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ABSTRACT
Dynamical models for 17 early-type galaxies in the Coma cluster are presented. The galaxy

sample consists of flattened, rotating as well as non-rotating early-types including cD and

S0 galaxies with luminosities between MB = −18.79 and −22.56. Kinematical long-slit

observations cover at least the major-axis and minor-axis and extend to 1–4reff. Axisymmetric

Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters.

In every galaxy, the best fit with dark matter matches the data better than the best fit without.

The statistical significance is over 95 per cent for eight galaxies, around 90 per cent for five

galaxies and for four galaxies it is not significant. For the highly significant cases, systematic

deviations between models without dark matter and the observed kinematics are clearly seen;

for the remaining galaxies, differences are more statistical in nature. Best-fitting models con-

tain 10–50 per cent dark matter inside the half-light radius. The central dark matter density

is at least one order of magnitude lower than the luminous mass density, independent of the

assumed dark matter density profile. The central phase-space density of dark matter is often

orders of magnitude lower than that in the luminous component, especially when the halo

core radius is large. The orbital system of the stars along the major-axis is slightly dominated

by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is

correlated with the minor-axis Gauss–Hermite coefficient H4. Changing the balance between

data-fit and regularization constraints does not change the reconstructed mass structure signif-

icantly: model anisotropies tend to strengthen if the weight on regularization is reduced, but

the general property of a galaxy to be radially or tangentially anisotropic does not change. This

paper is aimed to set the basis for a subsequent detailed analysis of luminous and dark matter

scaling relations, orbital dynamics and stellar populations.

Key words: stellar dynamics – galaxies: elliptical and lenticular, cD – galaxies: kinematics

and dynamics – galaxies: structure.

1 I N T RO D U C T I O N

Elliptical galaxies are numerous among the brightest galaxies and

they harbour a significant fraction of the present-day stellar mass

in the Universe (Fukugita, Hogan & Peebles 1998; Renzini 2006).

Key parameters for the understanding of elliptical galaxy formation

and evolution are, among others, the central dark matter density,

�E-mail: jthomas@mpe.mpg.de

the scaling radius of dark matter, the stellar mass-to-light ratio and

the distribution of stellar orbits. While the concentration of the dark

matter halo puts constraints on the assembly epoch (Navarro, Frenk

& White 1996; Jing & Suto 2000; Wechsler et al. 2002), the orbital

state contains imprints of the assembly mechanism of ellipticals

(e.g. van Albada 1982; Hernquist 1992, 1993; Weil & Hernquist

1996; Dubinski 1998; Naab & Burkert 2003; Jesseit, Naab & Burkert

2005).

Information about elliptical galaxy masses is, in principle, offered

through various channels. The analysis of X-ray halo temperatures,
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the kinematics of occasional gas discs and galaxy–galaxy lensing

provide evidence for extended dark matter haloes around early-type

galaxies (e.g. Bertola et al. 1993; Pizzella et al. 1997; Loewenstein &

White 1999; Oosterloo et al. 2002; Hoekstra, Yee & Gladders 2004;

Fukazawa et al. 2006; Humphrey et al. 2006; Kleinheinrich et al.

2006; Mandelbaum et al. 2006). These methods do not constrain the

inner halo-profiles strongly, however. At non-local redshifts, strong

lensing configurations allow a detailed reconstruction of the mass

enclosed inside, say, the half-light radius reff (e.g. Keeton 2001;

Koopmans et al. 2006). None of the above mentioned observational

channels is sensitive to dynamical galaxy parameters, such as the

distribution of stellar orbits.

Dynamical modelling of stellar kinematics has the unique ad-

vantage that it allows reconstruction of both the mass structure

and the orbital state of a galaxy. High-quality observations of the

line-of-sight velocity distributions (LOSVDs) out to several reff are

needed for this purpose. To overcome the problems of measur-

ing absorption-line kinematics in the faint outskirts of ellipticals,

discrete kinematical tracers such as planetary nebulae or globular

clusters can be used to additionally constrain the mass distribution

(e.g. Saglia et al. 2000; Romanowsky et al. 2003; Pierce et al. 2006;

Douglas et al. 2007).

Since stars in galaxies behave collisionlessly to first order, the

distribution of stellar orbits is not known a priori and very general

dynamical methods are required to probe all the degrees of freedom

in the orbital system. So far only one large sample of 21 round, non-

rotating giant ellipticals has been probed for dark matter considering

at least the full range of spherical models (Kronawitter et al. 2000).

These models predict circular velocity curves constant to about

10 per cent and equal luminous and dark matter somewhere inside

1–3reff. Reconstructed haloes of these models are ∼25 times denser

than in comparably bright spirals, which indicates an approximately

three times higher formation redshift (Gerhard et al. 2001). Not all

apparently round objects need to be intrinsically spherical; some

may be face-on flattened systems.

Apparently flattened ellipticals have not yet been addressed in

much generality. Primarily, because axisymmetric modelling is re-

quired to account for intrinsic flattening, inclination effects and ro-

tation. Fully general axisymmetric models involve three integrals of

motion, one of which – the non-classical so-called third integral – is

not given explicitly in most astrophysically relevant potentials. Only

recently, sophisticated numerical methods such as Schwarzschild’s

orbit superposition technique (Schwarzschild 1979) have provided

fully general models involving all relevant integrals of motion. Dy-

namical studies of samples of elliptical galaxies using this tech-

nique are, however, based on kinematical data inside r � reff (Geb-

hardt et al. 2003; Cappellari et al. 2006) and dark matter is not

considered.

This paper is part of a project aimed to analyse the luminous and

dark matter distributions as well as the orbital structure in a sample

of flattened Coma ellipticals. The data for this project have been

collected over the last years and consist of ground-based as well

as (archival and new) HST imaging and measurements of LOSVDs

along various position angles out to 1–4reff (Mehlert et al. 2000;

Wegner et al. 2002; Corsini et al. 2007). The implementation of our

modelling machinery, which is an advanced version of the axisym-

metric Schwarzschild code of Richstone & Tremaine (1988) and

Gebhardt et al. (2000) has been described in detail in Thomas et al.

(2004, 2005). In this paper, we survey the models of the whole sam-

ple. This sets the basis for subsequent investigations of luminous

and dark matter scaling relations and stellar populations in elliptical

galaxies (Thomas et al., in preparation).

In Section 2, the observations are summarized and the modelling

is outlined in Sections 3 and 4. The mass structure of our models

and the orbital anisotropies are described in Sections 5 and 6, re-

spectively. Phase-space distribution functions (DFs) for luminous

and dark matter are the subject of Sections 7 and 8. We discuss the

influence of regularization on our results in Section 9. This paper

closes with a short discussion and summary in Section 10. A de-

tailed comparison of models and data for each galaxy can be found

in Appendix A.

2 S U M M A RY O F O B S E RVAT I O N S

The Coma sample consists of 17 early-type galaxies: two cD galax-

ies, nine ordinary giant ellipticals and six lenticulars or galaxies

of intermediate type. They cover the luminosity interval −20.30 <

MB < −22.56, typical for luminous giant ellipticals/cDs. One sin-

gle fainter galaxy with MB = −18.8 is also included (cf. Table 1;

magnitudes are from Hyperleda for a distance of d = 100 Mpc to

Coma; this corresponds to H0 = 69 km s−1 Mpc). Effective radii are

mostly between 3.3 < reff < 18.4 arcsec. Only the four brightest

galaxies have formally very large reff ≈ 30–70 arcsec [cf. Table 1;

reff are from Jorgensen, Franx & Kjaergaard (1995) and Mehlert

et al. (2000)]. All galaxies share the same distance and the spatial

resolution in the photometric as well as the kinematical observations

is roughly comparable for all galaxies.

The photometric input for the modelling is constructed as a com-

posite of ground-based (outer parts) and HST imaging (inner parts).

The two surface brightness profiles μgrd and μH ST are joined by

shifting the HST profile according to the average 〈μgrd − μH ST 〉
over a region where both data sets overlap and seeing effects are

negligible (≈5–16 arcsec). The shift 〈μgrd − μH ST 〉 is usually well

defined (cf. Table 1).

The kinematic data to be fitted by the models come from long-slit

observations along at least two position angles: the apparent major-

axis and minor-axis. Kinematical parameters from different sides of

a galaxy are averaged. As error bars, we use the maximum from the

two sides or half of the scatter between them, whatever is larger. This

assumes that uncertainties in the observations are mostly systematic

(see also the discussion in Section 4.1). In the case of pure statistical

errors and an exactly axisymmetric system, this would overestimate

the errors by a factor of
√

2. Thus, we are conservative.

The data are described in full detail in Mehlert et al. (2000),

Wegner et al. (2002) and Corsini et al. (2007). Basic parameters of

the photometric and kinematic data sets are summarized in Table 1.

The following three galaxies deserve further comments.

(i) GMP 5568/NGC 4816. GMP5568 has been observed along

four position angles. In addition to major-axis and minor-axis spec-

tra, two observations were made with the slits parallel to the major-

axis: one with an offset of reff/4, and the other with reff/20.

(ii) GMP 0144/NGC 4957. The velocity dispersion peak of

GMP 0144 is significantly off the photometric centre. Furthermore,

GMP 0144 is the only galaxy in our sample that exhibits a signif-

icant isophotal twist towards the centre. Thus, GMP 0144 is likely

triaxial near its centre. To reduce the influence of potentially non-

axisymmetric regions on our modelling, kinematic measurements

inside r < 4 arcsec are omitted.

(iii) GMP 5975/NGC 4807. Dynamical models for GMP 5975,

based on major-axis and minor-axis kinematics, have already been

presented in Thomas et al. (2005). There, a striking depopulation

of retrograde orbits was found. To check its significance, we also

determined kinematics along a diagonal slit. Here, we present new
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Table 1. Summary of observational data. Columns (1) and (2): galaxy ID (GMP from Godwin, Metcalfe & Peach 1983); column (3): morphological type

(from Mehlert et al. 2000); columns (4) and (5): HST and ground-based photometry (L97 = HST/WFPC2 R-band data, Principal Investigator: John Lucey,

Proposal ID: 5997; H98 = HST/WFPC2 R-band data, Principal Investigator: William Harris, Proposal ID: 6104; W07 = HST/WFPC2 R-band data, Principal

Investigator: Gary Wegner, Proposal ID: 10884; M00 = Kron–Cousins RC-band photometry from Mehlert et al. 2000; J94 = Gunn r photometry from Jørgensen

& Franx 1994); column (6): absolute B-band magnitude (from Hyperleda; H0 = 69 km s−1 Mpc−1); columns (7) and (8): effective radius reff and ellipticity

εe at reff from Mehlert et al. (2000); column (9): rms 〈μgrd − μH ST 〉 between shifted HST surface brightness μH ST and corresponding ground-based μgrd;

columns (10)–(13): radius of the outermost kinematic data point along various slit positions: maj/min/dia = position angle of 0◦/90◦/45◦ relative to major

axis; off = parallel to major axis (in case of GMP5568: two offset-slits). The offsets are quoted in the captions of Figs A1–A17.

Galaxy Photometry Kinematics

id type Source MB reff εe rms 〈μgrd − μH ST 〉 maj min off dia

GMP NGC HST Ground-based (mag) (arcsec) (mag) (reff) (reff) (reff) (reff)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

0144 4957 E L97 M00 −21.07 18.4 0.256 0.011 1.4 0.7 – –

0282 4952 E L97 M00 −20.69 14.1 0.315 0.009 1.7 0.5 – –

0756 4944 S0 W07 M00 −21.77 11.7 0.657 0.010 3.0 0.4 2.5 –

1176 4931 S0 W07 M00 −20.32 7.4 0.552 0.080 4.7 0.8 3.7 –

1750 4926 E L97 J94 −21.42 11.0 0.132 0.058 0.9 0.9 – –

1990 IC 843 E/S0 W07 M00 −20.52 9.45 0.485 0.066 3.3 0.5 1.8 –

2417 4908 E/S0 L97 J94 −21.06 7.1 0.322 0.042 2.2 0.9 0.9 –

2440 IC 4045 E W07 J94 −20.30 4.37 0.330 0.038 3.2 1.0 – 1.0

2921 4889 D L97 J94 −22.56 33.9 0.360 0.028 0.7 0.3 – –

3329 4874 D H98 J94 −22.50 70.8 0.141 0.057 0.4 0.1 – –

3510 4869 E L97 J94 −20.40 7.6 0.112 0.033 2.0 1.1 – –

3792 4860 E L97 J94 −20.99 8.5 0.161 0.071 1.1 1.0 – –

3958 IC 3947 E L97 J94 −18.79 3.3 0.323 0.024 1.7 0.9 – –

4928 4839 E/S0 (D) L97 J94 −22.26 29.5 0.426 0.104 1.1 0.1 – 0.2

5279 4827 E L97 M00 −21.36 13.6 0.205 0.019 1.6 0.7 – –

5568 4816 S0 L97 M00 −21.53 55.7 0.284 0.075 0.5 0.1 0.1 –

5975 4807 E L97 M00 −20.73 6.7 0.170 0.015 2.9 0.5 – 1.2

models that include these additional kinematical data. Both the mass

structure and the distribution of stellar orbits did not change signif-

icantly.

3 DY NA M I C A L M O D E L L I N G

We model the kinematic and photometric observations with

Schwarzschild’s orbit superposition method (Schwarzschild 1979).

Details about our implementation are given in Thomas et al. (2004,

2005). Basic steps of the method are briefly recalled in this section.

3.1 Deprojection and inclination

The surface photometry is deprojected to obtain the 3D luminos-

ity distribution ν for each galaxy (using the program of Magorrian

1999). We consider radial profiles of surface brightness, elliptic-

ity and isophotal shape parameters a4 and a6 (Bender & Möllenhoff

1987) for the deprojections1 (see also Appendix A). For each galaxy,

we probe three different inclinations in the deprojection and subse-

quent dynamical modelling: (i) i = 90◦ (edge-on), where the depro-

jection is intrinsically least flattened; (ii) a minimum inclination that

is found by requiring the deprojection to be intrinsically as flattened

as an E7 galaxy; and (iii) an intermediate inclination, for which the

deprojection looks like an E5 galaxy from the side. This inclination

scheme emerges as a compromise between limited computation time

on the one side and the strategy to get the most-conservative esti-

mate of uncertainties on intrinsic properties on the other. In many

galaxies, the inclination is only poorly constrained (cf. Section 4.2).

In other words, when we quote 68 per cent confidence uncertainties

1 In the case of GMP1176, isophotal shape parameters up to a12 are used to

represent the isophotes appropriately (see also Corsini et al. 2007).

on intrinsic properties below, this includes in many cases models

from all three probed inclinations, including those connected with

the rather extreme intrinsic E5 and E7 shapes.

In the case of GMP0756, GMP1176, GMP1990 and GMP2417,

only the edge-on orientation is considered. These galaxies

are all highly flattened. In addition, they appear either discy

(e.g. GMP1176) or have thin dust features (GMP1990, GMP2417;

cf. Corsini et al. 2007), implying that they are seen close to edge-on.

The dynamical modelling of GMP5975 in Thomas et al. (2005)

revealed that only models at i = 90◦ were within the 1σ confidence

region. It was also found that the deprojection of GMP5975 becomes

implausibly boxy in the outer parts, if it is assumed that the galaxy

is significantly inclined. We therefore reanalysed the extended data

set for GMP5975 only with i = 90◦.

3.2 Mass model

With the luminosity density ν given, a trial mass density distribution

can be defined by

ρ = ϒν + ρDM. (1)

The stellar mass-to-light ratio ϒ is assumed constant throughout

the galaxy. Concerning the dark matter density ρDM, we probe the

following two parametric prescriptions. First, the NFW distribution

(Navarro et al. 1996):

ρNFW(r , rs, c) ∝ 1

(r/rs)(1 + r/rs)2
, (2)

where rs = r200/c is a scaling radius, r200 is a measure of the virial

radius and c is the concentration of the halo. Simulations predict

the two halo parameters rs and c to be correlated, such that the

distribution (2) can be read as a one-parameter family of dark matter
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haloes (Navarro et al. 1996). To be explicit, we use

r 3
s ∝ 10(A−log c)/B

(
200

4π

3
c3

)−1

(3)

with A = 1.05 and B = 0.15 (Navarro et al. 1996; Rix et al.

1997). We consider spherical as well as flattened NFW haloes,

where the latter are derived from equation (2) by the substitution

r → r
√

cos2(ϑ) + sin2(ϑ)/q2 (q is the constant flattening of the

isodensity contours, and ϑ is the latitude in spherical coordinates).

The second halo family used is the logarithmic potential

ρLOG(r ) ∝ v2
c

3r 2
c + r 2(

r 2
c + r 2

)2
, (4)

that gives rise to an asymptotically constant circular velocity vc and

a flat central density core inside r � rc (Binney 1981).

In the gravitational potential generated by the mass distribu-

tion (1), we compute typically about 18 000 orbits as described in

Thomas et al. (2004).

3.3 Orbit superposition

The final orbit superposition model is constructed according to the

maximum entropy technique of Richstone & Tremaine (1988). It

consists in solving

Ŝ ≡ S − α χ2
LOSVD → max, (5)

with S denoting the Boltzmann entropy

S ≡ −
∫

f ln( f ) d3r d3v = −
∑

i

wi ln

(
wi

Vi

)
(6)

and f being the phase-space DF of the model. In Schwarzschild

models – by construction – the DF is constant along individual

orbits. The corresponding phase-space density f i along orbit i is the

ratio

fi ≡ wi

Vi
(7)

of the total amount of light wi on the orbit (the so-called orbital

weight) and the orbital phase-space volume Vi . The weights wi that

solve equation (5) are obtained iteratively: starting with a low α =
10−10 we solve equation (5) for a fixed set of αi , using the orbital

weights obtained at αi−1 as an initial guess for the solution at αi .

The χ 2-term in equation (5) quantifies deviations between model

and data. We do not include the photometry in the χ2, but treat

the deprojected luminosity distribution as a boundary condition for

the solution of equation (5). To fit the measured LOSVDs, which

are parametrized in terms of the Gauss–Hermite parameters v, σ , H3

and H4 (Gerhard 1993; van der Marel & Franx 1993), we proceed as

follows: the Gauss–Hermite parameters are used to generate binned

data LOSVDs L jk
dat. Errors are propagated via Monte Carlo sim-

ulations. From these data LOSVDs and the corresponding model

quantities L jk
mod the χ2

LOSVD of equation (5) is computed:

χ2
LOSVD ≡

NL∑
j=1

Nvel∑
k=1

(
L jk

mod − L jk
dat

�L jk
dat

)2

. (8)

The above sum includes all NL data points and each LOSVD is

represented by Nvel bins in projected (line-of-sight) velocity.

With the orbital weights wi determined, the dynamical state of

the model is completely specified, that is, the phase-space DF is

known (cf. equation 7). In the course of this paper, we will consider

not only the DF, but also the orbital anisotropy. It can be quantified

by the so-called anisotropy parameters

βϑ ≡ 1 − σ 2
ϑ

σ 2
r

(9)

(meridional anisotropy) and

βϕ ≡ 1 − σ 2
ϕ

σ 2
r

(10)

(azimuthal anisotropy). Internal velocity dispersions σ in the above

equations are computed in spherical coordinates r, ϑ and ϕ, oriented

such thatϕ is the azimuth in the equatorial plane andϑ is the latitude.

3.4 Regularization

The parameter α in equation (5) controls the relative weight of data

fit and entropy maximization. The higher the values of α, the better

the fit and the larger the noise in the derived DF, or orbital weights.

Ideally, regularization has to be optimized case by case for each

galaxy. This holds, in principle, for both, the value of the regular-

ization parameter α and the functional form of S. First, because the

spatial resolution and/or coverage as well as the signal-to-noise ra-

tio of the observations vary from galaxy to galaxy, regularization

should be adapted to that. This primarily concerns the choice of

α. Secondly, different galaxies have different intrinsic structures.

Specifically, the degree to which the entropy of a stellar system is

maximized may vary in phase space. Consider, for example, a cold

disc inside a hot spheroid. The disc has low entropy and to fit its

rotation, α needs to be large (models with the maximum entropy

according to equation 6 have no rotation). On the other hand, the

spheroid-dominated region in phase space can have higher entropy

and using a large α in the fit amplifies the noise in the corresponding

parts of the phase-space DF. The dilemma as to the choice of α in

such cases could be solved by adjusting the function S appropriately.

For the Coma galaxy modelling, we use the same regularization

for all galaxies: α = 0.02 and the entropy of equation (6). The value

for α has been obtained by Monte Carlo simulations of isotropic

rotator test galaxies with realistic, noisy mock data (Thomas et al.

2005). Applying it to the whole sample is motivated by the similar

spatial coverage and resolution of all our Coma observations (cf.

Section 2). Furthermore, since it has been obtained from fitting

isotropic rotators it has proven to be sufficiently large to fit non-

maximum entropy, rotating galaxies. It might be slightly too large

for non-rotating galaxies. Thus, we expect models of non-rotating

galaxies to possibly be noisier than those of rotating galaxies, but

we do not expect that our imposed regularization is too restrictive.

In any case, we will explicitly investigate the dependency of model

results on the choice of α in Section 9.

3.5 Best-fitting model and uncertainties

To obtain the best-fitting mass model for a given α, we calculate orbit

models as described in Sections 3.2 and 3.3 for various combinations

of the relevant parameters: (rc, vc, ϒ) in the case of logarithmic

(LOG) haloes, (c, ϒ , q) in the case of NFW haloes or just ϒ for

models without dark matter. LOG haloes are probed on a grid with

�rc ≈ reff/2 and �vc = 50 km s−1 (in some cases the grid is refined

around the location of the lowest χ2). Typically, we explore Nr ×
Nv ≈ 100 haloes. The analogous numbers for the NFW haloes read

�c = 2.5, Nc ≈ 12 and Nq = 2 (q ∈ {0.7, 1.0}). The step-size �ϒ

for the mass-to-light ratio equals 10–20 per cent of the best-fitting

ϒdyn, independent of the halo type. Around the best-fitting model,
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the resolution in ϒ is doubled, resulting in Nϒ ≈ 6–10 models with

different mass-to-light ratios for each halo. This sums up to about

600–1000 models with LOG haloes and 120–240 models with NFW

haloes. The final number of models is up to a factor of 3 larger,

depending on the number Ni � 3 of probed inclinations i. The total

number of models per galaxy is around 1000–3000.

Among these models, we determine the best fit according to the

lowest χ 2
GH, defined as

χ2
GH ≡

NL∑
j=1

[(
v

j
mod − v

j
dat

�v
j
dat

)2

+
(

σ
j

mod − σ
j

dat

�σ
j

dat

)2

+
(

H j
3,mod − H j

3,dat

�H j
3,dat

)2

+
(

H j
4,mod − H j

4,dat

�H j
4,dat

)2
]

. (11)

Here, v
j
dat is the rotation according to the Gauss–Hermite

parametrization of the LOSVDs (other parameters analogously). A

detailed discussion about the difference between χ2
GH and χ2

LOSVD

can be found in Thomas et al. (2005).

Confidence intervals on model quantities are set by the corre-

sponding minimum and maximum values obtained over all models

within �χ 2
GH = 1.1 from the minimum χ2

GH. The value of �χ2
GH =

1.1 is slightly more conservative than the classical �χ 2
GH = 1.0 and

has been derived by means of Monte Carlo simulations (Thomas

et al. 2005).

As a byproduct of the iterative technique to solve equation (5),

we get – for each set of (rc, vc, ϒ , i), (c, q, ϒ , i) and (ϒ , i) – orbit

models for about Nα ≈ 50 different values of the regularization

parameter. This allows us to derive a best-fitting model for each αi

and to explore the dependency of best-fitting model parameters on

α (cf. Section 9).

Table 2. Summary of modelling results. Column (1): galaxy id (cf. Table 1); columns (2) and (3): best-fitting stellar ϒSC [M/L] (RC-band) and achieved

goodness-of-fit χ2
SC (per data point) without dark matter; columns (4)–(7): the same as columns (2) and (3), but for LOG haloes with parameters rc (kpc) and

vc (km s−1); columns (8)–(11): the same as columns (2) and (3), but for NFW haloes with concentration c and flattening q; columns (12) and (13): best-fitting

halo profile with significance �χ2
halo = (χ2

NFW − χ2
LOG) × Ndata; column (14): evidence for dark matter �χ2

DM = (χ2
SC − χ2

min) × Ndata; column (15):

inclination of best fit with minimum and maximum in the 68 per cent confidence region of calculated models (where no range is quoted, only edge-on models

were calculated).

No dark matter LOG haloes NFW haloes

GMP ϒSC χ2
SC ϒLOG rc vc χ2

LOG ϒNFW c q χ2
NFW Halo �χ2

halo �χ2
DM i

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

0144 7.0 0.400 5.0 4.4 212 0.383 4.5 17.17 0.7 0.336 NFW −2.45 3.3 50 50
50

0282 6.5 0.436 5.0 17.0 502 0.244 4.5 11.24 0.7 0.256 LOG 1.01 16.9 60 70
60

0756 3.0 1.253 2.6 12.7 215 0.930 2.2 20.2 0.7 0.942 LOG 1.57 41.3 90

1176 2.5 1.353 2.0 3.4 200 0.724 2.0 18.0 1.0 0.707 NFW −1.8 67.2 90

1750 7.0 0.540 6.0 18.7 500 0.452 6.0 12.5 1.0 0.469 LOG 0.81 4.2 65 90
65

1990 10.0 0.301 10.0 13.1 105 0.291 9.0 24.0 1.0 0.298 LOG 0.72 1.0 90

2417 8.5 0.244 8.0 23.8 500 0.206 7.0 14.76 0.7 0.216 LOG 0.46 1.8 90

2440 7.0 0.579 6.5 10.9 482 0.453 6.5 16.47 0.7 0.475 LOG 1.69 9.6 60 60
60

2921 9.0 0.112 6.5 8.2 425 0.073 6.5 9.2 0.7 0.067 NFW −0.47 3.3 90 90
60

3329 12.0 0.325 7.0 3.6 400 0.307 9.0 10.85 0.7 0.309 LOG 0.22 1.4 90 90
45

3510 6.0 0.425 5.5 11.6 287 0.398 5.0 16.12 0.7 0.398 LOG 0.67 2.5 90 90
60

3792 9.0 0.370 8.0 15.3 550 0.339 8.0 10.0 1.0 0.349 LOG 0.54 1.7 60 90
40

3958 6.0 0.229 5.0 6.8 274 0.162 4.0 14.7 1.0 0.174 LOG 0.42 2.4 90 90
70

4928 10.0 0.232 8.5 29.1 507 0.109 7.0 12.7 1.0 0.122 LOG 0.66 6.4 90 90
70

5279 7.0 0.132 6.5 28.4 482 0.099 6.0 15.9 0.7 0.109 LOG 0.71 2.3 90 90
90

5568 7.0 0.162 6.0 66.7 650 0.103 5.0 17.2 0.7 0.104 LOG 0.12 5.2 90 90
50

5975 4.0 0.580 3.0 1.7 200 0.333 3.0 15.0 0.7 0.314 NFW −1.37 19.1 90

4 M O D E L L I N G R E S U LT S

Modelling results are summarized in Table 2. In the remainder of

this section, we collect some general notes on these results.

4.1 Goodness-of-fit

The goodness-of-fit obtained under the different assumptions about

the overall mass distribution is given in columns (3), (7) and (11) of

Table 2. Thereby

χ2
SC ≡ min

{
χ 2

GH(ϒ, i)
/

Ndata

}
, (12)

χ 2
LOG ≡ min

{
χ2

GH(rc, vc, ϒ, i)
/

Ndata

}
(13)

and

χ 2
NFW ≡ min

{
χ2

GH(c, q, ϒ, i)
/

Ndata

}
(14)

are minimized over all relevant mass parameters. Differences be-

tween models with and without dark matter are further discussed in

Section 5.1. Here, we only refer to the fact that our models are able

to reproduce the observations with a χ 2
GH per data point which is in

many cases significantly smaller than unity. The largest deviations

between model and data occur for the S0 GMP0756, possibly re-

lated to the low H4 along the offset-axis, which are not followed by

our models. Fits to some galaxies are as good as χ 2
min � 0.1, where

χ 2
min ≡ min

{
χ2

LOG, χ 2
NFW, χ2

SC

}
(15)

describes the overall minimum of χ 2
GH for a given galaxy. In many

cases where χ 2
min is particularly low, error bars of the observations

are much larger than the point-to-point scatter of the data points.

This concerns GMP5279, GMP2921, GMP4928, GMP5568 and
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Figure 1. Comparison of confidence intervals with (shaded line) and without (dotted line) rescaling the χ2 (details in the text). Individual panels show circular

velocity vcirc, mass densities ρ (stellar: blue/dotted line, dark matter: black/dashed line and total: red/solid line), dark matter fraction MDM/M, χ2
GH (dotted line

without rescaling and solid line with rescaling) and velocity anisotropies βϑ and βϕ along major-axis and minor-axis, respectively.

GMP3958, where the observational errors are likely overestimated

(see also the fits in Appendix A). In some other systems, like, for

example, GMP0144, the error bars used in the modelling are rather

large, because they also include side-to-side variations of the kine-

matics, which are often also larger than the point-to-point scatter on

a given side of the galaxy. Thus, both effects might partly explain

the low χ2
min of these galaxies.

Very low χ 2
min raise the question whether confidence intervals of

model properties calculated as described in Section 3.5 (and shown

in Figs 4–7 below) are overestimated. In cases where the observa-

tional errors are obviously too large, it is reasonable to rescale them

until χ2
min ≈ 1. In fact, this has been done for GMP5975 in Thomas

et al. (2005), where error bars were scaled such that χ 2
min ≈ 0.7. This

value was determined from Monte Carlo simulations of isotropic ro-

tator models. To quantify the effect of rescaling, Fig. 1 exemplifies

confidence intervals for one galaxy of the sample (GMP4928) once

without rescaling the χ 2
GH and once with rescaling all observational

error bars to χ2
min = 0.7. As it can be seen, uncertainty regions shrink

a lot after rescaling.

Globally rescaling the error bars is not appropriate for all galax-

ies, however. Errors along the major-axis of GMP3792, for exam-

ple, might be overestimated, but those along the minor-axis seem

not. Moreover, in a case like GMP1750 slight minor-axis rotation –

which cannot be fitted with axisymmetric models – adds a constant

to χ 2
min. Just rescaling to χ2

min ≈ 0.7 in all galaxies would intro-

duce an artificial dependency of uncertainty regions on minor-axis

rotation, which is not appropriate. In order to treat all galaxies of

the sample homogeneously, we do not rescale the χ2
GH, but give

the most-conservative error bars for our models. The corresponding

confidence intervals may be interpreted as the maximal uncertainty

on derived model quantities, while the shaded regions of Fig. 1 may

be interpreted as lower limits for these uncertainties.

Fig. 2 shows the dependency of

�χ 2
GH(ϒ) ≡ χ2

GH(ϒ) − min (χ2
GH), (16)

where min χ 2
GH ≡ χ 2

min × Ndata (cf. equation 15) and χ2
GH(ϒ) is

minimized over all NFW fits, LOG halo fits and self-consistent fits

with the given ϒ . For all but one galaxy, we find a clear minimum

in χ 2
GH(ϒ). The exceptional case, GMP3329, is peculiar in many

respects: (i) it is among the brightest galaxies of the sample and has

a very large reff. The data only cover the region inside r � reff/2;

(ii) the surface brightness profile shows a break near 0.2–0.3reff

(cf. upper panel of Fig. A1); and (iii) at about the same projected

distance from the centre the velocity dispersion dips and rises again

at larger radii (cf. lower panel of Fig. A1). The poor constraints on

the mass-to-light ratio in this system could be related to the poor

data coverage. It might also be that GMP3329 is actually composed

of two subcomponents. If these have different mass-to-light ratios

ϒ , then the χ 2
GH curve may have two corresponding local minima

and the poor data coverage may smooth out these into a flat plateau.

Finally, our modelling of GMP3329 may suffer from the Coma core

being possibly not in dynamical equilibrium, as indicated by the

kinematics of intracluster planetary nebulae (Gerhard et al. 2007).

4.2 Model inclinations

Most of the best-fitting models are edge-on according to the last

column of Table 2. This is surprising at first sight because if galaxies

are oriented randomly then one would expect only about six out of

17 objects to have inclinations larger than i � 70◦. Omitting the five

systems for which only edge-on models were calculated (GMP0756,

GMP1176, GMP1990, GMP2417 and GMP5975; cf. Section 3.1)

and taking into account the uncertainties quoted in Table 2, there

are three galaxies out of 11 where inclinations i < 70◦ are ruled

out by our modelling (at the 68 per cent confidence level). This is

in good agreement with the expectation for random inclinations.

Nevertheless, we now discuss a little more whether our modelling

might be subject to a slight inclination bias.

First, one possible issue is that using the same regularization for

all galaxies might introduce a subtle bias towards edge-on configura-

tions. Consider a rotating system: the lower the assumed inclination

of the model, the larger its intrinsic rotation needs to be in order

to match the observations after projection. Thus, the system will

be dynamically colder and its entropy will be lower. Turning the

argument around: usage of a constant α enforces the same weight

on entropy in the inclined model as in the edge-on model. Since the

inclined model has to have lower entropy, however, its fit may be less

good. This might drive models of rotating galaxies towards i = 90◦.
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Figure 2. Confidence levels �χ2
GH versus ϒ (normalized to the best-fitting ϒdyn). Solid line: LOG haloes; dashed line: NFW haloes; dotted line: mass follows

light; and horizontal dashed line: 90 per cent confidence limit. Where a dotted line is missing, the self-consistent case is ruled out with more than 95 per cent

confidence (exception: GMP3329, where the best-fitting ϒSC ≈ 1.7ϒdyn is outside the plotted region). From the top left-hand to bottom right-hand panel,

galaxies are arranged in order of decreasing total mass inside reff.

We do not expect this to affect conclusions drawn from our mod-

elling results strongly, because, as it has been argued in Section 3.1,

error bars on intrinsic properties include in many cases models at

different inclinations, even extreme cases. However, it might drive

the best-fitting model to occur preferentially around i = 90◦.

Secondly, for face-on galaxies noise in the kinematics may be a

source of bias towards edge-on models as well (Thomas et al. 2007).

It can cause rotation measurements v �= 0 even for exactly face-

on, axisymmetric galaxies. An edge-on model can, in principle, fit

these v �= 0, whereas face-on models necessarily obey v ≡ 0. Thus,

everything else fitting equally well, the contribution of noise in v

to χ2 would be smaller in edge-on than in face-on models. Since

we have no clear candidate face-on galaxy in our sample, we do not

expect this issue to be relevant to the Coma sample, however.

The third thing to note is that galaxies for our sample may be not at

random inclinations. The sample is designed to complement earlier

studies on round galaxies and we explicitly selected flattened, rotat-

ing ellipticals and S0s to be fitted. The distribution of apparent axial

ratios (b/a)e ≡ 1 − εe (with εe from Table 1) is shown in the upper

panel of Fig. 3. The sample exhibits a tail of highly flattened systems,

which lacks, for example, in the distribution of bright galaxies with

de-Vaucouleurs profiles in the Sloan Digital Sky Survey (Vincent &

Ryden 2005). This tail is produced by the S0 galaxies in our sam-

ple and clearly shows that the sample as a whole is biased towards

flattened systems. The ellipticity distribution of those galaxies that

are classified as ellipticals in Table 1 (dashed line in Fig. 3) is still

shifted slightly towards higher ellipticities with respect to the bright

ellipticals of Vincent & Ryden (2005). In combination with the lack

of round objects in our sample, this indicates that even our 11 ordi-

nary ellipticals are slightly biased, but the sample is too small for a

definite appraisal.

Fourthly, even assuming that our sample galaxies are at random

inclinations and that the first two just discussed points are irrelevant

(regularization and noise) and that inclinations can be reconstructed

uniquely from ideal data with ideal models, then we still could be

faced with a slight bias in our models: as it has been described in

Figure 3. Top panel: histogram of apparent short-to-long axial ratios at reff.

Bottom panel: intrinsic best-fitting short-to-long axial ratio 〈b/a〉 (averaged

over r/reff ∈ [0.5, 2.5]). Black/solid line: whole sample; red/dashed line:

without S0s.

Section 3.1 we do not probe a fine grid in inclinations but look for

extreme cases. Our models provide for each galaxy only the choice

between edge-on and intrinsically E5/E7. Since an intrinsic E5/E7

shape is a rather extreme assumption, this might drive the modelling

towards the edge-on option as well.

The distribution of intrinsic axial ratios of the Coma models is

shown in the lower panel of Fig. 3. It peaks at b/a = 0.8, consistent

with deprojections of the frequency function of elliptical galaxy

apparent flattenings (Tremblay & Merritt 1996; Vincent & Ryden

2005). Compared with these studies, the distribution in the lower

panel of Fig. 3 has relatively more galaxies on the flatter side of the

peak and relatively fewer galaxies on the rounder side. Now, if the
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modelling would be subject to a strong bias towards i → 90◦, then

we would expect the opposite: an overestimation of intrinsically

roundish galaxies. Thus, the lower panel of Fig. 3 argues against

a strong modelling bias towards high inclinations. However, the

argument is not conclusive, because the sample itself may be biased

against apparently round galaxies. This could partly compensate for

an inclination bias in the modelling.

In conclusion, although there might be a slight inclination bias in

the modelling and/or the sample galaxies, Fig. 3 reveals that either

this bias is not very strong, or that modelling and sample biases

roughly counterbalance each other.

5 L U M I N O U S A N D DA R K M AT T E R
D I S T R I BU T I O N

Now we discuss the distribution of luminous and dark matter in the

Coma models.

5.1 Does mass follow light?

According to Table 2, the best-fitting model of each galaxy con-

tains a dark matter halo. Column (14) of the table states that

eight galaxies have at least a 2σ detection of a dark matter

halo (GMP0282, GMP0756, GMP1176, GMP1750, GMP2440,

GMP4928, GMP5568 and GMP5975). The best-fitting models with

and without dark matter are compared to the kinematic data in Ap-

pendix A. From this comparison it follows that models without a

halo obviously fail to reproduce the kinematic data for the above

mentioned galaxies. The evidence for dark matter thereby comes

mostly from the innermost and outermost kinematic data points:

without dark matter, the energy of the models is too low, when com-

pared to the data at large radii and too high, when compared to the

central data (e.g. illustrated by the dispersion profile of GMP5975).

The reason for the differences at small radii is likely that part of

the missing outer mass in models without a halo is compensated

for by a larger mass-to-light ratio (cf. Section 5.5). This, in turn,

causes an increase in the central mass and central velocity disper-

sion. In GMP1750, the dispersion profile without dark matter fits

systematically worse than the one with dark matter at all radii. Con-

cerning GMP5568, the dispersion along one of the offset-slits is

particularly large, larger than in all other slits. It is not entirely clear

if these large dispersions are real. If not, then they erroneously in-

crease the evidence for dark matter. However, because the error bars

of the corresponding data points are very large, these dispersions are

not the dominant driver for the dark halo detection in GMP5568.

In the rest of the sample, the detection of dark matter – if at

all – is more of statistical nature. Models with and without dark

matter for GMP0144 and GMP2921 differ in a similar fashion to

those of GMP1750. For GMP3510, GMP3958 and GMP5279, small

differences between models with and without dark matter can be

seen at the last kinematic data points, but the formal significance for

dark matter is less than 90 per cent. We believe that the statistical

significance for dark matter in these five cases is underestimated

due to our very conservative error estimates.

In the four remaining objects GMP1990, GMP2417, GMP3329

and GMP3792, the evidence for dark matter is generally low. Poor

evidence for dark matter in GMP3329 may be related to the overall

poor constraints that the measured kinematics put on its mass-to-

light ratio (cf. Section 4.1). GMP1990 is consistent with the assump-

tion that mass follows light.

Our sample thus roughly divides into the following three cat-

egories. (i) Galaxies that are clearly inconsistent with a constant

mass-to-light ratio (eight galaxies out of 17) (ii) Cases where mod-

els with and without a dark halo differ systematically, but where

the formal evidence for a dark halo is less than 2σ (five galaxies).

In these cases, we expect that our very conservative error bars lead

to an underestimation of the dark matter detection. (iii) Systems in

which the evidence for dark matter is generally weak (four galaxies).

Models and data of some galaxies with a clear dark halo de-

tection still differ systematically in the outer parts (e.g. GMP0756,

GMP1176 and GMP5975). Decreasing the weight on regularization

reduces these differences. However, according to the discussion of

Section 3.4 we do not expect that we have significantly overregu-

larized our models. Even in case we would have, the derived haloes

of these systems do not depend much on the choice of the regu-

larization parameter, such that conclusions on the masses of these

galaxies are robust (cf. Section 9). It might be possible that differ-

ences between models and data are related to changes in the stellar

population, that our adopted halo profiles are not appropriate for

these systems, or that the corresponding outer regions are not in

equilibrium or not axisymmetric. We plan further investigations of

these topics for future publications.

5.2 Circular velocity curves

Fig. 4 shows the best-fitting circular velocity curves for the Coma

galaxies. The shapes of the curves vary from cases with two local ex-

trema (e.g. GMP5279) to a case of monotonic increase (GMP3958).

The sample provides examples of rising as well as falling outer cir-

cular velocity curves. Flattened, rotating galaxies have fairly flat

circular velocity curves beyond the central rise (less than 10 per cent

variation up to the last kinematic data point in GMP0282, GMP0756,

GMP2417, GMP3510, GMP1176 and GMP5975).

5.3 Mass densities and dark matter fractions

Spherically averaged density profiles of all Coma galaxies are sur-

veyed in the top panel of Fig. 5. The luminosity distribution of

most galaxies shows a power-law core that smoothly joins with the

outer light distribution. Towards the most-luminous galaxies, the

central slope of the luminosity distribution flattens out (GMP3329

and GMP2921). The inner breaks in the light profiles of GMP1990

(r ≈ 2 kpc), GMP2417 (r ≈ 1 kpc) and GMP2440 (r ≈ 0.3 kpc)

originate from prominent dust features.

The central regions are dominated by luminous matter. Halo den-

sities in the centre are at least one order of magnitude lower than

stellar mass densities – independently of the halo profile being ei-

ther of the LOG or of the NFW type. The radius where dark and

luminous mass densities equalize is inside the kinematically sam-

pled region of each galaxy. In some galaxies, the transition from the

luminous inner parts to the dark matter dominated outskirts is very

smooth (e.g. GMP0756, GMP1176, GMP5975). The corresponding

dark halo components are relatively concentrated (NFW haloes) and

the circular velocity curves are fairly flat. In other galaxies, the tran-

sition is marked by a break in the total mass profile and a dip in

vcirc (e.g. GMP0282). We will come back to these different circular

velocity curve shapes in Thomas et al. (in preparation).

Dark matter fractions of the best-fitting Coma models are shown

in the bottom panel of Fig. 5. In most galaxies, 10–50 per cent of

the mass inside reff is dark.

5.4 NFW or logarithmic haloes?

The evidence for or against LOG and NFW haloes is summarized in

column (13) of Table 2. The majority of best-fitting models (13 out
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Figure 4. Compilation of circular velocity curves. Thick/red line: luminous + dark (68 per cent confidence region shaded); dotted/blue line: luminous only;

dashed line: dark matter only; vertical dotted lines: boundaries of kinematical data; and arrows: the effective radius reff. From the top left-hand to bottom

right-hand panel, galaxies are arranged in order of decreasing total mass inside reff.

of 17) are obtained with LOG haloes. However, the significance for

one or the other halo profile providing the better fit is in most cases

low. As already implied by the approximate flatness of the circular

velocity curves, the overall effect of the halo component is to keep

the outer logarithmic slope of the total mass density around −2 (i.e.

the case of an exactly constant vcirc). This can be achieved either with

LOG haloes (asymptotically) or with suitably scaled NFW haloes

(over a finite radial range around the scaling radius). Differences in

the profiles’ inner slopes seem to play a minor role, perhaps because

the inner mass profile turns out to closely follow the light profile.

If elliptical galaxy circular velocity curves are roughly flat over a

very extended radial range, then NFW fits will break down at some

point. With the data at hand, no clear decision in favour of one of

the two profiles can be made.

Most of the best-fitting NFW models are obtained with a flattened

halo. Since we cannot significantly discriminate between NFW and

LOG haloes, firm statements about the flattening of the haloes are

not possible.

5.5 The fraction of mass that follows the light

From Table 2, it can be taken that mass-to-light ratios ϒSC of self-

consistent models are on average (17 ± 10) per cent larger than

those of models with a dark matter halo. Concerning the difference

between LOG and NFW haloes, the best-fitting ϒNFW is generally

equal or lower than the corresponding ϒLOG.

6 V E L O C I T Y A N I S OT RO P Y

Having explored the mass structure of the models, we next focus

on their dynamics. In this section, we will consider the velocity

anisotropies defined in equations (9) and (10).

The discussion will be restricted to the minor-axis and major-

axis bins of the Schwarzschild models. Each galaxy is covered by

kinematical observations along at least these axes and the internal

orbital structure is best constrained there.

6.1 The polar region

Fig. 6 surveys velocity anisotropy profiles along the intrinsic minor-

axis of the Coma galaxy sample. According to axial symmetry,

βϑ ≡ βϕ holds directly on the symmetry axis. Hence, the upper

and lower panels of Fig. 6 are overall very similar. The minor-

axis bins of the models, however, form a cone with an opening

angle �ϑ = 25◦ around the z-axis. Thus, they include regions off

the symmetry axis, where the equivalence between azimuthal and

meridional dispersions does not hold, such that βϑ and βϕ in Fig. 6

are not identical.

In Fig. 6, the very central anisotropies should not be regarded as

reliable. First, because the central bins are affected from incomplete

orbit sampling, resulting in artificially large azimuthal dispersions

(Thomas et al. 2004). Secondly, for numerical reasons the innermost

bin is not resolved in ϑ , but averaged over all ϑ ∈ [0◦, 90◦].

In the spatial region with kinematical data, the Coma galax-

ies offer different degrees of minor-axis anisotropy, from strongly

tangential (GMP5279) to moderately radial (GMP3792). Towards

the centre βϑ → 0, while βϕ becomes negative (most likely due

to the incomplete orbit sampling). Going outwards, many but not

all galaxies exhibit a gradual change in dynamical structure, of-

ten in form of a minimum or maximum in β. Around the last

data point, most models are isotropic. The most radial system is

GMP3792.

6.2 The equatorial plane

Velocity anisotropy profiles in the equatorial plane are shown in

Fig. 7. Note that unlike along the minor-axis axial symmetry does

not imply any relationship between βϕ and βϑ at low latitudes.

(i) Meridional anisotropy. Contrasting the situation around the

poles, almost no galaxy exhibits tangential anisotropy βϑ < 0. Apart

from the peculiar object GMP3329 (cf. Section 4.1), all galaxies

have βϑ > 0 over the kinematically sampled radial range. The aver-

age βϑ turns out to be related to the intrinsic flattening of the galaxies

(Thomas et al., in preparation). Uncertainties on the intrinsic shape
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Figure 5. Top panel: spherically averaged mass densities. Red (solid) lines: total mass; blue (dotted) line: luminous mass; black (dashed) line: dark matter

with errors (shaded). Bottom panel: corresponding spherically averaged dark matter fractions with 68 per cent confidence regions. The vertical dotted lines and

arrows as in Fig. 4.

therefore propagate into uncertainties on βϑ . As it has been stated in

Section 3.1, in many cases it is not possible to distinguish between

different inclinations with high significance. Hence, intrinsic shapes

are likewise poorly constrained and the uncertainties on βϑ become

large. A typical example is GMP3792: the best-fitting inclination

is i = 60◦ and requires a relatively flattened intrinsic configuration

with large βϑ . However, models at higher as well as lower i are

within the 68 per cent confidence region. Consequently, the shaded

area includes also models with different flattening and βϑ .

(ii) Azimuthal anisotropy. More diversity than in βϑ is offered by

azimuthal velocities. In GMP3792, for example, βϕ < 0 suggests

that the system may be composed of two flattened subsystems with

low net angular momentum, causing large ϕ motions. GMP3510,

GMP3958 and GMP0144 are relatively isotropic (σr ≈ σϕ) over

the kinematically sampled spatial region. GMP5279, instead, offers

βϑ ≈ βϕ > 0, implying σr > σϕ and σr > σϑ over the region with

data.

6.3 Relations between anisotropy and observed kinematics

The intrinsic short-axis velocity anisotropies are closely related to

the observed (local) H4. This can be taken from Fig. 8, where for

each (projected) radius R with a measurement of H4 the local H4(R)

is plotted against the internal anisotropy β(r = R) at the same ra-

dius. Internal radii r have not been corrected for inclination since

most models are edge-on (cf. Section 4.2). From the figure, a tight

correlation of βϑ with H4 follows (quoted in the plot): the smaller

the H4, the more tangentially anisotropic the model is. A similar

trend occurs between βϕ and H4 (lower panel). This reflects that βϑ

≈ βϕ around the symmetry axis (see above).

Comparable trends between β and H4 have also been found

in spherical models (e.g. Gerhard 1993; Magorrian & Ballantyne

2001). The similarity between spherical models, on the one hand,

and the polar region of axisymmetric models, on the other, might

be connected to the fact that in both cases σϕ = σϑ . In other words,
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Figure 6. Minor-axis anisotropy profiles. Top panel: meridional anisotropy βϑ ; bottom panel: azimuthal anisotropy βϕ ; solid line: best-fitting models (in the

colour version radial anisotropy is highlighted in red, and tangential anisotropy in blue); shaded line: 68 per cent confidence region; dotted line: region with

kinematic data; and arrows: reff.

effectively, there is only one degree of freedom in the stellar

anisotropy (βϕ = βϑ ) and, if the potential is fixed, there must be

a close relationship between β and the shape of the LOSVD (as

measured by H4). Experiments with spherical models indicate that

the dependency of H4 on the potential is weaker than its variation

with β (e.g. Gerhard 1993; Magorrian & Ballantyne 2001). If the

same holds for axisymmetric potentials, then this would explain

why along the polar axis of axisymmetric models β depends in

about the same way on H4 as in spherical models. Note, however,

that our Schwarzschild models provide many more internal degrees

of freedom than the smooth spherical models considered by Gerhard

(1993) and Magorrian & Ballantyne (2001). This becomes apparent

when the influence of regularization on the fit is lowered and the

scatter around the relation shown in Fig. 8 increases (cf. Section 9.2).

In contrast to the polar region, no tight correlation between H4

and velocity anisotropy is found around the equatorial plane (cf.

Fig. 9). This holds especially for βϑ , whereas there is a slight trend

of βϕ to increase with H4. For comparison, a linear fit is shown in

the lower panel. A detailed investigation of the orbital structure will

be presented in another paper (Thomas et al., in preparation).

7 P H A S E - S PAC E D I S T R I BU T I O N F U N C T I O N
O F T H E S TA R S

A more fundamental quantity related to a stellar dynamical system

than its anisotropy is its phase-space DF f. It describes the density

of stars in phase space and offers the most-detailed and comprehen-

sive view on its dynamical state. For stationary systems, the DF is

a function of the (isolating) integrals of motion and, thus, constant

along individual orbits (Jeans theorem; e.g. Binney & Tremaine

1987). To be considered in axisymmetric potentials are the en-

ergy E, angular momentum Lz along the axis of symmetry and,

in most astrophysically relevant potentials, the so-called third inte-

gral I3. To be physically meaningful, the DF has to obey the further
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Figure 7. The same as Fig. 6, but for the major-axis.

condition that it is positive everywhere. In Schwarzschild models,

the constancy of the DF along orbits is explicitly taken into account

during the orbit integration. Its positive definiteness is guaranteed as

long as the orbital weights wi are positive (cf. equation 7). In other

words, the very existence of our Schwarzschild models ensures that

the luminous component of the model is stationary and physically

meaningful (positive density).

A detailed investigation of the full dependency of the DF on all

integrals of motion and its connection to stellar population prop-

erties will be the subject of another publication (Thomas et al., in

preparation). Here, we only consider some general properties of the

DF. For this purpose, it is convenient to define a mean orbital radius

〈rorb〉i ≡
∑

k

�t k
i

Ti
r k

i , (17)

where Ti is the total integration time of orbit i and rk
i is its radius at

time-step k (lasting �tk
i ). In rough terms, 〈rorb〉 can be interpreted

as a measure of the orbital binding energy.

Fig. 10 surveys the DFs of all 17 Coma galaxies. Each dot rep-

resents the phase-space density of a single orbit. To roughly trace

the angular momentum dependency of the DF, prograde orbits with

Lz > 0 are highlighted in the top panel and retrograde orbits (Lz <

0) are highlighted in the bottom one.

The figure shows that in galaxies with lower mass the differ-

ences between phase-space densities of prograde and retrograde

orbits are more pronounced than in the most massive systems.

This partly reflects an increasing importance of rotation in lower

mass galaxies of our sample. Often, the highest phase-space densi-

ties of prograde orbits are nearly constant over some radial region

(e.g. GMP3958 around reff, GMP2440 inside r � reff). In many, but

not all, rotating galaxies, the dominance of prograde orbits comes

along with a strong depression of retrograde orbits. In the outer

parts of GMP5975, for example, retrograde orbits have phase-space

densities up to 10 orders of magnitude smaller than prograde orbits.

Such low-density orbits can actually be regarded as being absent in

the models (Thomas et al. 2005). Concerning the significance of this
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Figure 8. Short-axis anisotropy against the minor-axis H4. The line in the

upper panel shows a linear fit (quoted in the panel).

Figure 9. The same as Fig. 8, but for the major-axis.

depopulation, it is interesting to note that in the case of GMP5975 it

was originally found in models based on major-axis and minor-axis

data only (Thomas et al. 2005), but remains almost unchanged in

our new models including additional kinematical information along

a diagonal axis (cf. Section 2). The depopulation of retrograde or-

bits cannot be a general modelling artefact since it does not appear

in all rotating galaxies. A counterexample is the least-massive ob-

ject, GMP3958: it rotates but does not show a strong depression of

retrograde orbits in its outer parts.

One galaxy of the sample, GMP5568, hosts a counter-rotating

central disc (Mehlert et al. 1998), which shows up by a dom-

inance of retrograde orbits around 〈rorb〉 ≈ 1 kpc and w/V ≈
10 M pc−3/(km s−1)−3 in Fig. 10. In most rotating galaxies, the

majority of retrograde orbits follow approximately a power law like

a straight line (e.g. GMP3958, GMP2417). Retrograde orbits in

GMP1990 follow such a power-law-like distribution only outside

reff. Near the centre of the galaxy, retrograde orbits exhibit some

excess density, compared to a power-law extrapolation of the be-

haviour outside reff. This may reflect a faint inner counter-rotating

subcomponent, although unlike in GMP5568, prograde orbits al-

ways dominate in GMP1990 (and the observed sense of rotation is

the same at all radii).

In some galaxy models, orbital phase-space densities are more

spread than in others: for example, the DFs of GMP3329 and

GMP5568 look particularly noisy. In the case of GMP3329, its pecu-

liar kinematics, already discussed in Section 5.1, may be responsible

for the distorted phase-space distribution of orbits.

8 P H A S E - S PAC E D I S T R I BU T I O N F U N C T I O N
O F DA R K M AT T E R

Thus far, we have only considered the phase-space DF of the lu-

minous component of our models. To ensure that these models are

physically meaningful, we also need the dark haloes to be supported

by an everywhere-positive phase-space DF. Without the baryons

present, the existence of DFs for our halo profiles is known. In the

case of NFW haloes, it follows trivially from the fact that they arise

in N-body simulations and DFs for LOG haloes have been con-

structed explicitly by Evans (1993). With a significant contribution

of baryons (or any other component) to the overall gravitational

potential, the existence of these DFs is no longer guaranteed, how-

ever. For example, if a cored halo (central logarithmic density slope

γ = 0) is embedded in a cuspy baryonic component (γ = −1) and

if the core radius exceeds a critical limit around rC � 3reff, then

central phase-space densities become negative in isotropic or radi-

ally anisotropic systems (Ciotti & Pellegrini 1992; Ciotti 1999). In

contrast, a cuspy halo can always be supported (Ciotti 1996). Thus,

the existence of a plausible halo DF for our LOG haloes, which

often have core radii near or beyond the critical limit (cf. Tables 1

and 2), is not obvious. The main goal of this section is to investigate

whether we can find a positive definite DF for all our best-fitting

models, or whether the phase-space analysis rules out some of our

halo profiles.

8.1 Construction and existence of the halo distribution
function

Our modelling machinery allows to construct a DF for dark mat-

ter in an analogous way to that for luminous matter: by solving

equation (5) with an orbit superposition. The only difference to the

calculation of the luminous matter orbit superposition is that now

the dark matter density profile is used as the boundary condition and

not the deprojected light profile ν. In addition, since we lack of any

kinematic information about the hypothetical halo constituents, we

set α = 0 in equation (5) and maximize the entropy of the orbits.

For our goal of finding at least one positive definite DF, this does

not imply any loss of generality.

Within the numerical resolution of our orbit models, we find in-

deed orbit superpositions with positive orbital weights wi > 0 that

allow to reconstruct the halo density profile in each case. The cor-

responding DFs are stationary by construction and positive every-

where. The fact that we even find positive definite DFs for those LOG

haloes that are beyond the abovecited critical core radius can have

several reasons: our models are slightly different from the ones used

in Ciotti (1999) (different radial run in outer parts, baryonic compo-

nent flattened in our case). In addition, our orbit superpositions can

well produce tangential anisotropy, which helps to maintain a posi-

tive DF. Finally, our orbit models have a finite resolution. We cannot
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Figure 10. Luminous matter phase-space densities. Top panel: prograde orbits are highlighted (blue dots); bottom panel: retrograde orbits are highlighted (red

dots); vertical dotted lines: boundaries of kinematical data; and arrows: reff.

exclude that reconstructing the halo density with higher resolution

would force some orbital weights to become negative.

8.2 Differences between NFW and LOG haloes

Apart from the mere existence, there are significant differences in

the derived DFs, however. This can be taken from plots of the halo

DFs in Fig. 11. NFW halo DFs (GMP2921, GMP0144, GMP1176

and GMP5975) are monotonic with respect to 〈rorb〉 and regular. The

high degree of regularity (compared to the corresponding luminous

matter DFs) reflects the maximization of entropy, whereas noise in

the stellar kinematics and substructuring of stars in phase space tend

to broaden the stellar DF (cf. Section 7) .

DFs of LOG haloes exhibit a drop in central phase-space density,

as predicted by Ciotti (1999). In GMP3329, where the halo is very

concentrated, the drop is rather gentle. With increasing core radius

the drop becomes more substantial. In addition, the noise in the DF

increases with increasing core radius. Such disturbances in the DF,

even though we maximize the entropy, indicate that a fine-tuning of

the orbits is necessary for large core radii to be supported by a posi-

tive definite DF. This, and the non-monotonic dependency of orbital

phase-space densities on 〈rorb〉 could imply that the corresponding

DFs and, thus, also the spatial density profiles, are unstable. If this

is indeed the case, then the phase-space analysis would provide a

strong argument against large-cored halo profiles, independent of

the kinematic fits. Of course, the halo DFs shown in Fig. 11 are not

unique, as stated above: the models have no access to the orbit dis-

tribution in the halo, apart from those constraints coming from the

shape of the density profile alone. Details of the DFs in Fig. 11

are therefore physically meaningless. However, that the entropy
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Figure 11. The same as Fig. 10, but for dark matter. No distinction between prograde and retrograde orbits is made (see the text for details); large (blue)

symbols: average phase density of all orbits with 〈rorb〉 < 0.1reff.
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Figure 12. Best-fitting ϒdyn versus regularization parameter α. Dotted line: α = 0.02, the regularization adopted for the best-fitting models; and shaded line:

1σ confidence region for α = 0.02.

maximization does not yield smooth DFs for LOG haloes with large

cores suggests that – independent of our ignorance about the details

of the orbit distribution – smooth dark matter DFs in the correspond-

ing baryonic potential wells are unlikely.

In any case, a systematic stability analysis is out of the scope of

this paper. What we can conclude here is, that based on the kinematic

fits and based on the mere existence of a positive definite halo DF, we

cannot rule out one or the other halo profile with our orbit models.

The shape and structure of LOG halo DFs make them the less likely

option, however.

8.3 Central dark matter density

According to Section 5.3, the central density of dark matter is often

orders of magnitudes lower than the luminous mass density. This

suggests that it is in many cases weakly constrained. Could it be

even lower than in LOG haloes? According to the above phase-

space analysis, this seems unlikely, because lower central densities

would most likely augment the disturbances of the halo DF. Thus,

the central spatial dark matter densities of our LOG haloes are likely

lower limits to the true central dark matter densities.

8.4 Central dark matter phase-space density

From the dark matter DFs of Fig. 11, we have also calculated a mean

central phase-space density

fh ≡
(∑

wi∑
Vi

)
0.1

, (18)
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Figure 14. Best-fitting circular velocity curves for different values of the regularization parameter: α = 0.001 (blue, thin solid line), α = 2.7 (blue, dotted line)

and α = 0.02 (black, thick solid line).

where the sums on the right-hand side are intended to comprise all

orbits with 〈rorb〉 < 0.1reff. These central phase-space densities are

flagged in Fig. 11 by the large symbols. A comparison with Fig. 10

shows that central dark matter phase-space densities are particularly

low in systems with strong rotation. Exceptions are GMP1176 and

GMP5975 with their NFW haloes.

The uncertainty in the dark halo DF related to our ignorance

about dark matter kinematics, of course, affects fh. According to

our above discussion, the drop in LOG halo DFs seems a feature

connected to the density profile, though, and we do not expect that

reasonably isotropic or radially anisotropic LOG halo DFs exist

for which fh increases by orders of magnitude. Thus, although fh

is subject to many uncertainties, it is likely good as an order of

magnitude estimation for the central dark matter phase-space density

connected with the mass decomposition made in Section 3.2.

9 R E G U L A R I Z AT I O N

As it has been discussed in Section 3.4, the same regularization

α = 0.02 is adopted for all Coma galaxies. In the following, we

will discuss the dependency of our modelling results on the choice

of α.

9.1 The influence of regularization on model masses

Fig. 12 surveys the best-fitting stellar mass-to-light ratios ϒdyn

over the regularization interval α ∈ [10−5, 3]. Two conclusions

can be drawn from the figure. First, no systematic trend of ϒdyn

with α is notable. In GMP1990, for example, ϒdyn increases with

α, while in GMP1750 it decreases. Secondly, in most of the sam-

ple galaxies the weight on regularization has barely any effect on
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Figure 15. Best-fitting anisotropy at 0.1reff (black/solid line), 0.5reff (red/short-dashed line) and 1.0reff (blue/long-dashed line); top panel: meridional anisotropy,

bottom panel: azimuthal anisotropy; left-hand panel: minor-axis, right: major-axis; vertical dotted lines: α = 0.02.

ϒdyn (e.g. GMP5568, GMP0282, GMP0144, GMP5279, GMP2417,

GMP3510, GMP1176, GMP5975, GMP2440).

The best-fitting dark matter fractions at three representative radii

are shown in Fig. 13 as a function of α. As could have been expected,

the dark matter fraction and ϒdyn are correlated: in most cases where

ϒdyn, say, increases, the dark matter fraction decreases (and vice

versa). Since there is no systematic trend of ϒdyn with α, it follows

that there is also no systematic trend of the dark matter fraction with

α. Moreover, the variation in dark matter fractions with α is within

the quoted error budget of Fig. 5.

Finally, Fig. 14 shows circular velocity curves for three different

values of α. The influence of α on the shape of the circular velocity

curve is weak. Only in a few systems, the general shape of the circu-

lar velocity curve changes with α (e.g. GMP3510). These changes

occur mostly outside the region covered by kinematic data, however.

9.2 The influence of regularization on model kinematics

Now to the influence of α on the derived velocity anisotropies:

the left-hand panels of Fig. 15 show best-fitting meridional and

azimuthal velocity anisotropies at three representative radii as a

function of α. The figures indicate that maximum entropy fits

(α → 0) yield isotropy along the minor-axis. Lowering the weight

on regularization generally increases the anisotropy – the absolute

value of β – in the models, as could have been expected. There is

no specific trend of β with α: some systems gain more tangential

anisotropy with increasing α (e.g. GMP5279), while others become

more radial (e.g. GMP0756). In most cases, the dependency of β

on α is monotonic and β(α) does not change sign. In other words,

whether or not a galaxy model is tangentially or radially anisotropic

does not depend on α. Only the exact degree of anisotropy changes

with α.

Major-axis velocity anisotropies are plotted on the right-hand side

of Fig. 15. In contrast to the minor-axis case, there is no trend of

βϑ → 0 for α → 0. Variations in intrinsic velocity anisotropies

with α are slightly weaker along the equator than they are along

the minor-axis. Since the trend of β with α is again monotonic and

sign preserving in most cases, the general property of a galaxy to

be radially or tangentially anisotropic is insensitive to the particular

choice of α.

From the top left-hand panel of Fig. 15, it is clear that the relation

between (the α-dependent) anisotropy and (the α-independent) H4

described in Section 6 must change with different amounts of regu-

larization in the models. This is illustrated in Fig. 16, which repeats

the upper panel of Fig. 8 for two different values of α. The conse-

quences of stronger regularization are displayed in the top panel,

while weaker regularization leads to the distribution shown in the

bottom panel. For comparison, the linear fit from Fig. 8 is shown

by the dashed line. Increasing the weight on regularization makes

the correlation tighter, but does not alter the slope. With less regu-

larization, the scatter increases, because models start to fit the noise

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 657–684



674 J. Thomas et al.

Figure 16. As upper panel of Fig. 8, but for different values of the regular-

ization parameter α (indicated in the panels). Dashed line: linear fit for α =
0.02 (cf. Fig. 8).

Figure 17. Distribution of orbital weights for three differently regularized

models (as indicated in the plot). All models are calculated in the best-fitting

mass distribution of GMP5975.

in the data. The mean relation is in any case robust against different

choices of α. Note, that a correlation between an intrinsic property

(like βϑ ) and an observed one (like H4) cannot be the result of the

entropy maximization alone. (In the limit α → 0 the models become

isotropic along the minor-axis, independent of the data).

Concluding, the dynamical structure of the fits depends more

strongly on the choice of α than the mass distribution does (cf.

Section 9.1). Thereby, no clear trend of velocity anisotropies with α

is notable. The monotonic behaviour of β with respect to α in most

cases ensures that the general property of a model to be radially or

tangentially anisotropic is independent of the choice of α.

To give an example of how α influences the orbit distribution,

Fig. 17 shows the histogram of orbital weights in the best-fitting

mass model of GMP5975 for three different values of α. As can

be seen, the model at large α (weak regularization) is dominated

by a few orbits that carry almost the entire light. All other orbits

are essentially depopulated in the model (only orbits with weights

log w > −15 are included in the plot). The model at α = 0.02 is

still relatively close to the maximum entropy distribution.

1 0 D I S C U S S I O N A N D S U M M A RY

We have surveyed axisymmetric Schwarzschild models for a sam-

ple of 17 Coma early-type galaxies. The models are fitted to mea-

surements of LOSVDs out to 1–4reff. Stellar mass-to-light ratios

and dark halo parameters are determined for two parametrized halo

families with different inner and outer density slopes. The models

are regularized towards maximum entropy.

10.1 Luminous and dark matter

In each galaxy, models with dark matter fit better than models with-

out. A constant mass-to-light ratio is significantly ruled out in about

half of the sample (eight galaxies where dark matter is detected on at

least the 95 per cent confidence level). In four galaxies, the case for

dark matter is weak. The mass distribution in one of these systems

(GMP1990) is in fact consistent to follow the light. Five galaxies

are intermediate cases where the formal evidence for dark matter is

low, although fits with and without dark matter differ systematically

in either their radial dispersion profiles or their outermost LOSVDs.

We believe that the low signal for dark matter in these systems is

partly due to our very conservative treatment of the error bars.

Our inferences about dark matter are based on the mass de-

composition provided by equation (1). In particular, we have as-

sumed that the stellar mass-to-light ratio is constant throughout the

galaxy. In this context, GMP1990 is not surrounded by significant

amounts of dark matter. However, before finally concluding on dark

matter in our galaxies a detailed comparison to independent esti-

mates of the stellar mass is required (Thomas et al., in preparation).

For example, GMP1990 has a large mass-to-light ratio ϒ = 10.0

(RC band). If the actual stellar mass can only account for a fraction

of it, then our result does not argue against dark matter in this galaxy,

but merely implies that dark matter follows closely the light of the

system.

Constant mass-to-light ratios have been reported to be consistent

with planetary nebula kinematics in the outskirts of three roundish

objects (spherical modelling; Romanowsky et al. 2003). Also some

of the round and non-rotating ellipticals of Kronawitter et al. (2000)

are consistent with the mass distribution following the light distri-

bution. Many of these latter systems lack kinematic data beyond

reff, however. In addition to the related uncertainties for the outer

dark halo, spherical modelling of round galaxies generally suffers

from the ambiguity related to the flattening along the line of sight.

In this sense, GMP1990 is an interesting case, because its apparent

flattening implies a viewing angle close to i = 90◦ and the kinematic

data extend relatively far out (3reff).

Best-fitting dark matter haloes are in four out of 17 cases of the

NFW type and in all other cases of the LOG type. Differences in the

goodness-of-fit based on one or the other halo family are marginal

in most cases. Central dark matter densities are at least one to two

orders of magnitude lower than the corresponding mass densities in

stars. Between 10 and 50 per cent of the mass inside the half-light

radius reff is formally dark in most Coma galaxies. These dark matter

fractions are in general agreement with earlier results of dark matter

modelling in round, non-rotating ellipticals (Gerhard et al. 2001) as

well as with the analysis of cold gas kinematics (Bertola et al. 1993;
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Oosterloo et al. 2002), hot halo gas (Loewenstein & White 1999;

Fukazawa et al. 2006; Humphrey et al. 2006) and strong lensing

studies (Keeton 2001; Treu & Koopmans 2004). Cappellari et al.

(2006) concluded for similar dark matter fractions in the SAURON

ellipticals (although in their models it is assumed that mass follows

light).

The combination of luminous and dark matter results in circu-

lar velocity curves of various shapes: some galaxies have outer

decreasing vcirc while others show an indication for a dip in vcirc

around ≈10 kpc and a subsequent increase in vcirc towards larger

radii. We cannot easily quantify the significance of this dip. Its

appearance close to the outermost kinematic radius is suspicious

to reflect a modelling artefact. However, in contrast to the orbital

structure, whose reconstruction becomes uncertain around (and be-

yond) the last kinematic data point (Krajnović et al. 2005; Thomas

et al. 2005), the mass reconstruction in these regions is more robust

(Thomas et al. 2005). In addition, the dip does not appear in all

galaxies, suggesting that it is related to some observable property of

the corresponding objects. In any case, it is interesting to note that

similar dips are also indicated in temperature profiles of elliptical

galaxy X-ray haloes (Fukazawa et al. 2006) and can also been seen

in spherical models of some round galaxies (Gerhard et al. 2001).

More extended kinematic data sets may in the future allow to better

constrain the outer shape of the circular velocity curve.

In rotating systems, the circular velocity is fairly constant over the

observationally sampled radial region (10 per cent fractional varia-

tion). Similarly flat circular velocity curves have also been inferred

from stellar kinematics of round systems (spherical modelling;

Gerhard et al. 2001; Magorrian & Ballantyne 2001) and from strong

gravitational lensing (Koopmans et al. 2006).

To the resolution of our orbit models, all dark haloes are supported

by at least one positive definite phase-space DF. In the case of NFW

haloes, smooth DFs can be constructed, but for LOG haloes with

large core radii even the maximization of orbital entropy does not

yield smooth DFs. It is not obvious whether the corresponding spa-

tial density profiles are stable or not. Further modelling is required

to investigate whether phase-space arguments can be used to rule

out LOG haloes in elliptical galaxies.

10.2 Kinematics

With decreasing total mass, the influence of rotation on the stel-

lar phase-space distribution increases. In many galaxies, rotation

arises by an overpopulation of prograde orbits and a simultaneous

underpopulation of retrograde orbits. At least one system lacks in

the depopulation of retrograde orbits, proving that it is not a general

artefact of our modelling approach.

Some galaxies show strong tangential anisotropy along the minor-

axis. This derives from low minor-axis H4 measurements, because

observed H4 and modelled orbital anisotropy along the minor-axis

turn out to be correlated. Slope and zero-point of this correlation

are largely independent of regularization, but – to some degree –

stronger regularization tightens the relation. Such a relation between

an intrinsic quantity, on the one hand, and an observed one, on the

other, cannot originate from the entropy maximization alone.

Along the major-axis, a slight tendency of increasing βϕ with

increasing H4 is notable, but with much larger scatter than along

the minor-axis. Only one system shows indication of tangential

anisotropy (βϑ < 0), all other galaxies are isotropic or mildly radi-

ally anisotropic (βϑ > 0, βϕ � 0). Radial anisotropy also appears

characteristic for spherical models of round galaxies (Kronawitter

et al. 2000; Gerhard et al. 2001). A suppression of vertical energy

(corresponding to βϑ > 0) has recently been reported for SAURON

ellipticals (Cappellari et al. 2007). We plan a detailed investigation

of the orbital structure of the Coma galaxies for the future.

10.3 Regularization

Stellar mass-to-light ratios, dark matter fractions and the shape of

circular velocity curves turn out to be robust against different choices

of the regularization parameter α. The strongest effect α has is on the

reconstructed anisotropies: their absolute values tend to increase if

the weight on regularization constraints is lowered. At a fixed radius,

the dependency of anisotropy onα is mostly monotonic, such that the

general quality of a galaxy to be radially or tangentially anisotropic

is independent of α. What changes instead is the actual amount of

anisotropy.

10.4 Outlook

Detailed investigations of luminous and dark matter scaling rela-

tions, of stellar population properties and their connection to the

phase-space distribution of orbits are in preparation.

AC K N OW L E D G M E N T S

We thank Eric Emsellem for his constructive referee report that

helped to improve the presentation. JT acknowledges financial sup-

port by the Sonderforschungsbereich 375 ‘Astro-Teilchenphysik’

of the Deutsche Forschungsgemeinschaft. EMC receives support

from the grant PRIN2005/32 by Istituto Nazionale di Astrofisica

(INAF) and from the grant CPDA068415/06 by the Padua Univer-

sity. Support for Program number HST-GO-10884.0-A was pro-

vided by NASA through a grant from the Space Telescope Science

Institute which is operated by the Association of Universities for Re-

search in Astronomy, Incorporated, under NASA contract NAS5-

26555.

R E F E R E N C E S
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A P P E N D I X A : DATA F I T S

Figs A1–A17 survey the fits to the photometric and kinematical data

for each galaxy (galaxies are arranged in order of decreasing total

mass inside reff).
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Figure A1. Upper panel: joint ground-based and HST photometry of

GMP3329/NGC 4874. Lines: best-fitting deprojection (red) and its edge-

on reprojection (blue). Lower panel: stellar kinematics along the major-axis

(left-hand side/red line) and minor-axis (right-hand side/blue line); the filled

and open circles refer to the two sides of the galaxy; dotted line: best-fitting

model without dark matter.
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Figure A2. The same as Fig. A1, but for GMP2921/NGC 4889.
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Figure A3. The same as Fig. A1, but for GMP5568/NGC 4816. Green/third

column: offset to major-axis reff/4; magenta/fourth column: offset to major-

axis reff/20.
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Figure A4. The same as Fig. A1, but for GMP4928/NGC 4839; green/third

column: diagonal axis.
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Figure A5. The same as Fig. A1, but for GMP0282/NGC 4952.
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Figure A6. The same as Fig. A1, but for GMP0144/NGC 4957.
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Figure A7. The same as Fig. A1, but for GMP5279/NGC 4827.
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Figure A8. The same as Fig. A1, but for GMP1990/IC 843; green/third

column: offset to major-axis reff/3.
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Figure A9. The same as Fig. A1, but for GMP1750/NGC 4926.
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Figure A10. The same as Fig. A1, but for GMP3792/NGC 4860.
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Figure A11. The same as Fig. A1, but for GMP0756/NGC 4944; green/third

column: offset to major-axis reff/2 (the two outermost H4 <−0.1 are omitted

in the plot).
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Figure A12. The same as Fig. A1, but for GMP2417/NGC 4908; green/third

column: offset to major-axis reff/2.
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Figure A13. The same as Fig. A1, but for GMP3510/NGC 4869.
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Figure A14. The same as Fig. A6, but for GMP1176/NGC 4931; green/third

column: offset to major-axis reff/3.
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Figure A15. The same as Fig. A1, but for GMP5975/NGC 4807; green/third

column: diagonal axis.
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Figure A16. The same as Fig. A1, but for GMP2440/IC 4045; green/third

column: diagonal axis.
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Figure A17. The same as Fig. A1, but for GMP3958/IC 3947.
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