnant (e.g. X, Y and Z as defined in Section 2) to projection-based

labels: let us define the kinetic energy Tlos as the energy parallel to

the axis that points towards the observer, Tmaj as the energy parallel

to the axis that projects to the apparent major axis and Tmin as the

energy directed parallel to the apparent minor axis.

Figs 17 and 18 show that the line-of-sight energy Tlos and the ratio

Tmin/Tmaj of the two transversal energies are well recovered by the

Schwarzschild models. This could have been expected since Tlos is

the energy mapped by the projected kinematics. A mismatch in Tlos

should manifest itself in the kinematic fits. Some scatter remains,

however, because we do not assume full sky coverage with kinematic

data. That the Schwarzschild models match also with Tmin/Tmaj of

the remnants is plausible, because this energy ratio determines the

shape (e.g. Binney & Tremaine 1987). And the shape is accounted

5 We will only consider the diagonal elements Tii in the following, be-

cause in the merger remnants as well as in the N-body realizations of the

Schwarzschild models the other components are at least two orders of mag-

nitude lower and, thus, energetically negligible.

Figure 18. Correlation between the ratio Tmin/Tmaj of the two transversal en-

ergies in merger remnants (in) and Schwarzschild models (fit), respectively.

Dotted: one-to-one relation for comparison.

for in the Schwarzschild fits through the deprojected luminosity

density, which is used as a boundary condition for our models.

The two relations revealed by Figs 17 and 18 have several im-

portant implications for the energy budget and, thus, the recovered

masses of the Schwarzschild models.

To see this, let us assume for simplicity that

T (fit)
los ≡ T (in)

los (15)

and

T (fit)
min

T (fit)
maj

≡ T (in)
min

T (in)
maj

(16)

(in other words, we replace the two approximate one-to-one corre-

lations of Figs 17 and 18 by identities). By symmetry T(fit)
maj ≡ T(fit)

los

in the Schwarzschild fits and it follows that

T (fit)
maj ≡ T (in)

los . (17)

Moreover, according to equation (16)

T (fit)
min ≡ T (fit)

maj

T (in)
min

T (in)
maj

, (18)

and by equation (17) we have

T (fit)
min ≡ T (in)

los

T (in)
min

T (in)
maj

. (19)

Hence, the two relations (15) and (16) uniquely link the three rele-

vant components of the kinetic energy tensor of the Schwarzschild

model to the energy components of the merger remnant via equations

(15), (17) and (19). Note that this holds only for edge-on models. If

a model is calculated at i = 0◦, then T (fit)
min ≡ T (fit)

maj by symmetry. In this

case, even the identity T (fit)
los = T (in)

los does not constrain the two ratios

T(fit)
los /T(fit)

min and T(fit)
los /T(fit)

maj, respectively. This reflects the uncertainty in

the flattening along the line of sight of the model.

To express the expected energy budget for a Schwarzschild fit

of a given merger projection more quantitatively, it is necessary

to figure out to which intrinsic axes Tlos, Tmaj and Tmin correspond.
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Table 2. Ratios of kinetic energies of Schwarzschild fits and merger rem-

nants according to equations (15), (17) and (19). (1) Projection; (2) line-of-

sight energy; (3) projected long-axis energy; (4) projected short-axis energy;

(5) total energy (T = T los + Tmaj + Tmin).

Projection
T (fit)

los

T (in)
los

T (fit)
maj

T (in)
maj

T (fit)
min

T (in)
min

T (fit)

T (in)

(1) (2) (3) (4) (5)

X 1
T (in)

xx

T (in)
yy

� 1
T (in)

xx

T (in)
yy

� 1 � 1

Y 1
T (in)

yy

T (in)
xx

� 1
T (in)

yy

T (in)
xx

� 1 � 1

Z 1
T (in)

zz

T (in)
xx

� 1
T (in)

zz

T (in)
xx

� 1 � 1

Simple algebra leads to Table 2, in which Schwarzschild model

energies relative to remnant energies are given explicitly for each

projection. The table allows us to draw some important conclusions.

In fact, for X models the energy in the Schwarzschild model has to

be larger than in the remnant, T (fit)/T (in) � 1, unless the remnant is

oblate-axisymmetric. Contrary, in Y and Z models T (fit)/T (in) � 1 and

the energy in the Schwarzschild model has to be smaller than in the

remnant.

9.2 Mass budget of the Schwarzschild models

What are the consequences for the masses of the Schwarzschild fits?

For simplicity let us first assume thatκ (fit) =κ (in). Then, equation (14)

predicts that the ratio M(fit)/M(in) of reconstructed and input masses

equals the ratio of the corresponding total kinetic energies (luminous

+ dark). However, due to the lack of kinematic information about the

constituents of the dark halo, the models have no access to the dark

matter kinetic energy of the remnants and T(fit)
DM is not constrained.

As a consequence, the results on the energy budget are significant

for the comparison of reconstructed and input masses only inside a

radius where luminous matter dominates, e.g. inside reff. There, the

contribution of the dark matter kinetic energy is small. Assuming

that its contribution is in fact negligible, then equation (14) and the

last column of Table 2 imply M(fit)/M(in) � 1 inside reff for X models

and M(fit)/M(in) � 1 for Y and Z models. The amount by which M(fit)

exceeds M(in) in X models should be comparable to the amount by

which M(fit) is reduced relative to M(in) in Y models and masses of

Z models should be smaller than those of Y models. Fig. 19 relates

the mass ratio M(fit)/M(in) (at the effective radius) to kinetic energies

T (fit)/T (in) and globally confirms the just discussed trends between

reconstructed masses and kinetic energies.

Hence, at the half-light radius, masses of our Schwarzschild fits

are closely related to the energy budget of the models. The energy,

in turn, derives from the fit to the kinematics and the shape of the

modelling target via relations (15) and (16). For edge-on systems, the

restrictions imposed by the assumption of axial symmetry together

with these two relations already uniquely determine the luminous

kinetic energy and, hence, the mass budget of the axisymmetric fits.

Thereby it turns out that X models have to overestimate the true

mass, while Y and Z models have to underestimate it.

We close this section with a few further comments on Fig. 19. Ac-

cording to equation (14), the relation between reconstructed masses

and reconstructed energies can be tilted with respect to a one-to-

one relation if the κ ratio varies systematically over the sample. In

Section 5.1 we have discussed systematic variations of the depro-

jections with viewing angle which could cause the tilt with respect

Figure 19. Accuracy of reconstructed total (luminous + dark) mass inside

reff versus ratio T (fit)/T (in) of total kinetic energies in Schwarzschild fits and

merger remnants.

to the one-to-one case revealed by Fig. 19. In addition there is a

correlation of the dark halo properties in the models with remnant

projection, which could also contribute to the tilt in Fig. 19 (cf.

Section 10.3). On top of that, the fact that we compare luminous

kinetic energies with masses inside reff adds to the uncertainties

in the step from T (fit)/T (in) to M(fit)/M(in) and can also tilt the rela-

tion or increase its scatter. Other sources of scatter are scatter in

the relations (15) and (16). For example, the two Y models with

M(fit)/M(in) > 1 in Fig. 19 correspond to the two Y models above the

one-to-one relation in Fig. 17.

1 0 C E N T R A L R E M NA N T S T RU C T U R E A N D
T H E L U M I N O U S M A S S - TO - L I G H T R AT I O

In this section we discuss the results for the modelled luminous M/L
values. In contrast to the total masses the disagreement between

models and mergers cannot be simply traced to the energy budget.

The upper panel of Fig. 20 shows ϒfit/ϒ in versus total kinetic

energy T (fit)/T (in). The scatter in Fig. 20 is much larger than in the

corresponding Fig. 19 which deals with total masses. As expected

from the tightness of the correlation in Fig. 19, deviations from a

one-to-one correlation between ϒfit/ϒ in and T (fit)/T (in) are correlated

with the dark matter content of the fits: where ϒfit/ϒ in is too low,

the dark matter in the models overestimates the dark matter in the

remnant and vice versa. A larger scatter in Fig. 20 than in Fig. 19

is not surprising because the reconstruction of the mass decomposi-

tion is less certain than the reconstruction of the total mass: there is

some freedom in the modelling to shift mass from the luminous to

the dark component (and vice versa) without changing the fit signif-

icantly. There are however two striking trends: (1) ϒfit is generally

smaller than ϒ in and (2) at a given value of T (fit)/T (in) Y models suffer

from a slightly stronger underestimation of ϒ than models of other

projections.

The systematics in the lower panel of Fig. 20 indicate that ϒfit,

unlike the total mass, is not merely set by the total kinetic energy but

must instead depend on something else. To investigate this further,
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Figure 20. Top: accuracy of reconstructed luminous mass-to-light ratio

ϒfit/ϒ in versus ratio T (fit)/T (in) of total kinetic energies in Schwarzschild fits

and merger remnants. Bottom: deviations �≡ T (fit)/T (in) − ϒfit/ϒ in from

a one-to-one correlation in the top panel versus accuracy of reconstructed

dark mass (inside reff).

Figure 21. As Fig. 6, but for Schwarzschild models with ϒ ≡ ϒ in.

we have redetermined best-fitting Schwarzschild models (with 2 ×
3500 orbits; cf. Section 3.3) under the condition that the luminous

M/L is fixed to the true value of the mergers, ϒ ≡ ϒ in. The corre-

sponding fits are illustrated in Fig. 21 in the same way as fits with

optimized ϒfit are shown in Fig. 6. The most important result is that

Y and Z models constrained to have the true M/L fail to fit the cen-

tral kinematics: they predict too large central velocity dispersions. X
models in Fig. 21 are only marginally different from those in Fig. 6,

because most X models yield ϒfit ≈ ϒ in to within 10 per cent in any

case.

10.1 The relation between flattening and central kinematics

That axisymmetric models of Y and Z projections with ϒfit = ϒ in

overpredict the velocity dispersion somewhere along the equator,

can be qualitatively understood as follows. The flattening of an

axisymmetric body always comes along with some excess of en-

ergy parallel to the (X, Y) plane. According to rotational symmetry,

this excess energy is equally distributed in X and Y, respectively.

Consequently, the projected kinetic energy in directions where the

object looks most flattened is always relatively large. Only details of

the radial distribution of the projected energy are not strongly con-

strained by the flattening alone. For example, if the flattening comes

predominantly from near-circular orbits, then the central projected

energy can be relatively low (circular orbits cross the central line of

sight with zero line-of-sight velocity), while most energy resides in

the outer regions. If radial equatorial orbits are responsible for the

flattening, then the central projected energy (velocity dispersion) is

relatively large, instead (e.g. Dehnen & Gerhard 1993).

The situation in triaxial bodies is different: again there is an excess

of energy in the (X, Y) plane as soon as c < a and c < b. But this

energy is no longer distributed equally between X and Y. If b < a,

then there is more energy parallel to X than parallel to Y. It follows

that the Y projection, in which the object is most flattened (one

sees the shortest and longest axis in projection), has relatively low

projected kinetic energy. In other words, Y projections of triaxial

systems can be highly flattened in combination with a low specific

projected energy (e.g. line-of-sight energy per mass). Now, since the

flattening in axisymmetric systems is connected to a relatively large

specific projected energy around the equatorial plane, a mismatch

of projected dispersions somewhere around the equator is plausible

(if the masses are equal).

10.2 Flattening by box orbits and Υfit

So far we have discussed the general situation. The fact that the spe-

cific dispersion of the axisymmetric models with ϒfit = ϒ in is too

large near the centre (cf. Fig. 21) is most likely connected to the spe-

cific structure of the merger remnants analysed here. They become

prolate near the centre (cf. Section 2.2) and this inner prolateness is

connected to particles moving preferentially on box orbits (Jesseit

et al. 2005). Fig. 22 shows the interplay between intrinsic central

shape and projected central kinematics. The former is quantified by

the axis ratio b/a calculated from the spatial distribution of the 10

per cent most bound particles and the latter is expressed in terms of

〈H4〉0 (calculated inside an aperture of 2 arcsec – about reff/3 or 1 kpc

at the Coma distance of d = 100 Mpc). The figure shows that high

〈H4〉0 occurs in Y projections (low line-of-sight velocities), while

low or negative 〈H4〉0 appears when viewing the prolate centres

end-on (large line-of-sight velocities). Differences between X and

Y projections increase with decreasing b/a. Finally, as expected for

nearly prolate systems, Z and Y projections are almost equivalent.

In principle, the projected central velocity dispersion should show

analogue trends. However, it also depends on the total mass M and

size Rh of a system and has to be normalized before different objects

can be compared. One option is to use

〈σ 〉0 ≡ σ0√
G M/Rh

, (20)

where Rh is the half-mass radius of the light distribution and σ 0

is the central velocity dispersion, measured in the same aperture

as 〈H4〉0. The top panel of Fig. 23 shows that 〈H4〉0 and 〈σ 〉0 are

closely correlated: high 〈H4〉0 comes along with low projected dis-

persions and vice versa, as expected from our above discussion. In
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Figure 22. Central 〈H4〉0 in X and Y projections as function of b/a
(10 per cent most bound particles). Small symbols: merger remnants of

Naab & Burkert (2003); large symbols: subset of modelled merger remnants

in this work; lines trace the mean of the distributions. For comparison also

the mean of the Z projections is indicated.

Figure 23. Central 〈H4〉0 versus 〈σ 〉0 (top) and projected ellipticity ε0.1 of

the 10 per cent most bound particles (bottom). Small symbols: all remnants;

large symbols: remnants with Schwarzschild models.

addition, high 〈H4〉0 (and low 〈σ 〉0, respectively) are connected to

large projected ellipticities, as illustrated in the lower panel of the

figure. Concluding, inner box orbits in the merger remnants indeed

cause a situation as described in Section 1.0.1: Y and Z projections

of the remnant centres have high flattening in combination with low

〈σ 〉0 and high 〈H4〉0.

How are the remnant centres mapped on to the axisymmetric

Schwarzschild models? Particles on box orbits stream perpendicu-

lar to the line of sight of Y and Z projections. The respective high

H4 values provoke radial anisotropy in the inner regions of Y and Z

Figure 24. Meridional anisotropy βϑ at r = 0.2 reff versus ϒfit/ϒ in (top)

and versus H4 at same radius (bottom).

models (lower panel of Fig. 24). It has been mentioned above that

axisymmetric systems which are flattened by equatorial radial or-

bits have large central velocity dispersions (e.g. Dehnen & Gerhard

1993, see also the edge-on projection of the axisymmetric radial

orbit in Fig. 16). However, the Y and Z projections of the remnants

are characterized by the opposite: low central velocity dispersions.

Consequently, Y and Z models constrained to have ϒ ≡ ϒ in predict

a too large central velocity dispersion (cf. Fig. 21).

Assuming that the anisotropy in the models is fixed by the con-

straints imposed through H4, then there is only one way to match

the low central dispersion of the remnants: to reduce the inner mass.

The inner mass, in turn, depends on only one parameter, ϒ , because

both, mergers and models, are virtually free of dark matter in their

centres. Accordingly, if it is indeed the flattening by box orbits in the

merger remnants, e.g. the combination of high ellipticity, positive

〈H4〉0 but low 〈σ 〉0 that causes the low ϒfit in Y and Z models, then

we would expect the following behaviour of the models: the larger

〈H4〉0, the larger the radial anisotropy in the Schwarzschild fits. The

larger the anisotropy, in turn, the larger 〈σ 〉0 for ϒ = ϒ in. Thus, we

expect that models which are forced to be more radially anisotropic

will have a lower ϒfit for compensation. The upper panel of Fig. 24

confirms that indeed the lowest ϒfit/ϒ in appears in models that are

most strongly radially anisotropic near the centre (at 0.2reff).

Hence, the systematically low ϒfit of Y and Z models in Fig. 20

most likely reflect a lack of appropriate counterparts of box orbits in

axisymmetric potentials that can support a high flattening in com-

bination with a low central velocity dispersion (per mass).

The underestimation of ϒ in Y and Z models is at first glance

similar to the underestimation of the total mass in these models (cf.

Section 9.2). However, models of X projections also deliver ϒfit <

ϒ in. This is different from the reconstruction of total masses, which

are instead overestimated in X models. On one hand, it should be

noted that – irrespective of ϒfit < ϒ in – the total mass of X models,

even close to the centre, is often larger than in the remnants because

of the overestimation of light in the deprojection (cf. Section 5.1).

On the other hand, the discussion of the Y and Z models has revealed

that ϒfit depends primarily on the central orbital structure and not,
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as the total mass, on the global energy budget. Therefore the recon-

struction of ϒ is different from the reconstruction of the total mass.

In particular, it most likely depends on the specific structure of the

merger remnants considered here. We cannot rule out that systems

exist in which, say, 〈H4〉0 and the inner flattening combine in a way

such that X models would be forced to have ϒfit > ϒ in. This needs

further exploration of a broader sample of modelling targets. The X
projections of the merger remnants analysed here apparently do not

require ϒfit > ϒ in to be modelled adequately.

10.3 The role played by dark matter

In Fig. 24 Y and Z models behave similarly (low ϒfit, large radial

anisotropy) as expected from the central box orbits in the merger

remnants. In Fig. 20, however, Y models are different from Z models

in their dark haloes: the underestimation of luminous mass in Y
models is compensated for by relatively massive haloes, while this

is apparently not the case in Z models. According to Section 9 higher

projected kinetic energies in Y projections are responsible for their

higher total masses (compared to Z models). The difference between

Y and Z models could be related to the different views on minor-axis

tubes, that dominate the outer parts of the remnants (Jesseit et al.

2005). Y projections map them edge-on such that they contribute

significantly to the total line-of-sight energy. In Z projection they

appear face-on and most of their kinetic energy is perpendicular to

the line of sight. The transition from side-on inner box orbits to

edge-on outer Z tubes may be the origin for the local maximum

in some dispersion profiles of Y projections (TRIAX, FLAT; cf.

Appendix B). Z projections lack a similar maximum, as expected if

it is caused by the edge-on view on Z tubes. The increase of σ at the

transition from box orbits to Z tubes could explain why the low ϒfit

of Y models (set by the fit to the central remnant kinematics) have

to be compensated for with massive haloes at larger radii. Z models

do not need such compensating halo components, because σ drops

smoothly.

It appears that for our modelling the inclusion of dark matter in

the fits has two main effects: (1) it allows to trace the true mass struc-

ture of the modelling targets in the outer parts (because the remnants

contain dark matter); (2) in some cases it can improve the fit to the

central kinematics by allowing for an artificial (M/L) gradient over

the spatial region dominated by luminous mass. In particular it of-

fers to combine low central ϒ with larger outer M/L. This second

issue related to dark matter in the models raises the question whether

fitting self-consistent triaxial systems with self-consistent axisym-

metric models might be different: the mass-to-light ratio ϒ of the

fits is then constrained by the inner as well as the outer kinematics.

Accordingly, the quality of the overall fit could be less good. For

example, in the self-consistent case ϒ cannot be reduced arbitrarily

to match low central 〈σ 〉0 such as those arising in specific Y projec-

tions, as otherwise the mass in the outer parts would be insufficient

to fit the corresponding kinematics there. Consequently, the scatter

in the relation shown in Fig. 17 could increase. This, in turn, would

affect the conclusions drawn about the projection dependency of the

mass budget of the axisymmetric fits, because they are partly based

on this relation.

In summary, the luminous M/L, because it is the only parameter

that controls the central mass, depends not primarily on the total

projected energy (like the total mass). Instead it is more sensitive

to the central orbital structure of the merger remnants. In particular

the low ϒfit of Y and Z models results from the lack of orbits that

resemble side-on views of box orbits, i.e. which appear highly flat-

tened, show large transversal motions and low central line-of-sight

dispersions simultaneously. The radial anisotropy induced in the ax-

isymmetric models by the transversal streaming of box orbits in the

remnants requires a lowering of ϒfit to keep the central dispersion

low. In Y models massive haloes partly compensate for the low outer

luminous masses that result from the low ϒfit required for the central

fit. These massive haloes are needed to fit side-on views of outer Z
tubes and the related relatively large velocity dispersions. Z models

do not require massive haloes, because when viewed face-on the

outer Z tubes produce relatively low dispersions that do not need

particularly large masses to be fitted.

1 1 I M P L I C AT I O N S F O R M O D E L S
O F R E A L G A L A X I E S

In Sections 9 and 10 we have followed the projection trends in the re-

covery of total and luminous masses back to the restrictions imposed

by axial symmetry. We now discuss very briefly some implications

for models of real galaxies.

11.1 A possible bias in the reconstruction of central masses

The dependency of ϒfit on the central kinematics of the merger rem-

nants discussed in Section 10 implies that ϒfit/ϒ in is connected to

〈H4〉0 and 〈σ 〉0. Insofar as models and remnants are dominated by

luminous mass near their centres, one would expect that ϒfit/ϒ in re-

sembles the ratio M(fit)/M(in) between reconstructed and input mass,

evaluated at some radius near the centre. Consequently, M(fit)/M(in)

should be connected to 〈H4〉0 and 〈σ 〉0 as well.

The relationships between M(fit)/M(in) (evaluated at 0.2 reff) and

the central kinematical parameters 〈H4〉0 and 〈σ 〉0 are shown in

Fig. 25. Because masses globally scale with velocities squared, we

have chosen 〈σ 〉2
0 as the ordinate in the top panel. Indeed the inner

M(fit)/M(in) is closely correlated to 〈H4〉0 and 〈σ 〉2
0. Linear fits yield

M (fit)

M (in)

∣∣∣∣
0.2

= 44.33〈σ 〉2
0 − 0.29 (21)

Figure 25. Central velocity dispersion 〈σ 〉2
0 (top) and 〈H4〉0 (bottom) versus

M(fit)/M(in) (evaluated at 0.2 reff). Short-dashed lines: linear fits. The long-

dashed line in the bottom panel shows the relation expected according to the

fit from the top panel and the correlation between 〈σ 〉0 and 〈H4〉0 shown in

the top panel of Fig. 23. Symbols as labelled in the bottom panel.
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Figure 26. Central 〈H4〉0 versus viewing angle. Top: azimuth � in (X, Y)

plane (ζ ≡ 0); bottom: latitude ζ in (Y, Z) plane (� ≡ 0); large symbols (as

in Fig. 23): modelled merger remnants.

and

M (fit)

M (in)

∣∣∣∣
0.2

= 1.2 − 13.1〈H4〉0, (22)

respectively (short-dashed lines in Fig. 25). The two relations should

be almost equivalent, because according to Fig. 23 〈H4〉0 and 〈σ 〉0

are closely correlated in the merger remnants. In fact, the predicted

relation between M(fit)/M(in) and 〈H4〉0 that derives from a linear fit

to the top panel of Fig. 23 in combination with equation (21) is

consistent with the actual relation between the mass ratio and 〈H4〉0

that is shown in the lower panel of Fig. 25. For comparison, this

relation is indicated by the long-dashed line.

Both quantities, 〈σ 〉0 and 〈H4〉0 are viewing-angle dependent. The

case of the principal axes has already been discussed in Section 1.0.2.

The full viewing-angle dependency of 〈H4〉0 for all merger remnants

of Naab & Burkert (2003) is shown in Fig. 26. Thereby � is defined

as the azimuth in the (X, Y) plane and ζ is the latitude. In accordance

with our previous discussion 〈H4〉0 peaks in Y and Z projections and

varies little with ζ between these projections (prolateness). In the (X,

Y) plane 〈H4〉0 decreases smoothly when approaching the long-axis

projection. A similar behaviour of H4 with viewing angle has been

observed in N-body binary mergers of discs with massive bulges,

but without dark matter (Heyl, Hernquist & Spergel 1995).

If the merger remnants studied here would be seen at random

projections on the sky, then the viewing-angle dependency of 〈H4〉0

would give rise to the frequency distribution shown in the top panel

of Fig. 27. Equal-mass mergers would have on average the highest

〈H4〉0, because they are nearly prolate and the 〈H4〉0 distribution is

dominated by the positive values around Y and Z projections, respec-

tively. Towards 4:1 mergers the average 〈H4〉0 decreases slightly.

Assuming that relation (22) holds for all viewing angles and

merger remnants, then the frequency distribution of 〈H4〉0 can be

used to predict the distribution of reconstructed central M(fit)/M(in).

The latter is plotted in the lower panel of Fig. 27: axisymmetric

models of these merger remnants would be always biased towards

too low central masses. The bias would be strongest for equal-mass

Figure 27. Top: central 〈H4〉0 from random projections of the merger rem-

nant sample of Naab & Burkert (2003) (results are separated for different

progenitor mass ratios); bottom: resulting central M(fit)/M(in) according to

relation (22).

mergers, while masses of the more axisymmetric 4:1 mergers would

be recovered better.

Note, however, that for the construction of the lower panel of

Fig. 27 we have assumed that the relation (22) holds for models

of all merger remnants and at all viewing angles. This needs to be

verified on the basis of a broader sample of models. Likewise it

is not clear whether the connection between 〈H4〉0 and the central

M(fit)/M(in) also holds for non-axisymmetric targets of more general

shapes.

11.2 A possible bias in the reconstruction of luminous
mass-to-light ratios

As stated above, if models and merger remnants are void of dark

matter in their central regions, then M(fit)/M(in) ≈ ϒfit/ϒ in. Accord-

ingly, if the merger remnants analysed here would be seen at random

projections on the sky, then ϒfit/ϒ in would be subject to a similar

bias as the central M(fit)/M(in). However, the relation between ϒfit/ϒ in

and 〈H4〉0, which determines the bias, is more scattering than the one

with the inner M(fit)/M(in) and it cannot be described by a straight line

(upper panel of Fig. 28). The reason is that the total mass near the

centre, say inside 0.2 reff, is determined by the product of the central

luminosity with ϒfit (and a negligible amount of central dark matter).

The central luminosity however, is overestimated in X models, but

underestimated in Y and Z models (cf. Section 5.1). Consequently, X
models with a specific ϒ have larger M(fit)/M(in) than Y or Z models

with the same ϒ . This is illustrated in the lower panel of Fig. 28.

Regardless of the complicated shape of the relation between 〈H4〉0

and ϒfit/ϒ in it is clear that reconstructed luminous M/L values of the

merger remnants analysed here would be always underestimated.

11.3 The mass recovery in models with Υ ≡ Υin

If one is interested in the recovery of luminous M/L values, one

could use the relationship between 〈H4〉0 and ϒfit/ϒ in (upper panel

of Fig. 28) to correct dynamically derived M/L values (roughly) for
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Figure 28. Top: 〈H4〉0 versus ϒfit/ϒ in; bottom: connection between the

parameter ratio ϒfit/ϒ in and the actual ratio M(fit)/M(in) of integrated masses

(luminous + dark) inside 0.2 reff. The dashed line marks the identity relation.

the effects of intrinsic non-axisymmetry. However, the accuracy of

this step is limited by the systematics of the deprojections (lower

panel of Fig. 28). Another way to obtain unbiased luminous M/L
values would be to apply stellar population models to line indices,

although this requires knowledge of the initial stellar mass function.

In any case it is interesting to ask, whether knowledge of the true

ϒ could help to improve other aspects of the dynamical modelling,

e.g. the recovery of the intrinsic anisotropy. To investigate this, we

now compare Schwarzschild fits obtained under the condition that

the luminous M/L is fixed to its true value, ϒ ≡ ϒ in, with the merger

remnants. Since most best-fitting X models with variable ϒ already

have ϒfit ≈ ϒ in to within 10 per cent (cf. Section 6.1), fixing ϒ ≡
ϒ in does not change X models significantly. We therefore skip X
models in the remainder of this section.

Fig. 29 compares the intrinsic mass densities of Y models with

ϒ ≡ ϒ in to the merger remnants in a similar fashion as models with

variable ϒ were compared in Fig. 9. The figure clearly shows an

improvement in the mass recovery when ϒ is known. This holds for

both, total as well as dark mass densities. Fig. 30 covers the case of

Z models. Here, although again the mass recovery improves, the dis-

crepancy between the density profiles of models and remnants in the

outer parts remains. As it has already been discussed in Section 5.1,

the light profile of Z models differs from the remnants mainly in

having the wrong slope. Knowing just the true scaling ϒ in cannot

remove this mismatch.

11.4 Anisotropy in models with Υ ≡ Υin

Figs 31 and 32 compare anisotropy profiles of Y and Z models with

ϒ ≡ ϒ in to the merger remnants. The general trend is that models

with ϒ ≡ ϒ in become strongly tangentially anisotropic (βϑ < 0, βϕ

< 0) in the outer regions (r � 0.5 reff), especially Z models. Towards

the centres most of the models shown in Figs 31 and 32 become

radially anisotropic (βϕ > 0), with a local peak around 0.1–0.3 reff.

All in all then, fixing ϒ ≡ ϒ in improves the reconstruction of the

intrinsic mass structure, but deviations in internal velocity moments

increase.

Figure 29. As Fig. 9, but for models with ϒ ≡ ϒ in.

Figure 30. As Fig. 10, but for models with ϒ ≡ ϒ in.

1 2 S U M M A RY

We have modelled a set of collisionless disc–disc mergers with ex-

actly the same axisymmetric orbit superposition program that has

been used to model a sample of medium bright giant Coma ellip-

ticals. The models assume a constant M/L for the luminous matter

and a dark halo of the NFW type (Navarro et al. 1996). The rem-

nants we model result from the collisionless merger of progenitor

systems composed of a bulge, a disc (both with the same M/L) and

a dark halo. They are chosen to cover representatively the range of

intrinsic shapes and dynamical structures of the Naab & Burkert

(2003) merger sample, including the most extreme cases.

Intrinsic triaxiality causes a strong viewing-angle dependency

of projected properties of the remnants. As in axisymmetric mod-

els many viewing angles are equivalent this must result in a
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Figure 31. As Fig. 12, but for models with ϒ ≡ ϒ in. Profiles of the best-

fitting models shown in Fig. 12 are repeated for comparison (dotted).

Figure 32. As Fig. 31, but for Z models.

corresponding dependency of the fits on the viewing angle of the

remnant. The goal of this study is to investigate this dependency.

Some projected properties of triaxial systems, e.g. minor-axis ro-

tation or isophotal twists, are obviously incompatible with oblate

axial symmetry. Apart from these, we do not find any obvious mis-

match between our Schwarzschild models and the merger remnants:

residuals in the kinematic fits are smaller than typical observational

errors.

12.1 Remnant shapes and the mass recovery

We find that the reconstruction of the total (luminous + dark) mass

at the effective radius depends primarily on viewing angle and not

on the orbital structure of the merger remnants. This is so, because

the global mass budget of the axisymmetric models is fixed by two

constraints. First, the total line-of-sight energies of the luminous

components of models and mergers match, which is a consequence

of the fit to the projected kinematics. Secondly, although the two

transversal kinetic energies are not constrained in the models, the

ratio of both has to be the same in models and mergers, respectively:

the ratio determines the flattening and is constrained by the fit to

the luminosity density. For edge-on models the restrictions imposed

through axial symmetry then already fix the total mass budget of the

Schwarzschild models. Thereby models of X projections overesti-

mate the true mass, models of Y projections underestimate it on

about the same level and models of Z projections have masses even

lower than those of Y models. The exact amount of overestimation

or underestimation depends on the intrinsic shape of the merger

remnants.

In the merger remnants analysed here deviations of cumulative

masses inside 1–2 reff are mostly below 20 per cent. Extreme values

of underestimations are larger than those of overestimations. The

strongest underestimations occur among intrinsically very flattened,

face-on systems, where the mass can be underestimated by up to

50 per cent. The underestimation is due to a wrong inclination of the

corresponding models, which arises from the fact that most remnants

appear either flattened or show some residual rotation along the

minor axis, respectively, when viewed along their short axis. Both

phenomena exclude face-on (i = 0◦) oblate axisymmetric models,

cause an underestimation of the luminous kinetic energy and, hence,

an underestimation of the mass inside the effective radius.

The luminous M/L is always underestimated, ϒfit < ϒ in. Unlike

the total mass, it does not derive primarily from the total kinetic

energy of the Schwarzschild model. Although ϒfit varies similarly

with viewing angle as the total mass, this variation is mediated by

the central kinematics of the merger remnants. Box orbits cause

a combination of high projected flattening and low line-of-sight

motions (high central H4, low central σ ) in Y and Z projections.

Box orbits are mapped on to radial orbits in the Schwarzschild fits.

The corresponding increase of the central velocity dispersion in the

model then requires a lowering of the central mass to achieve a

good match to both, the high central H4 and the low σ . As the

luminous mass-to-light ratio ϒfit is the only parameter that controls

the central mass, ϒfit < ϒ in in Y and Z models (up to a factor of

2.5). Models of long-axis projections yield the best approximations

to the mergers, in all but one case ϒfit ≈ ϒ in to within 10 per cent.

The asymmetric motion of particles, especially those on inner box

orbits, correlates central kinematical parameters like 〈σ 〉0 and 〈H4〉0

with viewing angle, a result that has already been found in N-body

simulations without dark matter (Heyl et al. 1995). The link between

box orbit kinematics and ϒfit also gives rise to a correlation of the

reconstructed central mass (relative to the merger mass) M(fit)/M(in)

with 〈H4〉0 – and viewing angle.

The deficit of luminous mass in models of projections along the

intermediate axis is compensated for by dark haloes that are more

massive than in the remnants. Such massive haloes are necessary to

fit the relatively large outer dispersions of these projections. Mod-

els of short-axis projections do not have massive dark haloes: their

outer dispersions are low. The different outer dispersions of projec-

tions along the intermediate and short axis, respectively, arise due

to different views on minor-axis tubes dominating the outskirts of

the remnants.

If the luminous M/L is fixed to its true value, then the mass recov-

ery of Y models improves (on average 6 per cent accuracy at 2 reff).

Models of Z projections suffer from a wrong slope in the deprojec-

tion arising from the mismatch in the inclination already discussed

above. As the inclination is wrong, mere knowledge of the true ϒ

does not improve the mass reconstruction of Z models much.
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In general, improvements of the mass recovery are to the expense

of strong outer tangential anisotropy in the Schwarzschild models,

which weaken the match with the remnants’ dynamics.

12.2 Anisotropies in Schwarzschild models of mergers

The viewing-angle dependency of merger projections induces

a viewing-angle dependency of anisotropies in corresponding

Schwarzschild models. For example, X tubes, when seen end-on,

are nearly round and are represented by shell orbits in axisym-

metric models, resulting in strong tangential anisotropy in the

Schwarzschild fit. The same X tubes seen side-on appear radially ex-

tended and are represented by radially extended orbits in the models,

increasing their radial anisotropy. Because different orbit families

give rise to different viewing-angle dependencies (e.g. Jesseit et al.

2005) the anisotropy of Schwarzschild fits depends on projection as

well as on the orbital makeup.

Z models of intrinsically flat, disc-like merger remnants are dom-

inated by meridional motions (σϑ > σr ). This can be explained as

an inclination effect: as stated above, the flattening of most rem-

nants requires an inclination i > 0◦ in the axisymmetric models. In

this case, Z tubes dominating the outskirts of the remnant project to

nearly round shapes and are mapped on to axisymmetric shell orbits

of the same shape – causing a meridional anisotropy.

As found for the mass reconstruction, modelling the long-axis

projection of a merger remnant yields a better match to the intrinsic

structure, while the largest deviations between remnants and models

appear among the short-axis models. In any case, deviations �β

between Schwarzschild fits and merger remnants are below �β <

0.2 at most radii. Towards the centre and/or towards the outer regions

deviations can be larger, however.

12.3 Real galaxies

We have tested our axisymmetric orbit superposition code on a sam-

ple of rather extreme merger remnants, covering a wide range of

non-axisymmetric as well as axisymmetric, but highly flattened,

dynamical systems. The aim was to probe the limits of the method.

If real ellipticals would resemble the merger remnants considered

here in terms of their orbital structure, then random viewing angles

would provoke scatter in anisotropies of axisymmetric dynamical

models. Furthermore, dynamically derived stellar M/L values would

be on average underestimated and the amount of underestimation

would be correlated with the central value of H4. We plan a detailed

comparison of the models of merger remnants described here with

models of Coma ellipticals in a future publication. If models of real

ellipticals show less scatter in anisotropies or if there is no sign for a

systematic underestimation of stellar M/L values, then this would be

an indication for their intrinsic shapes to be closer to axial symmetry

than in our N-body merger sample.

This would have two consequences. First, axisymmetric galax-

ies would be recovered with higher accuracy, even better than the

merger remnants analysed here whose masses and anisotropies at

the effective radius are mostly well matched. This holds especially

for flattened and rotating systems, which are known to be close to

edge-on. The case of round and non-rotating galaxies (even if they

are axisymmetric) is more ambiguous as the inclination of these

systems is a priori unknown.

Secondly, knowing that galaxies are close to axisymmetry pro-

vides clues about their formation: dissipation during the formation

can change elliptical galaxy properties significantly (e.g. Cox et al.

2006; Robertson et al. 2006). Particularly, it can drive the final ob-

ject towards axial symmetry (e.g. Barnes & Hernquist 1996; Naab,

Jesseit & Burkert 2006b). We therefore also plan to extend our

study to binary disc mergers including gas physics, star formation

and feedback from a central black hole as well as on simulations

from cosmological initial conditions.
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A P P E N D I X A : N - B O DY R E A L I Z AT I O N S O F
S C H WA R Z S C H I L D M O D E L S

In the following we describe the construction of N-body realizations

of Schwarzschild models. Thereby we assume that all particles have

the same mass, e.g. that there is a global constant of proportionality

linking the number density of particles in phase space to the phase-

space mass density. To simplify the notation, we also assume ϒ ≡
1. The generalization to particle masses varying from orbit to orbit

or to systems with ϒ �= 1 is straightforward.

The orbit library of any Schwarzschild model provides a natural

partition of phase space into cells dV(i, j), where dV(i, j) is the phase-

space volume of the cell that orbit i covers during time-step dt(j)
i . The

probability p(i, j) to find a particle in cell dV(i, j) is proportional to

p(i, j) ∝ fi dV (i, j), (A1)

where fi is the phase-space density along orbit i. The latter is related

to the weight wi of the corresponding orbit and its total phase-space

volume Vi via f i = wi/Vi (e.g. Thomas et al. 2004). According to

the time-average theorem

dV (i, j)

Vi
∝ dt ( j)

i

τi
, (A2)

where τ i is the total integration time of orbit i. Hence, the probability

to find a particle in phase-space cell dV(i, j) is

Figure A1. Correlation between the virial ratio 2T/|W| and the halo con-

centration in the Schwarzschild models.

p(i, j) = wi
dt ( j)

i

τi
. (A3)

If the luminosity is normalized such that
∑

wi ≡ 1 then the p(i, j)
of equation (A3) provide a complete partition of the interval [0, 1]:

[0, 1] =
Norb⋃
i=1

Nt (i)⋃
j=1

P(i, j), (A4)

where Norb is the number of orbits in the library, Nt(i) is the number

of time-steps in the integration of orbit i and

P(i, j) =

⎧⎨⎩
[ai j , bi j ) : 1 � i � Norb, 1 � j � Nt (i),

(i, j) �= (Norb, Nt (Norb))

[ai j , bi j ] : i = Norb, j = Nt (Norb)

(A5)

with

ai j ≡
i−1∑
k=0

wk +
j−1∑

m=0

wi
dt (m)

i

τi
(A6)

and

bi j ≡
i−1∑
k=0

wk +
j∑

m=0

wi
dt (m)

i

τi
(A7)

(w0 ≡ 0 and dt(0)
i ≡ 0, 1 � i � Norb). The length of each subinterval

equals the probability to find a particle in phase-space cell dV(i, j):

bi j − ai j = wi
dt ( j)

i

τi
= p(i, j). (A8)

An N-body realization with Nl particles of, say, the luminous

component can now be constructed by choosing Nl random numbers

k ∈ [0, 1]. Each k falls into one subinterval P(ik, jk). Accordingly,

particle k has to be dropped on orbit ik during time-step jk. The N-

body realization of the dark halo can be constructed in a similar way,

provided corresponding orbital weights are given. For the discussion

in this paper we only need an N-body representation of the dark halo

density profile, not of the halo kinematics. Thus, we can choose

any DF for the halo that supports its density profile. The N-body

realizations of the haloes in this work have been calculated from

orbit weights that maximize the entropy of the dark matter DF.

Their calculation is described in Thomas et al. (2007). We use Nl =
Nd = 50 000 particles to sample the Schwarzschild models up to

10 reff.

Cutting the N-body realization beyond 10 reff introduces a spuri-

ous correlation between the virial ratio 2T/|W| and the halo concen-

tration chalo in the Schwarzschild fits. This is shown in Fig. A1: the

less concentrated the halo, the larger 2T/|W|. The systematic offset

2T/|W| > 1 of the N-body realization is thereby most likely caused

by the fact that the halo is undersampled if the concentration is low

(chalo � 13) and the halo scaling radius is correspondingly large.

Then, the potential well is too shallow and |W| is underestimated.

For the deviations from virial equilibrium discussed in Section 8.3

it follows that they are mostly an artefact of the N-body realization

and not due to intrinsic non-stationarity of the models.
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A P P E N D I X B : DATA A N D M O D E L S

Figs B1–B6 survey the kinematics of the individual targets (dots with

error bars) and the model fits (lines). For each target the best-fitting

Figure B1. Comparison of model kinematics (solid lines: best fit; dashed

lines ϒfit ≡ ϒ in) and input data (dots with error bars) for the TRIAX tar-

get. Top panel: major axis; bottom panel: minor axis. In each panel, from

top to bottom v, σ , H3 and H4; left-hand panels: X projection; middle pan-

els: Y projection; right-hand panels: Z projection. The luminous M/L values

of the Schwarzschild fits are ϒfit/ϒ in = 0.9, 0.7, 0.4 (X, Y and Z models,

respectively).

model (solid; best-fitting luminous mass-to-light ratios ϒfit/ϒ in are

given in the captions and summarized in Table B1) as well as the

best fit with ϒ ≡ ϒ in (dashed) are shown. Table B1 also lists the

accuracy of reconstructed total masses at reff.

Figure B2. As Fig. B1, but for the PROLATE target. ϒfit/ϒ in = 0.9, 0.6, 0.8

(X, Y and Z models, respectively).
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Figure B3. As Fig. B1, but for the ROUND target. ϒfit/ϒ in = 0.9, 0.8, 0.7

(X, Y and Z models, respectively).

Figure B4. As Fig. B1, but for the FLAT target. ϒfit/ϒ in = 0.9, 0.7, 0.6 (X,

Y and Z models, respectively).
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Figure B5. As Fig. B1, but for the ELONG target. ϒfit/ϒ in = 0.9, 0.6, 0.5

(X, Y and Z models, respectively).
Figure B6. As Fig. B1, but for the OBLATE target. ϒfit/ϒ in = 0.7, 0.9, 0.7

(X, Y and Z models, respectively).

Table B1. Accuracy of reconstructed masses. (1) Merger remnant; (2–4)

reconstructed ϒfit/ϒ in for X, Y and Z models, respectively; (5–7) fractional

error �M ≡ (M(fit) − M(in))/M(in) of reconstructed (luminous + dark) mass

inside reff for X, Y and Z models, respectively.

Remnant ϒfit/ϒ in �M (per cent)

X Y Z X Y Z
(1) (2) (3) (4) (5) (6) (7)

TRIAX 0.9 0.7 0.4 −2.3 −14.9 −45.8

PROLATE 0.9 0.6 0.8 3.7 −18.2 −3.8

ROUND 0.9 0.8 0.7 9.3 10.0 −13.1

FLAT 0.9 0.7 0.6 5.1 −4.4 −45.6

ELONG 0.9 0.7 0.5 10.0 −9.4 −47.8

OBLATE 0.7 0.9 0.7 2.8 0.4 −34.5
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