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ABSTRACT
We present SMART, a new 3D implementation of the Schwarzschild Method and its application to a triaxial N-body merger
simulation. SMART fits full line-of-sight velocity distributions to determine the viewing angles, black hole, stellar and dark
matter (DM) masses, and the stellar orbit distribution of galaxies. Our model uses a 5D orbital starting space to ensure a
representative set of stellar trajectories adaptable to the integrals-of-motion space and it is designed to deal with non-parametric
stellar and DM densities. SMART’s efficiency is demonstrated by application to a realistic N-body merger simulation including
supermassive black holes that we model from five different projections. When providing the true viewing angles, 3D stellar
luminosity profile and normalized DM halo, we can (i) reproduce the intrinsic velocity moments and anisotropy profile with a
precision of ∼ 1 per cent and (ii) recover the black hole mass, stellar mass-to-light ratio and DM normalization to better than a
few per cent accuracy. This precision is smaller than the currently discussed differences between initial-stellar-mass functions
and scatter in black hole scaling relations. Further tests with toy models suggest that the recovery of the anisotropy in triaxial
galaxies is almost unique when the potential is known and full LOSVDs are fitted. We show that orbit models even allow the
reconstruction of full intrinsic velocity distributions, which contain more information than the classical anisotropy parameter.
Surprisingly, the orbit library for the analysed N-body simulation’s gravitational potential contains orbits with net rotation around
the intermediate axis that is stable over some Gyrs.

Key words: methods: numerical – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: structure – galaxies:
supermassive black holes – stars: kinematics and dynamics.

1 IN T RO D U C T I O N

Early-type galaxies (ETGs) have long been believed to emerge from
collisions between other smaller progenitor galaxies (first proposed
by Toomre & Toomre 1972), but nowadays it is clear that their
formation history is more complex (e.g. Oser et al. 2010). Their
structural and kinematic properties divide them into (1) fainter
(absolute magnitude MB > −20.5) and coreless fast rotators that
are nearly axisymmetric and have discy-distorted isophotes and (2)
brighter and more massive slow rotators with flat cores, which are
moderately triaxial and have boxy-distorted isophotes (Faber et al.
1987; Bender 1988a; Bender et al. 1989; Kormendy & Bender 1996;
Cappellari et al. 2007; Emsellem et al. 2007). For the formation of
fainter elliptical galaxies, dissipational processes are believed to be
important (e.g. Bender, Burstein & Faber 1992; Barnes & Hernquist
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1996; Genzel et al. 2001; Tacconi et al. 2005; Cappellari et al. 2007;
Hopkins, Cox & Hernquist 2008; Johansson, Naab & Burkert 2009),
whereas the latest evolutionary phases in the formation of massive
ellipticals are dominated by collisionless processes (e.g. Naab, Jesseit
& Burkert 2006; Cappellari 2016; Naab & Ostriker 2017; Moster,
Naab & White 2019).

In general, these merging events modify the potential structure
and populate a rich diversity of stellar orbits (Röttgers, Naab & Oser
2014). The intrinsic shape and orbital structure of such galaxies are
not directly observable. Instead, sophisticated dynamical models are
needed to process kinematic and photometric observational data to
extract all the information about the orbital structure and internal
composition of the galaxy.

Dynamical models are based on the collisionless Boltzmann
equation that governs the motion of stars in elliptical galaxies.
Dynamical models that go beyond the recovery of velocity moments
and aim at reconstructing the entire galaxy structure, additionally
take advantage of the Jeans theorem (e.g. Binney & Tremaine
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2008). This implies that the distribution function, which is the most
general description of a system of stars, is constant along individual
trajectories in phase space. In this regard, Schwarzschild (1979)
pioneered an orbit superposition technique, where the equations
of motion are numerically integrated for a finite number of stellar
trajectories embedded in an assumed gravitational potential with
contributions from the stars and possibly dark components. The
weighted superposition of the orbits is determined for which the
surface brightness and projected velocity distributions of the model
match the observed ones in a least squares sense (e.g. Richstone &
Tremaine 1984). Besides the orbital weights, all unknown quantities
like the central black hole mass and dark matter distribution are
varied between different models. The model producing the best fit to
the projected velocity distributions is then associated with the correct
model parameters. Any galaxy in a steady state can be modelled by
Schwarzschild’s orbit superposition technique. In order to determine
both, the mass and internal motions of the stars, and solve an
underlying mass-anisotropy-entanglement, one needs to describe the
deviation of the observed absorption lines from a Gaussian profile
by additional Gauss–Hermite functions of at least third and fourth
order (Gerhard 1993; van der Marel & Franx 1993; Bender, Saglia
& Gerhard 1994), or, preferably if the signal-to-noise ratio permits,
measure the line shape non-parametrically (e.g. Mehrgan et al. 2019).

Early applications of Schwarzschild’s orbit superposition tech-
nique concentrated on spherical models (e.g. Richstone & Tremaine
1985; Rix et al. 1997). Since the simplified assumption of spher-
ical symmetry is not true for most galaxies, later applications of
Schwarzschild’s orbit superposition technique assumed axisymmetry
(e.g. van der Marel et al. 1998; Cretton et al. 1999; Gebhardt et al.
2000; Thomas et al. 2004; Valluri, Merritt & Emsellem 2004).

However, it is nowadays known that the most massive galaxies
are neither spherical nor axisymmetric but triaxial objects. Observa-
tional indications are provided by isophotal twists in the surface
brightness distribution, velocity anisotropy, minor axis rotation,
kinematically decoupled cores, and the statistical distribution of the
ellipticity of the isophotes (Illingworth 1977; Bertola & Galletta
1978, 1979; Schechter & Gunn 1978; Williams & Schwarzschild
1979; Bender 1988b; Franx & Illingworth 1988; Vincent & Ryden
2005). Schwarzschild (1979) proved the existence of self-consistent
triaxial stellar systems in dynamical equilibrium with numerical orbit
superposition models. Also, N-body simulations supported the idea
of triaxial ellipsoidal stellar bulges and dark matter haloes (e.g.
Aarseth & Binney 1978; Hohl & Zang 1979; Miller & Smith 1979;
Barnes 1992; Jing & Suto 2002; Naab & Burkert 2003; Bailin &
Steinmetz 2005).

High-mass galaxies are of particular interest in several astrophysi-
cal aspects, e.g. the stellar initial mass function (IMF) is discussed to
vary among galaxies, with the largest excess stellar mass compared
to the locally measured Kroupa (Kroupa 2001) or Chabrier (Chabrier
2003) IMF occurring in the most massive galaxies (e.g. Treu et al.
2010; van Dokkum & Conroy 2010; Thomas et al. 2011; Cappellari
et al. 2012; Posacki et al. 2015; Smith, Lucey & Conroy 2015;
Vazdekis et al. 2015; Parikh et al. 2018). Moreover, different growth
models for supermassive black holes (SMBHs) predict different
amounts of intrinsic scatter at the high-mass end of SMBH scaling
relations (e.g. Peng 2007; Jahnke & Macciò 2011; Somerville & Davé
2015; Naab & Ostriker 2017). In order to address these questions,
precision dynamical mass measurements of the stars and SMBHs
are required and these are directly linked to triaxial modelling to
avoid artificial scatter introduced by wrong symmetry assumptions.
Thomas et al. (2007) showed that the stellar mass-to-light ratio (and,
thus, indirect inferences about the IMF) can be biased by up to

50 per cent in extreme cases when using axisymmetric models for
a maximally triaxial galaxy. Moreover, a wrongly assumed mass-to-
light ratio influences the determination of the mass of the central
black hole in the model. The work by van den Bosch & de Zeeuw
(2010) suggests that the assumption of axisymmetry may bias black
hole measurements in massive ellipticals. They find that the best-
fitting black hole mass estimate doubles when modelling NGC 3379
with their triaxial code (van den Bosch et al. 2008) in comparison
to axisymmetric models. Triaxial dynamical modelling routines are
therefore required to recover unbiased stellar mass-to-light ratios and
black hole masses with the best possible accuracy.

To understand the uncertainties and ambiguities of triaxial mod-
elling one has to understand the following three essentially different
effects:

1) The intrinsic uncertainty of the applied dynamical modelling
algorithm, which can only be tested under circumstances where the
solution is designed to be unique. This is one of the aspects covered
in this paper.

2) The uncertainty in the reconstruction of orbital and mass pa-
rameters from typical observational data given the right deprojection,
which is also addressed in this paper.

3) The uncertainty of the deprojection routine. This topic is
covered in de Nicola et al. (2020).

All previously described effects need to be combined to evaluate
the uncertainties in the whole modelling process. This will be
investigated in a future paper.

So far, there exist two dynamical modelling codes using
Schwarzschild’s orbit superposition technique dealing with triaxi-
ality by van den Bosch et al. (2008) and Vasiliev & Valluri (2019).
Their estimated precision and efficiency will be later mentioned in
the discussion. In this paper, we present our newly developed triaxial
Schwarzschild code called SMART (‘Structure and MAss Recovery
of Triaxial galaxies’) and test the code on a realistic high-resolution
numerical merger simulation including SMBHs by Rantala et al.
(2018).

This paper is structured as follows. We introduce SMART and
describe its specific benefits in Section 2. We then discuss the
most important aspects for choosing this particular simulation in
Section 3. In this section, we furthermore explain all relevant steps
to extract the data needed for modelling the simulation. In Section 4,
we will show the results of these models. Section 5 deals with the
quasi-uniqueness of the anisotropy recovery when fitting full line-of-
sight velocity distributions (LOSVDs). This is followed by a short
discussion about remaining sources of systematics and comparison
to other triaxial modelling codes in Section 7. We summarize our
results and conclusions in Section 8.

2 TR I A X I A L S C H WA R Z S C H I L D C O D E SMART

SMART (‘Structure and MAss Recovery of Triaxial galaxies’) is a
fully 3D orbit superposition code based on the axisymmetric code of
Thomas et al. (2004) and its original extension to three dimensions
and non-axisymmetric densities by Finozzi (2018). It is written in
FORTRAN 90/95 (Brainerd et al. 1996). SMART follows the classical
Schwarzschild method consisting of the computation of the potential
and forces for a given density, the setting up of an orbit library and
the subsequent superposition of the orbits.

In the following sections, we will explain in more detail
how SMART creates self-consistent density-, potential-, and orbit-
configurations and how we weight the orbits in order to fit the input
density and velocity structure. One main feature of our code is that
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Triaxial orbit models 1439

Figure 1. Our implemented triaxial Schwarzschild Modelling code SMART follows the classical Schwarzschild Modelling routine (red panels), but it is unique
in calculating the potential by expansion into spherical harmonics, setting up an adaptive orbit library and computing the orbit superposition by maximizing an
entropy-like quantity (green panels). This results in specific advantages (blue panels), e.g. that our code is able to deal with realistic changes in the gravitational
potential, e.g. when the SMBH causes a more spherical potential in the centre. Our orbit library is adaptive and responds to changes in the integrals of motion.
SMART can process density output from any deprojection routine, e.g. a non-parametric deprojection dealing with degeneracies.

it uses a 5D starting space for the orbit library to adapt to potentials
with a radially varying structure of the integrals-of-motion space.
Fig. 1 gives a schematic overview of the code’s main modules and
the benefits of their specific implementation.

2.1 Coordinate systems and binning

We use two different coordinate systems to describe the intrinsic and
projected properties of a galaxy. To transform between the intrinsic
coordinates (x, y, z), adapted to the symmetry of the object, and the
coordinates (x

′
, y

′
, z

′
) adapted to the sky projection, two matrices P

and R are used:⎛
⎜⎜⎝

x ′

y ′

z′

⎞
⎟⎟⎠ = R · P ·

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ , (1)

with

R =

⎛
⎜⎜⎝

sin ψ − cos ψ 0

cos ψ sin ψ 0

0 0 1

⎞
⎟⎟⎠ (2)

and

P =

⎛
⎜⎜⎝

− sin ϕ cos ϕ 0

− cos ϑ cos ϕ − cos ϑ sin ϕ sin ϑ

sin ϑ cos ϕ sin ϑ sin ϕ cos ϑ

⎞
⎟⎟⎠ . (3)

P and its corresponding viewing angles ϑ and ϕ project to the plane
of the sky with z

′
being the line of sight. R and its corresponding

rotation angle ψ rotate the coordinates x
′
and y

′
in the plane of the sky

along z
′
. If not stated otherwise, the intrinsic long axis is hereafter

assumed to coincide with x, the intrinsic intermediate axis with y and
the intrinsic short axis with z.
SMART works with a cell structure based on spherical coordi-

nates. Intrinsic properties like the stellar or dark matter distribution
or individual orbital properties are integrated over small cells in
configuration and/or velocity space. We use a linear sampling for the
longitude θ ∈ [ − 90◦, 90◦] and the azimuth φ ∈ [0◦, 360◦]. Radial
bins are spaced in even intervals of the radial binning index

ir = 1

a
log

(
c + a

b
r
)

. (4)

The constant c allows to adapt the central binning scheme from
logarithmic (c = 0) to linear (c = 1). The constants a and b are
determined once the radial extent of the library rmin ≤ r ≤ rmax and

the number of radial bins Nr are set and they are chosen so that the
minimum radius rmin lies within the first radial bin and the maximum
radius rmax in the last one (see also Siopis et al. 2009).

Similar to the spatial properties, the LOSVDs are integrated
over small cells in phase space given by the spatial pattern of the
observations (e.g. Voronoi bins; Cappellari & Copin 2003) and
the velocity resolution of the LOSVD data. Like its axisymmetric
predecessor (Thomas et al. 2004), the code uses the entire information
contained in the full LOSVDs. See Sections 3.1.3 and 3.1.4 for more
details.

2.2 Density and potential

The total gravitational potential

� = �∗ + �DM + �SMBH (5)

is composed as the sum of a Keplerian contribution from a super-
massive black hole (�SMBH) and the contributions from the stars
(�∗) and dark matter (�DM). SMART allows to use non-parametric
densities for both the stars and the dark matter. The stellar density
is generally assumed to be provided in 3D tabulated form (as for
example returned from a non-parametric deprojection, e.g. de Nicola
et al. 2020). The same holds for the dark matter halo. However, the
code can also run with quasi-parametric deprojections (e.g. Multi
Gaussian Expansion or MGE models, Monnet, Bacon & Emsellem
1992; Emsellem, Monnet & Bacon 1994; Cappellari 2002). It can
also run with parametric dark matter haloes (e.g. NFW profiles;
Navarro, Frenk & White 1996).

The solution to the Poisson equation is obtained with the help of
an expansion in spherical harmonics (Binney & Tremaine 2008). For
this, the stellar and dark matter density are individually interpolated
by first performing a bi-linear interpolation among the elevation and
azimuthal angle bins and afterwards a linear interpolation among
the logarithm of the radial bins. For integrating these interpolated
densities we use a 10-point Gaussian quadrature algorithm from Press
et al. (1996). The advantage of calculating the potential by expansion
into spherical harmonics in comparison to other techniques, e.g. by
using the MGE method, is its ability to deal with non-parametric
densities and haloes.

2.3 Orbit library

Every orbit in a gravitational potential is uniquely defined by its
integrals of motion (e.g. Binney & Tremaine 2008). The number
of (isolating) integrals of motion depends on the given potential.
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Furthermore, every integral of motion reduces the dimensionality of
the trajectories of the stars in the galaxy. Regular potentials admit
in general three integrals of motion, one of which being the energy
E. In the axisymmetric case, another classical integral is known
explicitly: the z-component of the angular momentum, Lz. The third
integral, I3, is usually not known explicitly. In the general triaxial
case, only the energy is given explicitly. Near the central SMBH,
however, the potential becomes more and more Keplerian and the
number of isolating integrals of motion in a Keplerian potential is
five. An example for a system in an almost Keplerian potential that
is described by a five-integral distribution function is the asymmetric
disc in the centre of M31 (Bender et al. 2005; Brown & Magorrian
2013). Since our code is not restricted to axisymmetric or triaxial
symmetries, we aim for a 5D starting space for the stellar orbits,
which we gain by systematically sampling E, Lz, vr, r, and φ. The
details of the initial conditions sampling technique are described in
Section C.

In total, SMART sets up and integrates ∼50 000 orbits for 100
surfaces of section (SOS) crossings, i.e. for 100 crossings of the
equatorial plane in upwards direction (for a more detailed description
of SOS, see Appendix C). This number of orbits was intentionally
chosen to be higher than in the axisymmetric predecessor code of
Thomas et al. (2004) to address all necessary complexities given by,
e.g. a radially changing structure in the integrals-of-motion space.
Moreover, this amount of orbits proves to be sufficient to directly
recover the (phase-space) density without any dithering of orbits in
the starting space.

If the potential at hand is, e.g. axisymmetric, then all orbits
conserve Lz and precess around the rotation axis. In this case, the
orbits will fill the φ dimension automatically. Likewise, orbits will
be represented by invariant curves in the (r, vθ )-plane, due to the
conservation of I3. Hence, when sequentially sampling the orbital
launch conditions, the dimension of the submanifold containing all
the orbital initial conditions that are not yet represented shrinks
automatically, according to the number of integrals of motion
provided by the gravitational potential under study.

Since, in general, triaxial potentials have three integrals of motion,
a 2D starting space at a given energy (de Zeeuw 1985; Schwarzschild
1993) would provide a sufficient orbit sampling: One could sample
initial conditions from the (x,z)-plane producing mainly tube orbits
and compensate this with launching additional box orbits from the
equipotential surfaces (van den Bosch et al. 2008). However, it is not
clear whether the distribution function of realistic triaxial galaxies
requires a 5D starting space near the SMBH in the centre. With our
choice of a 5D starting space, we guarantee that our set of orbits
adapts to the actual complexity of the integrals-of-motion space. In
a realistic triaxial galaxy, like in the studied simulation, it changes
from a more spherical centre (requiring at least four integrals of
motion) into nearly prolate outskirts. Furthermore, it allows us to
model systems like eccentric discs with distribution functions that
obviously depend on more than three integrals of motion. In Fig. C1,
we show that our implemented orbit sampling and integration routine
(cf. Section 2.3.1) yields a homogeneous and dense coverage of phase
space.

2.3.1 Orbit integration and classification

SMART integrates the orbital equations of motions d�vi
dt

= − �∇φ(�xi ),
where i denotes the orbit index, in Cartesian coordinates by means
of the Cash–Karp algorithm (Cash & Karp 1990). The fifth-order
Runge–Kutta method is implemented by using an adaptive integra-

tion step-size (see Press et al. 1996). The default integration time of
the individual orbits corresponds to 100 SOS crossings.

At each integrated time-step, the contribution of orbit i to the
luminosity, internal velocity moments, and projected LOSVDs is
calculated as the fraction of time the orbit spends in the corresponding
bins. Projected quantities are convolved with the relevant PSF (point
spread function) in every time-step and before binning. The PSF can
either be provided as a parametrized 2D Gaussian or in terms of a
PSF image. The convolution is performed via Monte Carlo method
by randomly perturbing the coordinates x

′
(t), y

′
(t) (cf. Section 2.1)

in dependence of the respective PSF.
Modelling a galaxy with SMART does not require an exact

orbit classification analysis. However, we built in an approximate
classification method. For this, SMART checks the sign conservation
of the angular momentum in x-, y-, and z-direction for every SOS-
crossing event. If the sign of Lx is conserved for the whole integration
time and if this is not true for Ly and Lz, the orbit gets classified
as x-tube. The same applies to the other directions (cf. Barnes
1992). If the 100 SOS crossings do not hold an angular momentum
sign conservation along any direction, the orbit gets classified as
box/chaotic orbit. If the sign conservation is true for every direction
or if the orbit shows no radial and azimuthal change during the
integration time, the orbit is classified as spherical/Kepler orbit.

2.4 Orbit superposition

The orbital weights wi, which are decisive for the consistency
between the observed and modelled luminosity as well as for the
projected velocity profiles, are iteratively changed until the difference
χ2 between the observed LOSVDsLdata and modelled LOSVDsLmod

is minimal:

χ2 =
Nlosvd∑

j ′

Nvlos∑
k

(
Ldata

j ′k − Lmod
j ′k


Ldata
j ′k

)2

. (6)

Here, j
′

describes the spatial bin index of the Nlosvd data cells and k
describes the velocity bin index of the Nvlos velocity bins. 
Ldata

j ′k is
the error of the data in the specific bin. An advantage ofSMART is that
it uses the full information contained in the LOSVDs and not only
the Gauss-Hermite parameters alone (cf. e.g. Mehrgan et al. 2019
for a discussion of the benefits of using non-parametric LOSVDs
in measuring galaxy masses). The luminosity density serves as a
boundary condition for the choice of the orbital weights.

The problem of solving for the weights wi is usually underdeter-
mined because the number of orbits is much larger than the number
of data points. We therefore regularize our models by maximizing an
entropy-like quantity

Ŝ ≡ S − α χ2, (7)

where

S = −
∑

i

wi ln

(
wi

ωi

)
. (8)

In the absence of any other constraints, the entropy maximization
yields wi∝ωi (cf. Section 5). Thus, the ωi are bias factors for the
orbital weights wi and can be used to smooth the orbit model.
Moreover, they can be used to construct orbit models with specific
properties, e.g. orbit models dominated by certain families of orbits
(cf. Section 5 for examples).

The particular form of the entropy in equation (8) guarantees the
positivity of the orbital weights. The maximum-entropy technique is
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Triaxial orbit models 1441

flexible, however. Other choices for the entropy allow for negative
weights as well (Richstone & Tremaine (1988)).

Technically, for each regularization value α, SMART maximizes
Ŝ by computing the relevant Lagrange multipliers. The iterative
adjustment of the wi’s is performed by using Newton’s method. The
implemented method is based on Richstone & Tremaine (1988).
A detailed description of the algorithm as well as tests demon-
strating the high accuracy performance of SMART can be found in
Appendix D.

As we will describe in full detail in Section 5, the entropy term
in equation (7) makes the solution of the orbital weights unique.
While this might be advantageous from an algorithmic point of view
it comes in principle with the danger of a potential bias. As we
will show, by varying the orbital bias factors ωi the maximum-
entropy technique allows in principle to reconstruct any of the
potentially degenerate solutions for the orbital weights (cf. Section 5).
However, the results of the following sections imply that when fitting
all the information contained in the full LOSVDs, the remaining
degeneracies in the weight reconstruction have only little impact on
the ‘macroscopic’ galaxy parameters of interest, like the anisotropy
for example.

One natural choice for the orbital bias factors is ωi = Vi, where Vi

is the phase-space volume represented by orbit i (cf. e.g. Richstone
& Tremaine 1988; Thomas et al. 2004). With this choice,

S = −
∑

i

wi ln

(
wi

Vi

)
= −

∫
f ln(f )d3rd3v (9)

equals the Boltzmann entropy. Since the Boltzmann entropy in-
creases during dissipationless evolutionary processes due to phase
mixing and violent relaxation, galaxy models with large Boltzmann
entropy are more likely than those with a small one (Richstone
& Tremaine 1988; Thomas et al. 2007). However, in collisionless
self-gravitating systems, every entropy-like functional is assumed
to increase in phase space, such as the generalized H-function
(Tremaine, Henon & Lynden-Bell 1986), the entropy of the ideal
gas (White & Narayan 1987) or the Tsallis entropy (Tsallis 1988).
The choice of ωi is thus arbitrary to some degree. This and the fact
that in case of a triaxial potential it is computationally expensive to
calculate the correct phase-space volume Vi for every orbit motivated
us to set

ωi = const. = 1. (10)

This functional form was also tested by de Lorenzi et al. (2007)
in a slightly different context of a made-to-measure (M2M; Syer
& Tremaine 1996; Bissantz, Debattista & Gerhard 2004) algorithm
for N-body particle models. Compared to the Boltzmann entropy, ωi

= const. leads to relative preference of orbits with actually small
Vi, while orbits with large Vi are relatively suppressed. With this
choice of constant orbital bias factors ωi, the entropy equation (cf.
equation 8) resembles the Shannon entropy and yields the least
‘informed’ set of orbital weights.

2.5 Mass optimization with SMART

SMART is conceived to determine the viewing angles and the mass
components, like the dark matter halo, the stellar mass-to-light ratio
and black hole mass by looking for the model with the smallest χ2.
To deal with this multidimensional parameter space, SMART uses
NOMAD (Nonlinear Optimization by Mesh Adaptive Direct search),
a software optimized for time-consuming constrained black-box
optimizations (Audet & Dennis 2006; Le Digabel 2011). NOMAD
is able to optimize a noisy function with unknown derivatives to

converge to the best-fitting model by using a direct-search scheme.
SMART runs on multiple computer cores. The orbit processing
(including the setup of the initial conditions, orbit integration, orbit
classification, and computation of the internal and projected velocity
distributions) as well as the relevant linear algebra operations applied
for their superposition are parallelized.

3 TH E N- B O DY SI M U L AT I O N

In order to test SMART on a realistic mock galaxy, we use a high-
resolution collisionless numerical merger simulation by Rantala et al.
(2018). The simulation is a single generation binary galaxy merger of
two equal-mass elliptical galaxies with an effective radius of 7 kpc
hosting an SMBH of 8.5 × 109 M� each and corresponds to the
so-called γ -1.5-BH-6 simulation in Rantala et al. (2018). The two
initial galaxies are set up by using a spherically symmetric Dehnen
density-potential (Dehnen 1993) with an initial inner stellar density
slope of ρ∝r−3/2 for both progenitor galaxies. The merger results
in a remnant triaxial galaxy with a SMBH of 1.7 × 1010M� with
a sphere of influence1 of rSOI ∼ 1 kpc and an effective radius of
re ∼ 14 kpc. With that, the remnant resembles NGC 1600, a galaxy
showing a very large core with a tangentially biased central stellar
orbit distribution (Thomas et al. 2016). The simulation is based on
the hybrid tree-N-body code KETJU (Rantala et al. 2017; Karl et al.
2015) which is able to accurately compute the dynamics close to
the black hole due to the algorithmic chain regularization method
AR-CHAIN (Mikkola & Merritt 2006, 2008). The computation of
the global galactic dynamics is based on the tree code GADGET-3
(Springel 2005).

We analyse a snapshot of the simulation ∼1.4 Gyr after the galaxy
centres have merged, such that the remnant can be assumed to be in
a steady state. At this stage, the actual distance of the two merging
black holes in the simulation is 5 pc. The merger remnant shows a
radially varying triaxiality parameter, being more oblate at smaller
radii and increasingly more round in the centre with a maximum of
triaxiality, i.e. T = 0.5, at about 3 kpc and more prolate outskirts. The
simulation contains 8.3 × 106 stellar particles with masses of 105M�
each, leading to a total stellar mass of 8.3 × 1011M�. The mass ratio
of one SMBH and one stellar particle is MBH/M∗ = 8.5 × 104 and
therefore sufficiently large to investigate a realistic interaction of the
SMBH binary with the stars (Mikkola & Valtonen 1992). The number
of dark matter particles is 2 × 107 with masses of 7.5 × 106M� each,
leading to a total dark matter mass of 1.5 × 1014M�.

The simulation is particularly suitable to test SMART because of
its (1) very high resolution (including properly resolved black hole
dynamics); (2) realistic orbital structure and shape; (3) realistic mass
composition (black hole, stars, and dark matter) with a realistic stellar
density core (e.g. Thomas et al. 2009; Rantala et al. 2019). Finally, the
number of stellar particles is large enough to measure fully resolved
LOSVDs from the central sphere of influence of the black holes out
to dark-matter-dominated regions.

3.1 Processing the simulation data

3.1.1 Orientation of the simulation

We aim at orienting our intrinsic coordinate system as closely as
possible to the intrinsic symmetry axes of the merger remnant.

1We here use the definition of the sphere of influence as the radius within
which the total stellar mass equals the black hole mass, i.e. M∗(rSOI) = MBH.
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1442 B. Neureiter et al.

However, the stellar and dark matter principal axes of the simulated
remnant are not aligned. Hence, the orientation of the main axes
depends on the radius and on the mass component for which
the reduced inertia tensor (see e.g. Bailin & Steinmetz 2005) is
calculated. Such a shift between the stellar and dark matter halo
axes is not unexpected for collisionless merger simulations (see e.g.
Novak et al. 2006). We decided to centre the remnant on the stars
and black holes and afterwards orientate it by using the reduced
inertia tensor for stars and dark matter within 30 kpc. With this, the
stellar elliptical isophotes for the three different projections are well
aligned with the projected principal axes within the field of view of
15 kpc × 15 kpc. There is a negligible residual misalignment which
is strongest for the major axis projection but nowhere larger than
∼5◦ (see Figs 3 and A1).

3.1.2 Density

Due to the good alignment and taking advantage of the nearly triaxial
intrinsic symmetry of the merger remnant, we increase the resolution
of the simulation for computing the density by a factor of 8 by folding
all stellar and dark matter particles into one octant. The stars are then
binned into concentric radial shells with 1000 stars in each shell
and the dark matter particles are binned into radial shells with 5000
dark matter particles each. The single shells are subdivided into
angular bins such that the elevation angle θ ∈ [0◦, 90◦] increases in
constant sin (θ )-steps of 0.1 and that the azimuthal angle φ ∈ [0◦,
90◦] increases in constant φ-steps of 10◦.

Within r < 0.28 kpc for the stellar and r < 10 kpc for the dark
matter particles, the resolution is too low to extract a smooth density.
Here, we extrapolate the logarithmic densities from the outer parts
by a first-order polynomial fit in the logarithm of the radius. For the
stellar densities, we use the slope and vertical intercept averaged over
all angular bins. The dark matter density is extrapolated by using
the slopes and vertical intercept values of the individual angular
bins. We ensure that the total enclosed mass is well covered by the
extrapolated density. To smooth the radial density profiles, SCIPY’s
Gaussian filter()-function (Virtanen et al. 2019) is used.

3.1.3 Spatial binning

For spatially binning the kinematic input data, we use the Voronoi
tessellation method of Cappellari & Copin (2003). For each tested
projection (see Section 3.2), we construct a separate set of Voronoi
bins. To end up with a roughly constant number of stellar simulation
particles N∗ in each bin, we define the signal-to-noise ratio as

signal

noise
=

√
signal =

√
N∗ =

{
70 for r < rSOI,

150 for rSOI < r < 15 kpc.
(11)

When calculating the average over the five different projections, this
results in a total number of Nlosvd = Nvoronoi = 227 Voronoi bins
within the whole field of view and 54 Voronoi bins within rSOI.

This resolution is chosen to conform with realistic observational
data and does not exceed high-resolution wide-field spectral obser-
vations by, e.g. MUSE (cf. Mehrgan et al. 2019) but still proves to
be sufficiently high for this analysis.

3.1.4 Kinematic data and velocity binning

For each spatial bin, we calculate the LOSVDs for Nvlos = 45 equally-
sized velocity bins with vmax

min = ±1600 km s−1, which is chosen so

that it covers about 10 times the velocity dispersion. This results in
a velocity resolution of 
vvlos = 71.11 km s−1.

It is not trivial which ‘error’ for the kinematic input data of the
simulation should be used since we do not have an error in the
simulation in the sense that repeated measurements give the same
results. However, the χ2-minimization formally requires information
about an ‘error’. We tested several assumed ‘error-bars’, such as

(i) the difference between two kinematic data sets, each deter-
mined by using half of the simulation particles,

(ii) the Poisson noise, and
(iii) a constant absolute error for each LOSVD as 10 per cent of

the maximum per LOSVD.

In order to prevent an underestimation of the relative error for the
major axis projection holding more particles along the line of sight
than the other projections, the constant absolute error proves to be the
most suitable method and is used in the present analysis. The choice
of setting the error value to 10 per cent of the maximum value of each
LOSVD corresponds to a velocity uncertainty of 
v = 13 km s−1,
dispersion error of 
σ = 13 km s−1 (or 5 per cent relative error) and

hn = 0.03 for the higher order Gauss–Hermite moments. This is
a reasonable choice both in terms of real observational errors and
of the scatter in the kinematic maps of the merger simulation (see
Figs 3 and B1).

3.2 Applying SMART to the simulation

For the purpose of testing our code, SMART is provided with the
correct viewing angles and with the 3D normalized stellar (i.e.
luminosity) density ρ∗ from the simulation as well as with the
normalized 3D dark matter density ρDM. The DM scaling parameter
sDM is to be determined by SMART. We skipped any surface
brightness deprojection, since degeneracies in the deprojection (see
e.g. de Nicola et al. 2020) would only hamper a correct evaluation
of our code. We parametrize the density as

ρ = MBH × δ(r) + ϒ · ρ∗ + sDM · ρDM, (12)

where our fit parameters are the black hole mass MBH, stellar mass-
to-light ratio ϒ , and the multiplication factor sDM defining the
magnitude of the dark matter density profile favoured by SMART.
We determine these parameters by finding the minimum in χ2.

We model and analyse five different projections with (1) ϑ = 90◦,
ϕ = 0◦, i.e. the major axis projection, (2) ϑ = 90◦, ϕ = 90◦, i.e. the
intermediate axis projection, (3) ϑ = 0◦, ϕ = 90◦, i.e. the minor axis
projection, (4) ϑ = 90◦, ϕ = 10◦, i.e. a projection 10◦ off the major
axis in azimuthal direction, and (5) ϑ= 90◦, ϕ = 45◦, i.e. a projection
in between the major and intermediate axis projection. Without loss
of generality, ψ was set to 90◦ for all three viewing directions, i.e. R
(see equation 2) equals the unit matrix.

The field of view is chosen to be 15 kpc × 15 kpc. The minimum
sampled starting radius is set to rmin = 0.05 kpc and the maximum
sampled starting radius is set to rmax = 80 kpc. We find optimal
results for a central binning with c = 0.5 in equation (4) because
this guarantees that in case of the simulated merger remnant the
difference of the circular velocity within one radial bin equals the
model’s velocity resolution 
vvlos = 71.11 km s−1 at a radius of r =
0.16 kpc = 0.16 · rSOI. For c = 1, this would be only reached at r =
0.38 kpc = 0.38 · rSOI, resulting in a deteriorated black hole mass
recovery by ∼ 10 per cent.

For each tested projection, we model two halves of the LOS
kinematic data. After correct projection on to the plane of the sky (see
Section 2.1), we separately model the half of the kinematic data with
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positive x
′
-coordinates (hereafter called ‘right half’ of the galaxy) and

the half of the kinematic data with negative x
′
-coordinates (hereafter

called ‘left half’ of the galaxy).

4 R ESULTS

4.1 Choice of regularization

When applying the code to realistic noisy measurements, regulariza-
tion becomes important to prevent the orbital weights to fit the noise
in the data. The optimal regularization parameter α for a specific
observational data set can be determined by running Monte Carlo
simulations on kinematic mock data (Thomas et al. 2005) and is
given as the one providing the minimum deviation of the intrinsic
properties (like the distribution function, or velocity moments, or
mass parameters) in comparison to the default model. When fitting
noiseless ideal data, one would expect best results for χ2 → 0, or α

→ ∞ (neglecting recovery degeneracies and assuming an ‘error’ can
be defined). Even in that case, however, due to residual systematics
(like finite resolution of the orbit library etc.) and due to the intrinsic
noise in the N-body simulation, we still expect that the best result
may not necessarily be achieved asymptotically for very large α, but
already for some finite value of the regularization parameter. To take
this into account, we split the code test into two phases: (1) We fit
the orbit model with the correct mass parameters and determine that
value of α for which the internal structure of the simulation is best
recovered. Specifically, we use the second-order velocity moments
for this comparison. (2) We then also vary the mass parameters and
test how well they can be recovered. Our benchmark is the optimized
α from the comparison of the moments, but we will discuss the results
for all α to demonstrate their robustness.

For determining the deviation between the model’s velocity
dispersions σ r, σ θ , and σφ and the real ones from the simulation, we
define

rmsσ = 1

3

∑
i

rmsσi = 1

3

∑
i

√√√√ 1

Ndata

Ndata∑
j=1

(
σi,data − σi,mod

σi,data

)2

,

(13)

where the index i denotes the three coordinates r, θ , φ.
These rmsσ profiles of the five tested projections and their respec-

tive modelled halves in dependence of the regularization parameter
α are plotted as thick lines in the top row of Fig. 2. The x-axis ticks,
thereby mark all α-values that were tested in this analysis.

The second row in Fig. 2 shows the quality of the fit as χ2/Ndata

profile (for definition of χ2 see formula 6) again plotted against the
regularization parameter. χ2 as deviation from the kinematic input
data with the modelled fit is here normalized over the number of
input data Ndata, which is composed of the number of Voronoi bins
Nvoronoi times the number of kinematic bins Nvlos. As expected, the
fit to the data is poor when α is low (high χ2/Ndata). In this regime, it
is the entropy term which is essentially maximized and the data (via
α · χ2, cf. equation 7) have little influence on the fit. With this, the
anisotropy strongly depends on the ωi and, in our case, happens to be
a poor representation of the internal moments of the merger (high rms
values, see Fig. 2, first row). With increasing α, both the fit quality
and the agreement with the merger structure improve. However, at
very high α-values further improvements of the fit do not make the
internal moments better since we are dominated by the noise of the
N-body simulation. The most suitable choices of regularization can
be read off from the minima min(rmsσ ) of the rmsσ profiles and
are marked as thick vertical lines in Fig. 2. Their average value is

α(min(rmsσ )) = 0.41. This value, however, depends on the specific
implemented set-up of SMART as well as of the input data. Evaluated
at the individual most suitable regularization values and afterwards
averaged over all 10 models (5 projections and two halves each), we
get a minimum value of only min(rmsσ ) = 0.008. This extremely
good agreement demonstrates that our orbit sampling represents the
phase space very well.

We also test the influence of rotation on the comparison. Due to
the overall small angular momentum and thus small absolute velocity
amplitude however, the relative errors in v are sometimes large. The
absolute error of the first-order velocity moments, averaged over all
angular and radial bins, is only 
v = 3.9 km s−1, but the maximum
velocity over these bins is likewise only 23.4 km s−1. We therefore
here define rmsv,σ as normalized deviation between the first internal
moments and the velocity dispersions together as

rmsv,σ = 1

3

∑
i

rmsvi ,σi = 1

3

∑
i

√√√√ 1

2Ndata

Ndata∑
j=1

(

2

vi
+ 
2

σi

)
,

with 
vi
= vi,data − vi,mod√

v2
i,data + σ 2

i,data

and 
σi
= σi,data − σi,mod√

v2
i,data + σ 2

i,data

, (14)

where the index i again denotes the three coordinates r, θ , φ.
The rmsv,σ profiles are plotted against the regularization parameter

as thin lines in the top row of Fig. 2. As expected, their minima
appear at regularization values similar to the ones of the rmsσ

profiles. They are marked as thin vertical lines and their average
value is α(min(rmsv,σ )) = 0.012. Again, this value depends on the
specific set-up. Evaluated at the individual α(min(rmsv,σ ))-values
and afterwards averaged over the five different projections and their
respective modelled halves we gain a value of only min(rmsv, σ ) =
0.012.

All values in the vicinity of α(min(rmsσ )) and α(min(rmsv,σ ))
are good regularization choices. Within this regularization region,
SMART is able to well fit the kinematic input data for each tested
projection (see Figs 3 and B1). Averaged over the five different
projections and their respective modelled halves we receive mean
values and deviations of v̄ = (0.11 ± 2.09) km s−1, σ̄ = (309.75 ±
2.54) km s−1, h̄3 = 0.00 ± 0.01 and h̄4 = 0.01 ± 0.01, again evalu-
ated at α(min(rmsσ )). The χ2-maps in Figs 3 and B1 show that
the models for each projection are able to fit the kinematic input
data homogeneously well over the field of view with slightly
larger deviations in the centre. If not specifically annotated, the
results shown in the further analysis are evaluated at α(min(rmsσ )).
However, the quality of the models does not strongly depend on the
exact regularization value because a broader range of regularization
values around these determined α-values is sufficiently appropriate
and results in equally good mass parameter reproductions within the
overall scatter (see also third and fourth lines in Fig. 2 that will be
explained in Section 4.3).

4.2 Reproduction of internal moments and orbit structure

The previously shown small rmsσ and rmsv,σ values already demon-
strate the very good recovery of the internal moments by the model
when providing the correct mass parameters and viewing angles. The
high level of agreement between model and simulation is further

illustrated in Fig. 4. The anisotropy parameter β = 1 − σ 2
θ +σ 2

φ

2σ 2
r

of the
model matches the profile of the simulated one (see Fig. 4, middle
panel). The model is also able to reproduce the negative β within
the core radius rb, which equals the black hole sphere of influence
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1444 B. Neureiter et al.

Figure 2. Choice of regularization and 1D mass recovery results for the five different projections (different columns). The first row shows the rmsσ - (thick line)
and rmsv, σ -profile (thin line) for the modelled right half of the galaxy (black) and left half of the galaxy (red) with the correct black hole mass, stellar mass-to-light
ratio and dark matter scale factor as input. All values are plotted against the increasing regularization value α in logarithmic units. The x-axis-ticks thereby
symbolize the tested α-values. The minima min(rmsσ ) (thick line) and min(rmsv,σ ) (thin line) are marked as vertical lines and suggest suitable regularization
values. The thin black vertical line in the major axis panel thereby overlaps with the thick black vertical line and the thin red vertical line in the ϑ= 90◦, ϕ = 10◦
panel overlaps with the thick red vertical line. The second row shows the corresponding χ2/Ndata values. The third and fourth rows show the 1D mass recovery
results for the stellar mass-to-light ratio ϒ /ϒ sim and black hole mass MBH/MBH,sim normalized over the correct values of the simulation. The y-axis-ticks for
the third and fourth row symbolize the concrete masses that were tested and used as input values for the models. The black dotted line marks unity which is
achieved when the model correctly recovers the mass. The stellar mass-to-light ratio and black hole mass were recovered with an accuracy better than 5 per cent.
Such an intrinsic precision under similar conditions has not yet been demonstrated with other Schwarzschild modelling codes.

(Thomas et al. 2016), reflecting the tangential orbit distribution due
to black hole ‘core scouring’: Within the sphere of influence ETGs
at the high-mass end exhibit central regions that are fainter than an
extrapolation of a Sérsic function (Sérsic 1963) as fit to the outer
surface brightness profile would suggest. The commonly accepted
theory for the formation of these ‘cores’ is a gravitational slingshot
process of stars on radial orbits caused by SMBH binaries that
were arised by galaxy mergers (e.g. Begelman, Blandford & Rees
1980; Hills & Fullerton 1980; Ebisuzaki, Makino & Okumura 1991;
Milosavljević & Merritt 2001; Merritt 2006; Rantala et al. 2018).

The classification of the integrated orbits is also plotted in Fig. 4
(bottom panel). Orbits in the immediate vicinity of the black hole
are spherical and Keplerian orbits as expected due to the SMBH. Z-
tubes are the pre-dominant orbits within 0.3 kpc < r < 3 kpc causing
the more oblate shape of the galaxy in this range. For r > 3 kpc,

the majority of orbits are classified as x-tubes corresponding to
the prolate shape in the outskirts of the simulation as described
in Section 3. Our orbit classification analysis well matches the one
by Frigo et al. (in preparation), which is done via an orbit frequency
analysis of the simulation.

4.3 Mass recovery

So far, we have provided SMARTwith the correct mass parameters of
the stellar mass-to-light ratio ϒ sim, black hole mass MBH,sim, and dark
matter multiplication factor sDM,sim of the simulation. Even though
SMART can be provided with any type of dark matter profile, we here
transfer the dark matter density profile shape of the simulation and
concentrate on finding the correct mass multiplication scale factor
sDM of this pre-determined halo shape (cf. equation 12).
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Triaxial orbit models 1445

Figure 3. Velocity maps of the simulation (top row) and of the model (bottom row) for the major axis projection, i.e. the projection with the line of sight
being parallel to the major axis of the simulation based on the simulation’s orientation described in Section 3.1.1 (for the other projections see Fig. B1). The
different panels show the velocity in km s−1 (first column), velocity dispersion in km s−1 (second column), the h3-parameter (third column), and h4-parameter
(fourth column) plotted over the whole field of view. The fifth panel in the top row shows the corresponding surface brightness map from the simulation in
units of logarithmic numbers of stellar particles N∗. The contour lines correspond to isodensity surfaces. The fifth panel in the bottom row shows χ2

losvd/Nvlos

as deviation from the kinematic input data with the modelled fit. We show the result for the model with the correct stellar mass-to-light ratio, black hole mass
and dark matter scale factor as input parameters evaluated at the most suitable regularization parameter of α(min(rmsσ )). The maps in the second row consist
of the results of the modelled left and right half of the galaxy. Therefore, the χ2-maps show two colourbars for the two different halves.

Figure 4. Reproduction of the internal properties within
r ∈ [0.25 kpc, 15 kpc]. Top panel: The internal velocity dispersions in
radial direction σ r (solid line), elevation direction σ θ (dotted line), and
azimuthal direction σφ (dashed line) from the model (black lines) averaged
over the five different projections accurately follow the real ones from the
simulation (blue lines) out to 15 kpc as field of view. The grey shaded
lines mark the deviations between the different projections. Middle panel:
Also, the anisotropy parameter β is well reproduced and represents the
tangentially anisotropic orbit distribution (β < 0) within the core radius
rb = rSOI ∼ 1 kpc as well as the radially anisotropic orbit distribution (β >

0) outside rb. Bottom panel: Radial distribution of the orbit fractions forbitclass

classified by SMART.

The following sections will show the 1D mass reproduction results
of individually determining the favoured stellar mass-to-light ratio
ϒ or black hole mass MBH (Section 4.3.1) as well as the 2D mass
recovery results of simultaneously determining the favoured ϒ and
MBH (Section 4.3.2) or ϒ and sDM (Section 4.3.3). We skip any
3D mass parameter recovery, since this would not provide more
information than the combined 2D recoveries in the context of testing
the orbit library.

4.3.1 1D mass recovery of ϒ and MBH

Fig. 2 shows the 1D mass recovery results of ϒ (third row) and MBH

(fourth row) for the five different projections and their respective
modelled halves. For testing the recovery of the black hole mass,
we provide the model with the correct ϒ sim and sDM,sim values and
run nine models with different black hole masses within MBH ∈
[0.79MBH,sim, 1.21MBH,sim] including the correct one. The tested mass
grid has a smaller grid size close to MBH/MBH,sim = 1 and the exact
tested values can be read off from the ordinate ticks in Fig. 2.

For testing the 1D mass recovery of the stellar mass-to-light ratio,
we provide MBH,sim and sDM,sim and test the same ϒ /ϒ sim values as
for the black hole mass analysis.

Fig. 2 shows the favoured mass parameters, i.e. the mass parame-
ters where χ2/Ndata is smallest, as a function of α. As one can see, for
our fiducial choice of α (i.e. α = α(min(rmsσ )) as the best recovery
of the velocity dispersions), the average mass recovery performs
excellently, with 
MBH = 5 per cent and 
ϒ = 2 per cent. In fact,
above log α � −3, the results are very robust with little dependency
on α. Within the overall minor scatter, all models, independent from
the chosen half of the galaxy or projection, show equally good fits
and reproductions of the internal moments and mass parameters.

4.3.2 2D mass recovery of ϒ and MBH

For simultaneously recovering ϒ and MBH by SMART, we sample
a 2D grid of input masses for 49 models per projection with ϒ
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1446 B. Neureiter et al.

Figure 5. 2D mass recovery results of ϒ and MBH for the positive halves of the five different projections. For each projection, we evaluate 49 models with
different ϒ and MBH input masses, covering a 2D grid with a step size of 7 per cent around the correct mass parameter. Each plot contains the χ2/Ndata colourbar
for the individual projection. The favoured models are marked with a grey cross. The model always finds the correct stellar mass-to-light ratio and the black
hole mass with a minor averaged deviation of 6 per cent.

Figure 6. 2D mass recovery results of ϒ and sDM for the positive half of
the major axis projection. sDM thereby is the mass multiplication scale factor
of the pre-determined halo shape of the simulation. We evaluate 49 models
with different ϒ and sDM input masses, covering a 2D grid with a step size
of 7 per cent for the stellar mass-to-light ratio and 10 per cent for the dark
matter scaling multiplication factor. The favoured model is marked with a
grey cross. The model slightly overestimates the dark matter halo scale factor
by 10 per cent and slightly underestimates the stellar mass-to-light ratio by
7 per cent.

∈ [0.79ϒ sim, 1.21ϒ sim] and MBH ∈ [0.79MBH,sim, 1.21MBH,sim]. We
again model all five different projections but fit only the right half
of the galaxy since the 1D mass recovery showed no significant
difference between the respective halves of each projection. The
results are plotted in Fig. 5. Evaluated at the regularization value
α(min(rmsσ )) the stellar mass-to-light ratio is in every case correctly
recovered and the black hole mass is reproduced with an accuracy of
6 per cent averaged over the different projections.

4.3.3 2D mass recovery of ϒ and sDM

For recovering ϒ and sDM, we sample a 2D grid of input masses
for 49 models along the major axis projection with ϒ ∈ [0.79ϒ sim,
1.21ϒ sim] and sDM ∈ [0.7sDM,sim, 1.3sDM,sim]. We here model the
right half of the major axis projection. The result is shown in Fig. 6.
Evaluated at α(min(rmsσ )), the dark matter scale factor is slightly
overestimated by 10 per cent and the stellar mass-to-light ratio is

slightly underestimated by 7 per cent, confirming the accurate mass
reconstruction from the previous tests.

In conclusion, these mass recovery results demonstrate that our
orbit sampling and superposition algorithms allow for a very accurate
reconstruction of the mass composition and orbital structure of
triaxial systems with known density shapes.

4.4 Beyond second-order velocity moments

So far, we have focused on the reproduction of the first- and second-
order internal velocity moments. The previous sections have shown
that the full shape of the LOSVDs contains enough information to
accurately reconstruct the mass and the anisotropy structure of the
orbit distribution. In Fig. 7, we show the full mass-weighted stellar
velocity distributions per velocity bin against the velocity in km s−1

in radial, longitudinal, and azimuthal direction when integrating over
the other velocity components and respective spatial bins of the
model. We find that the central azimuthal and longitudinal velocity
distributions within r < rSOI have two maxima that become more
pronounced closer to the centre (see Fig. 7). This likely reflects
the strong tangential anisotropy produced during the formation of
the core and is probably linked to the negative h4 parameter at
the centre of the merger remnant (see Figs 3 and B1), which
will be investigated in more detail in a separate paper. The whole
internal velocity distributions contain more information about the
formation process than the velocity moments alone can do. So, we
extended SMART to calculate the internal velocity distributions for
31 velocity bins within the positive and negative escape velocity,
i.e. vmax

min = ±vesc(r, θ, φ), evaluated at each radial and angular bin
of the SMART-specific grid (see Section 2.1). The internal velocity
distributions averaged within spherical shells reproduce the ones
from the simulation sufficiently well, with a deviation of rms = 0.07
averaged over all velocity bins with v < 1000 km s−1 and radial bins
within r ∈ [0.25 kpc, 15 kpc] (see Fig. 7). Including the outer wings
of the internal velocity distributions with v > 1000 km s−1, the rms
increases, however, the number of simulation particles in these bins
is very small. We will apply this ability of SMART to model the whole
internal velocity distribution in future studies of real observational
data.

We checked the behaviour of the rms profile in dependence of the
regularization as deviation of the whole internal velocity distributions
and compared it with the rmsσ and rmsv,σ profiles. It thereby showed
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Triaxial orbit models 1447

Figure 7. Internal velocity distributions in radial (red), elevation (blue), and azimuthal (green) direction when integrating over the respective spatial bin of the
model and the other velocity components for three different radii of r = 0.16 kpc (left-hand panel), r = 0.77 kpc (middle panel), and r = 12.46 kpc (right-hand
panel). The internal velocity distributions are calculated for 31 velocity bins within the positive and negative escape velocity evaluated at each radial and angular
bin of the SMART-specific grid. We here show the mass-weighted stellar internal velocity distributions per velocity bin averaged within spherical shells. The
non-shaded lines correspond to the simulation data and the shaded lines show the modelled results. In closer vicinity of the black hole, the elevation and azimuthal
distribution show two maxima corresponding to the tangentially anisotropic orbit distribution. SMART is able to reproduce the internal velocity distributions in
general and is also able to follow this specific behaviour in the central bins.

the same form and its minimum appeared in the same regularization
region and therefore does not provide additional information when
determining the most suitable regularization value.

4.5 Robustness and uniqueness checks

In order to test the robustness of the results against modifications of
our fiducial set-up and in order to test the uniqueness of the results,
we make the following checks and considerations:

4.5.1 PSF convolution and noise

While Valluri et al. (2004) describe that three-integral, axisymmetric,
orbit-based modelling algorithms in general show a flat-bottomed χ2

distribution, being unable to determine the black hole mass to better
than a factor of ∼3.3, Magorrian (2006) demonstrates that this is only
true for noiseless data. According to this, our model should not be
able to precisely determine the correct black hole mass of the simula-
tion due to the lack of an ‘error’. However, the previous results have
already shown that SMART achieves a well-defined black hole mass
due to a well-defined minimum in the χ2-profile, which was probably
supported by the intrinsic noise of the N −body simulation. Neverthe-
less, we check whether the minimum in the χ2-curve changes when
simulating an ‘error’ in the kinematic input data. For this, we model
the positive half of the intermediate axis projection by adding Gaus-
sian noise to the simulation chosen so that the velocity dispersion
of the noisy kinematic simulation data results in an observation-
ally realistic error of ∼ 3 per cent (v̄ = (0.14 ± 7.64) km s−1, σ̄ =
(288.86 ± 7.80) km s−1, h̄3 = 0.00 ± 0.02, h̄4 = 0.02 ± 0.02). To
achieve even more realistic conditions we furthermore smooth the
data by simulating a psf convolution with a FWHM of 2.43 arcsec
which corresponds to 0.24 kpc, i.e. about a fourth of the sphere
of influence, when assuming the galaxy to be at a distance of
20 Mpc. The so constructed velocity maps can be seen in Fig. B2.
We provide SMART with the information about the used FWHM-
value for the 2D psf convolution and test the same ϒ and MBH input
masses as in Section 4.3. The corresponding results for the 1D mass
recoveries when modelling this modified input data are plotted as
turquoise lines in Fig. 8, and do not differ decisively from the ones

Figure 8. Choice of regularization and 1D mass recovery results for the
positive half of a psf convolved noisy version of the intermediate axis
projection. The rms and χ2/Ndata profiles show the same shape and suitable
regularization region than for the noiseless and non-psf-convolved case. Also,
the ϒ- and MBH reproduction shows no remarkable change within the overall
scatter.

without psf convolution and noise. The stellar mass-to-light ratio
is slightly underestimated by 
ϒ(α(min(rmsσ )) = 3.5 per cent or

ϒ(α(min(rmsv,σ )) = 7 per cent and the black hole mass is overesti-
mated by 
MBH(α(min(rmsσ )) = 3.5 per cent or underestimated by

MBH(α(min(rmsv,σ )) = 7 per cent. The rmsσ , rmsv,σ , and χ2/Ndata

profiles are of course shifted upwards but follow the same form than
the ones without noise and psf convolution (cf. Fig. 2). Fig. 9 shows
the 2D mass recovery result of ϒ and MBH for this model. The stellar
mass-to-light ratio is again correctly reproduced and the black hole
mass is underestimated by only 7 per cent. With this, SMART is
able to model the noisy and psf convolved kinematics as well as the
default kinematics without any ‘error’ equally well within the overall
scatter.
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Figure 9. 2D mass recovery results of ϒ and MBH for the positive half of
a psf convolved noisy version of the intermediate axis projection. We again
evaluate 49 models with different ϒ and MBH input masses, covering a 2D
grid with a step size of 7 per cent around the correct parameters. The favoured
model is marked with a grey cross. The model finds the correct stellar mass-
to-light ratio and slightly underestimates the black hole mass by 7 per cent.
Within the overall scatter this resembles the results of the models without
noise and psf convolution.

4.5.2 Changing the orbital bias factors ωi

As discussed in Section 2.4, the orbital bias factors ωi of equation (8)
can be used to control the orbital weights wi. In the absence of other
constraints wi ∼ ωi. Our choice of ωi = 1 is somewhat arbitrary.
In fact, it biases the wis strongly away from the true solution. Thus,
we want to test whether this affects our fits. Specifically, we test the
opposite extreme. We remodel the positive half of the major axis,
abbreviated below as X+, by setting ωi = wi(X+), where wi(X+)
are the orbital weights of the best-fitting model for X+. We also
remodel X+ by setting the bias factors ωi = wi(X−) to the orbital
weights of the best-fitting model for the negative half of the major
axis X−. Fig. 10 shows the results for these completely independent
model fits. As expected, the rms and χ2/Ndata profiles start with
smaller values, since at α = 0, the ωis bias the orbital weights the
strongest. As motivated above, in the specific case here, the weights
are biased towards a previous fit, which explains the better initial
χ2 and rms. However, at our fiducial α range, the reproduction of
the internal moments and the quality of the fit is the same as for
the case with identical ωis. As a consequence, this implies that the
simplifying assumption of constant ωi does not change the modelling
results significantly.

4.5.3 Degeneracy

When redoing the just described analysis (Section 4.5.2) but using the
orbital bias factors of the right half of the intermediate axis projection
ωi(Y+) (brown line in Fig. 11) as initial values for remodelling X+

we gain a minor improvement in the reconstruction of the internal
moments since the rmsσ and rmsv,σ values are a bit smaller compared
to the default model (black line), though the mass recovery shows
equal results. The fact that, for the same quality of fit (i.e. same
χ2), the rms of the internal moments is smaller for the model with
ωi assumed to be equal to orbital weights from another modelled

Figure 10. Choice of regularization and 1D mass recovery results for the
positive half of the major axis projection when using the default constant
orbital bias factors ωi = const. (black line), when using the best-fitting orbital
weights wi (X+) of the positive half of the major axis as orbital bias factors,
i.e. ωi = wi (X+) (pink line), and when using wi (X−) of the negative half
of the major axis as orbital bias factors, i.e. ωi = wi (X−) (blue line). The
modified orbital bias factors do not improve the results, indicating that the
choice of ωi = const. is sufficient.

Figure 11. Choice of regularization and 1D mass recovery results for the
positive half of the major axis projection when using the default constant
initial orbital bias factors ωi = const. (black line) and when using the best-
fitting orbital weights wi (Y+) of the positive half of the intermediate axis as
orbital bias factors, i.e. ωi = wi (Y+) (brown line). The additional information
from the second projection axis appears to reduce the degeneracy leading to
a minor improvement in the internal moments reproduction as seen in the
lower rmsσ and rmsv,σ values.

projection direction (in this case from the intermediate axis projection
Y ) suggests that these ωi contain some information in addition
to the kinematics of the given projection (in this case the major
axis projection X). The fact that information from another line of
sight can improve the model is not surprising. In fact, it shows that
some of the already very small residual rms in the internal velocity
moments is due to remaining degeneracies in the recovery of the
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Triaxial orbit models 1449

Figure 12. Choice of regularization and 1D mass recovery results for the
positive half of the major axis projection (left column) and positive half
of the intermediate axis projection (right column) when changing the x-
and z-coordinates in the simulation so that the orbit sampling in SMART
changes from a sampling of vφ to vθ . Whereas the mass recovery gets slightly
improved, the rmsσ and rmsv,σ profiles show slightly deteriorated values.
Overall, both techniques basically lead to the same results.

orbital weights. These degeneracies seem to be surprisingly small.
However, our results imply that as long as the deprojected light profile
and normalized DM halo are known and the orbit sampling is dense,
masses and anisotropies can be recovered with very high accuracy,
independent of the viewing angle.

4.5.4 Change in orbit sampling technique

Even though our results already prove the efficient ability of our
orbit library to completely reproduce all necessary orbits in a
triaxial potential, we want to check the robustness of our orbit
sampling method (cf. Appendix C). We therefore change the angular
momentum sampling direction from the minor axis to the major axis.
This corresponds to a change of vφ to vθ samplings. The basic idea
is that a more homogeneous angular momentum sampling along the
major axis instead of the minor axis might improve the mass recovery.
Thus, we change the major and minor axis coordinates within the
simulation and rerun the models for the new major- (left column in
Fig. 12) and intermediate-axis-kinematics (right column in Fig. 12).
With this, the angular momentum orbit sampling is proceeded along
the major axis of the simulated remnant. The results are shown in
Fig. 12. One can see that both orbit libraries produce the same results.
In fact, the modified orbit sampling procedure reveals a slightly better
mass recovery but slightly worse internal moments reproduction

(higher rmsσ and rmsv,σ values) for equally good kinematic fits.
Nevertheless, regardless of the chosen angular momentum sampling
axis our orbit sampling technique (cf. Appendix C) of creating
initial conditions, which belong to certain energy shells and angular
momentum sequences, has proven to be a highly efficient technique.
It produces a general and complete set of orbits for triaxial potentials
being able to deal with changing structure in the integrals-of-motion
space since it manages to reproduce all relevant properties and to
radially adapt itself to the more spherical centre as well as the more
prolate outskirts of the simulated galaxy.

4.5.5 Summary of robustness and uniqueness checks

In conclusion, these checks prove that SMART is robust against
minor internal modifications as well as input data changes. SMART
has proved its ability to handle with noisy and psf convolved data.
Furthermore, we have shown that constant orbital bias factors are a
good approximation. Even though it is impossible to get observations
from two viewing points, we have demonstrated that this would allow
to reduce the minor degeneracies allowed by the kinematic data even
further. We have verified this by using the orbital bias factors from a
second projection direction. Moreover, the results are not affected by
changing the orbit sampling technique from setting up Lz sequences
to setting up Lx sequences. This shows that, as expected, the choice
of sampling axis is not decisive and that the orbit sampling routine
is universal.

5 TH E QUA S I - U N I QU E N E S S O F TH E
ANI SOTROPY R ECONSTRUCTI ON W HE N
FI TTI NG FULL LOSVDS

The results of the previous section have shown that the anisotropy
of the N-body merger remnant can be reconstructed with very high
accuracy from the Schwarzschild models that we fitted to the full
LOSVDs. This not only demonstrates the high accuracy of our orbit
superposition model, but it also implies that when models can exploit
the full information contained in the entire LOSVDs, the remaining
degeneracy in the recovery of the distribution function cannot affect
the anisotropy or mass recovery significantly. In this section, we want
to use the maximum entropy technique to explore this in more depth.

5.1 The Maximum Entropy Technique and the Mathematical
Structure of the Solution Space

As already described in Section 2.4, we solve for the orbital weights
wi by using a maximum entropy technique (cf. equations 7 and 8).
The χ2 term in equation (7) contains the kinematical constraints
and is the deviation between observed LOSVDs Ldata and the model
prediction Lmod, i.e. the weighted sum over the contributions of all
orbits to LOSVD j

′
and line-of-sight velocity bin k,

Lmod
j ′,k ≡

Norbit∑
i=1

wi Lorb
j ′,k,i . (15)

It is convenient to think of the observed �Ldata and the model
predictions �Lmod as vectors with Ndata = Nlosvd × Nvlos elements.
Then,

�Lmod = Lorb · �w, (16)

where Lorb is a matrix with Ndata rows and Norbit columns.
In addition to the kinematical observations �Ldata, the orbital

weights �w are subject to photometric constraints. In analogy to
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equation (16):

�pmod = Porb · �w, (17)

where �pmod is a vector with the model predictions for the 3D
luminosity density at spatial position j3 in the galaxy (j3 = 1, . . . ,
Nphot). To guarantee the self-consistency of our model, the respective
observed �pdata are not included via a χ2 term. Instead, we treat them
as boundary conditions for the fit:

�pdata
!= �pmod. (18)

Hence, we seek for the maximum of equation (7) subject to the linear
equality constraints

�pdata − Porb · �w = 0. (19)

For convenience, we normalize the �pdata such that
∑ �pdata = 1. Since

we are only interested in positive orbital weights (see below), the
orbital weights obey 0 ≤ wi ≤ 1 and we can restrict the maximization
to the respective Norbit-dimensional convex quader.

To show that equation (7) has a unique global maximum that can be
controlled through the bias factors ωi it is convenient to consider the
equivalent minimization problem for f ≡ −Ŝ, given by multiplying
equation (7) with −1.

Let us first consider equation (7) without the entropy term S. The
χ2 term can be written as

χ2 = − �LT
dataCv �Ldata + 2 �LT

dataCvLorb �w − �wT Lorb
T CvLorb �w, (20)

where Cv is the covariance matrix of the observed LOSVDs and is
positive definite. The Hesse matrix of χ2 reads

∇2χ2 = 2Lorb
T CvLorb. (21)

Because Lorb is positive by construction, the symmetric matrix ∇2χ2

is at least positive semidefinite and χ2 is convex.
The minimization of χ2 alone, subject to the linear equality

constraints equation (19), is therefore a convex optimization problem
with affine equality constraints in standard form. As such, it only has
a global minimum (e.g. Boyd & Vandenberghe 2004). In general, we
cannot assume that χ2 is strictly convex (i.e. that ∇2χ2 is positive
definite). The set of orbital weights that solve χ2(w) = χ2

min may
therefore be non-unique. This is not surprising given that the linear
equation

�∇χ2 = 2 �wT Lorb
T CvLorb + 2 �LT

dataCvLorb ≡ 0 (22)

will in general be underconstrained if Norbit > Ndata. As already
mentioned above, the reconstruction of the distribution function is
not unique even if the deprojected density and the potential are
known. We give an example in Appendix D.

Because the Hesse matrix of −S is diagonal with the ith element
equal to 1/wi, the entropy −S is strictly convex. In contrast to the case
of χ2, the set of orbital weights that minimize −S (or, equivalently,
that maximise S) is unique. For the entropy alone this is easy to see
since

∇S = − log
wi

ωi

− 1 ≡ 0 (23)

can be solved analytically: wi = exp (− 1) · ωi. The constraints from
equation (19) will shift the solution, but the strict convexity still
guarantees it to remain unique (e.g. Boyd & Vandenberghe 2004).

For general α > 0, the Hesse matrix of f is the sum ∇2(− S) +
α∇2χ2 and f is always strictly convex. Equation (7) subject to the
constraints (19) hence always has a unique solution.

As already mentioned above, from an algorithmic point of view, it
is advantageous to have a unique solution. From the physical point of

view this is not desirable because any algorithm that picks up only one
of the potentially many solutions that minimize χ2 in equation (6)
may lead to a bias. However, suppose �s1 and �s2 are two solutions
which lead to the same χ2

min. By setting ωi = s1, i · exp (1) we can
make �s1 the global solution of equation (7). Likewise, by setting ωi

= s2, i · exp (1) we can make �s2 the global solution of equation (7).
This shows that the maximum-entropy formulation of the problem
allows in principle the reconstruction of the entire solution space (via
variation of the ωi).

5.2 Testing the uniqueness of the anisotropy recovery

The previous section has shown that the recovery of the distribution
function (or, equivalently, of the orbital weights) is in general not
unique, even when the deprojection and the potential are known.
The maximum entropy technique recovers one of the many possible
solutions, which is unique for every given set of ωi. Variation
of the ωi allows to sample the full solution space. On the other
hand, the fits of the N-body merger remnant have shown that the
anisotropy recovery is very accurate and stable even to variations
of the ωi. Moreover, in Appendix D we explicitly construct two
different phase-space distribution functions that fit a given set of
kinematics equally well. Even though they have different orbital
weights, they reveal very similar anisotropies in the second-order
velocity moments. This suggests that while the recovery of the full
distribution function is non-unique, the anisotropy of the second-
order moments is actually very well constrained by the information
contained in the full LOSVDs.

To investigate this further, we create kinematic data of several
toy models with different intrinsic properties: with randomized orbit
weights (called RANDOM in the following), with an overpopulation
of box/chaotic orbits (called BOX), with an overpopulation of z-
tubes (called ZTUBE), with an overpopulation of only the prograde
z-tubes (called ZROT) and with an overpopulation of x-tubes (called
XTUBE). We then fit the mock kinematic data of these toy models
under different choices for the ωi, trying to push the fitted orbit model
towards extreme shapes. The goal is to test how accurate and stable
the recovery of the internal velocity anisotropy is, when we fit the
entire information contained in the LOSVDs.

The toy models are constructed as maximum-entropy models [i.e.
through maximization of equation (7) with α = 0; cf. Thomas et al.
2007]. For the BOX model, we increase the ωi of all box orbits by a
factor of 1000, for the XTUBE and ZTUBE models we increase the
ωi of the respective tube orbits by the same amount. For the ZROT
toy model we increase the ωi only for prograde z-tubes and for the
RANDOM model we use randomized ωi (cf. Appendix D). The
weights are then still forced to satisfy the density constraints of the
N-body simulation. For each toy model, we create kinematic mock
data for four different projections (major-, intermediate-, minor-
axis projections and the θ = 45◦, φ = 45◦projection). We then
model every projection of all toy models (in total 20 different input
data) and test four different methods for the fits: We use (i) our
default constant orbital bias factors, i.e. ωi = 1 corresponding to the
Shannon-entropy (abbreviated as ‘shannon’ in Fig. 13), (ii) increased
orbital bias factors by a factor of 10 for the box/chaotic orbits (box10),
(iii) increased orbital bias factors by a factor of 10 for the z-tubes
(ztube10), and (iv) increased orbital bias factors by a factor of 10 for
the x-tubes (x-tube10).

Fig. 13 shows the resulting anisotropy profiles (when averaging
over shells) for these models. The different rows correspond to
the different input toy models and the different columns show the
individual projection directions. The dotted data points symbolize the
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Triaxial orbit models 1451

Figure 13. Recovery of the anisotropy profiles of different input toy models by SMART fits with different entropy functions. The input models (black dots) are
constructed to have specific orbit classes overrated, resulting in different anisotropy profiles (the overrated orbit type is labelled on the y-axis of each individual
row, details in the text). All the five toy models can be well recovered. This is independent of the choice of the projection axis (different columns; from left to right
major, intermediate, minor and a diagonal axis) and from the assumed entropy function in the fit (coloured lines). For example, the anisotropy profile of the toy
model with an overpopulation of box/chaotic orbits (called BOX; second row) is well reproduced by models maximizing the Shannon-entropy (red lines, labelled
shannon) but also with other entropy functions that use a 10 times higher bias factor for box-orbits (green, labelled box10), for x-tubes (blue, xtube10) or for
z-tubes (orange, ztube10). The grey lines correspond to the anisotropies implied by maximizing these four different entropy functions without fitting the kinematic
data. They symbolize the variety of anisotropy profiles that are in principle possible for different choices of ωi. After fitting the kinematic data, the average
deviation (averaged over all radii and toy models fitted with different entropy techniques) between recovered and input anisotropy is very small, |
β| = 0.05.

anisotropy profiles of the input toy models (which are of course the
same for the different projections). The coloured lines (green, blue,
orange, red) show the recovered anisotropies of SMART fits using
entropy functions with enhanced bias factors for specific orbit types
as described under (i)–(iv) above. The grey lines, for comparison,
show the anisotropies that result when we maximize the above
entropy functions (i)–(iv) without fitting the mock LOSVDs of the
toy models. The grey lines therefore illustrate the variety of different
anisotropy profiles that can be constructed by varying the orbital
bias factors ωi. They also indicate the range of different anisotropy
profiles that are consistent with the given density distribution.

As one can see, even though the entropy functions tend to push the
fits into extreme directions, the range of anisotropy profiles recovered
after the fit to the LOVSDs is very narrow. When averaging over
all radii and toy models fitted with different entropies, the mean
deviation to the input models (dots) is |
β| = 0.05. The average
spread in beta inside the sphere of influence is slightly larger |
β(r
< rSOI)| = 0.09 than |
β(rSOI < r < rFOV)| = 0.03 outside rSOI.
One possible explanation for this might be the increase of degrees
of freedom of spherical orbits near the centre. In addition, because
β involves the ratio of the intrinsic dispersions, the same fractional
error in the intrinsic dispersions results in a four times larger |
β|

when the anisotropy is as tangential as β = −1.5 compared to the
isotropic case. Overall, the Shannon entropy (red line) is able to
recover the beta anisotropy best. This is our default entropy used in
SMART.

These results together with Section 4 strongly suggest that the
information contained in the full LOSVDs constrains the anisotropy
in the second-order velocity moments very well. In turn, this is the
reason why our models can reproduce the mass of the black hole and
of the stars in the N-body simulation very well.

At larger radii, solely the reconstruction of the intrinsic anisotropy
of the toy model with enhanced prograde z-tubes (i.e. ZROT) turns
out to be difficult when viewed along the minor axis. This, however,
is expected, since any rotation around the minor-axis cannot be
observed and, thus, not be reconstructed from this viewing direction.
Since we use equal ωi for prograde and retrograde orbits in our fitted
models, these models do not have intrinsic rotation in the z-tubes for
this projection. Consequently, the tangential velocity dispersion is
larger than in the toy model and the fitted β becomes too negative.
We checked that if we use the true second-order velocity moment
rather than the velocity dispersion in the tangential direction, then
the differences between the outer profiles of the ZROT model and
the fits along the minor axis disappear.
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Figure 14. Recovery of the z-loop orbit fractions of different input toy models by models with different entropy methods. We here show the same analysis as
in Fig. 13 but now for the reconstruction of the fraction of orbits classified as z-tubes. The colour coding is adapted to Figs 4 and C1. Independent of the tested
projection, the z-loop fractions of the individual input toy models are well recovered by the models using different entropy methods. The same is true for the
other orbit class fractions (see Figs E1- E3).

For dynamical models which aim for a full phase-space reconstruc-
tion (like Schwarzschild models) and which use the full information
encoded in the LOSVDs (see also Vasiliev & Valluri 2019) the
anisotropy should be recoverable with a typical error of |
β| ≈
0.05. We solely found larger anisotropy discrepancies (up to |
β|
= 0.5) in extremely tangentially biased regions inside the sphere of
influence.

As an example of the corresponding accordance of the recon-
structed orbit fractions, Fig. 14 shows the case of z-tubes. The
intended overpopulation of the z-tubes in the ZTUBE toy model
(third row) and the ZROT toy model (fourth row) can be clearly seen
in comparison to the other toy models. Independent of the chosen
line of sight and entropy method (i.e. the bias factors ωi), the fraction
of z-tubes is qualitatively recovered and follows the enhancement
tendencies. The orbit fractions however are less well determined
than the anisotropy by the data and show a stronger dependence
on the entropy. The same is true for the x-tubes, box/chaotic, and
spherical/Kepler orbits shown in Figs E1–E3.

6 IN T E R M E D I ATE A X I S ROTAT I O N

One of the first investigations to check whether tube orbits with net
rotation around the intermediate axis are stable in a triaxial ellipsoid
was done by Heiligman & Schwarzschild (1979), who studied a
triaxial model with fixed axis ratios of 1:1.25:2 by numerical methods
and stated that ‘Y-tube orbits nearly certainly do not exist in the

adopted model’. Also Binney & Tremaine (2008, p. 263) assert that
‘tube orbits around the intermediate axis are unstable’ in a triaxial
potential. Adams et al. (2007) analysed the orbit instability of orbits
in a triaxial cusp potential, which are initially confined to one of the
three principal axes, under a perturbation along the perpendicular
direction. They found that orbits around any of the principal axes are
unstable to perpendicular motions. However, according to previous
results, they again state that orbits around the intermediate axis are
more likely to be unstable. This instability is strongest for original
box orbits lying in the x–z plane when the axial ratio of these two
axes in the original plane is largest.

Our orbit classification routine in SMART finds no y-tubes in the
sense that there is no sign conservation of the angular momentum
along the intermediate axis over our default integration period of 100
SOS-crossings, agreeing with the aforementioned works done by
other groups. However, some of the orbits integrated for the N-body
models do show y-rotation for a limited time-span. When providing
SMART with artificial projected input LOSVDs that mimic a net
rotation along the intermediate axis, the model is able to produce
a y-rotation signal of the order of 10 km s−1 in the fit. A rotation
of this magnitude is small but in principle detectable with today’s
telescopes’ resolution. Fig. 15 shows the SMART fit to the major-
axis projection of the simulation (cf. Fig. 3) when assuming the
viewing angles of the minor-axis projection. With this, we simulate a
hypothetical rotation along the intermediate axis. The top row shows
the velocity- and h3-map when stopping the orbit integration after 2
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Figure 15. Fitting mock kinematic input data containing intermediate axis
rotation. When modelling artificial LOSVDs showing a net rotation along
the intermediate axis, SMART is able to reproduce a y-rotation signal when
integrating the orbits for a limited integration time of 2 Gyr (first row). The
y-rotation becomes visible in the v (left-hand panel) and h3 (right-hand panel)
maps. When integrating for 1000 SOS-crossings (second row), the y-rotation
signal cannot be fitted by the model any more.

Gyr if this is shorter than the time needed for 100 SOS-crossings.
Indeed, the model reproduces a y-rotation signal. The amplitude
of this residual y-rotation becomes smaller and smaller when the
orbital integration time is increased, and vanishes when all orbits are
integrated for 1000 SOS-crossings (bottom row).

This analysis indicates that the model’s triaxial potential, which is
constructed based on the 3D density from the realistic N-body merger
simulation – contrary to expectations – contains orbits with y-rotation
for a physically relevant time span. What remains unclear at this
moment is whether such a y-rotation indeed appears in real elliptical
galaxies. If so, then the connection between kinematic misalignments
and photometric twists is less constrained than often assumed when
only rotation around the intrinsic long and short axes is considered.

7 D ISCUSSION

7.1 Remaining sources of systematics

All relevant properties of the simulated merger remnant galaxy were
proven to be recovered with a convincing precision and the deviations
we found are almost negligible. The remaining deviations (in the
∼ 5 − 10 per cent level) can be either originated by SMART or the
simulation. One remaining contribution to the scatter in the final
mass recovery certainly comes from the finite binning resolution of
the simulation data and of the SMART models (see Sections 2 and 3).
Especially, the need of extrapolating the density towards the centre
due to limited resolution of the simulation holds uncertainties.

One more inaccuracy is potentially induced by the softening length
in the simulation used to avoid unrealistic two-body encounters
between massive particles. Force calculations for radii smaller than
the softening length are consequently modified by the softening.
In the close vicinity of the black hole, the stellar particles in the
simulation are modelled using a non-softened algorithmic chain
regularization technique (ARCHAIN; Mikkola & Merritt 2006,
2008) including post-Newtonian corrections (e.g. Will 2006). The

particles outside this chain radius are treated by using softened
gravitational force calculations based on the GADGET-3 (Springel
2005) leapfrog integrator. The chain radius rchain is chosen to be
at least 2.8 times larger than the GADGET-3 softening length ε

(rchain > 2.8ε) to ensure that the particles within the chain remain
non-softened. The softening length in the simulation for the stellar
particles is ε∗ = 3.5 pc and the softening length for the dark matter
particles is εDM = 100 pc. The mass recovery of the global stellar
mass-to-light ratio and dark matter scale factor will be unaffected by
these relatively small values. However, there might be a remaining
influence on the black hole mass recovery within rSOI. Nevertheless,
this effect is expected to be small.

7.2 Comparison to other triaxial Schwarzschild models

We found two other dynamical modelling codes in the literature
using Schwarzschild’s orbit superposition technique dealing with
triaxiality by van den Bosch et al. (2008) and Vasiliev & Valluri
(2019). The code FORSTAND by Vasiliev & Valluri (2019) is
applicable to galaxies of all morphological types. When assuming
that the deprojection and dark matter halo is known and provided
to the code, the models of noise-free axisymmetric disc mock data
sets taken from N-body simulations showed very weak constraints
on MBH: any value between zero and 5–10 times the true black hole
mass was equally consistent with the data. Read from fig. 2 in their
paper, the stellar mass-to-light ratio showed a variation of around
20 per cent.

Jin et al. (2019) tested the triaxial Schwarzschild code by van
den Bosch et al. (2008) by applying it to nine triaxial galaxies from
the large-scale, high-resolution Illustris-1 simulation (Vogelsberger
et al. 2014), which provides a stellar and dark matter resolution
of ∼106M�. When fixing the black hole mass and allowing the
model to deproject the mock data set, the stellar mass within an
average effective radius is underestimated by ∼24 per cent and the
dark matter is overestimated by ∼38 per cent. Their averaged model
results obtained from mock data with different viewing angles tend
to be too radial in the outer regions with better anisotropy matches
in the inner region.

Of course, these results cannot be used for direct comparison due
to a widely varying resolution and in case of the analysis by Jin
et al. (2019) the deprojection probably causes the major deviation.
However, SMART for sure is able to add further progress in modelling
triaxial galaxies and convinces with its proved precision.

8 SU M M A RY A N D C O N C L U S I O N

We have developed a new triaxial dynamical Schwarzschild code
calledSMART and tested its efficiency and reliability by applying it to
an N-body merger simulation including SMBHs. The simulation was
deliberately selected due to its high accuracy, reasonable formation
process, realistic internal structure and ability to precisely calculate
the dynamics close to the central black hole. This ensured the possi-
bility to check whether SMART is able to recover all relevant proper-
ties including the mass of an SMBH of a realistic triaxial galaxy when
providing the deprojected light profile and normalized DM halo.
SMART is assembled with the feature to compute the potential and

force by expansion into spherical harmonics, allowing to deal with
non-parametric densities and haloes. Its orbit library contains 50000
integrated orbits that are set up by creating random initial radial and
velocity values within given energy shells and angular momentum
sequences and by filling the surfaces of section. This ensures the
ability to adapt itself to a radially changing number of integrals
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of motion. The orbit superposition is executed by maximizing an
entropy-like quantity and by using the full LOSVDs instead of only
Gauss–Hermite parameters alone.

These benefits enable SMART to reconstruct all relevant properties
and features of the merger remnant with an excellent precision. We
will now recap the requirements that were set on SMART and proved
to be fulfilled in this analysis:

(i) SMART is able to reproduce the anisotropy profile and internal
velocity dispersions with an rmsσ of only 1.2 per cent.

(ii) SMART reproduces the stellar mass-to-light ratio; black hole
mass; and mass scale factor of the dark matter density profile
with a precision on the 5–10 per cent level. To our knowledge,
this is the first time that the intrinsic precision at given de-
projected light profile has been quantified to be so high. This
sets the basis for further investigations of the whole modelling
procedure.

(iii) SMART well fits the LOSVDs with mean values
and deviations of only v̄ = (0.11 ± 2.09) km s−1, σ̄ = (309.75 ±
2.54) km s−1, h̄3 = 0.00 ± 0.01 and h̄4 = 0.01 ± 0.01.

For the determination of these accuracy values, the simulation is
modelled from up to five different projections. The mass recovery
precision can be achieved for noiseless as well as noisy and psf
convolved kinematic input data.

We extensively discuss that the maximum-entropy technique
provides an elegant technique to study the range of possible orbit
distributions consistent with a given set of data. Our tests with
the N-body data and with additional toy models strongly suggest
that when the full information contained in the entire LOSVDs is
used to constrain the model, then the remaining degeneracies in the
recovery of the exact phase-space distribution function do not affect
‘macroscopic’ properties of the galaxy models, like the anisotropy
in the second-order velocity moments. This is the basis for the very
good reconstruction of the orbital structure and mass of the black
hole and stars with SMART.

It was shown that the orbit library is robust against axis changes
and generates a complete set of well superpositioned orbits necessary
to model a triaxial galaxy with all corresponding internal structures.

Also the accurate mass parameter recovery accomplished by
SMART suggests only minor degeneracies contained in the projected
kinematic data, provided that the deprojection is known. We showed
that these remaining minor degeneracies could in principle be
narrowed even more if information about the orbital bias factors
from a second projection direction were provided.

When analysing the elevation and azimuthal internal velocity
distributions of the simulation we find that the central radial bins
show two maxima. This corresponds to the negative h4-parameter in
the centre and the strong tangential anisotropy produced during the
core formation. SMART is able to reconstruct this phenomenon with
an accuracy of ∼ 7 per cent.

One more discovery of scientific interest is intermediate axis
rotation which is produced by orbits contained in the model’s orbit
library representing the simulation’s triaxial potential. Independent
of the question whether such intermediate axis rotation really appears
in the real universe, it was shown that our model contains orbits with
y-rotation whose stability was empirically found to be maintained up
to at least 2 Gyr.
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Röttgers B., Naab T., Oser L., 2014, MNRAS, 445, 1065
Schechter P. L., Gunn J. E., 1978, AJ, 83, 1360
Schwarzschild M., 1979, ApJ, 232, 236
Schwarzschild M., 1993, ApJ, 409, 563
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APPENDI X A : SURFAC E BRI GHTNESS,
ELLI PTI CI TY, AND POSI TI ON ANGLE
PROFILE

When fitting elliptical isophotes (Bender & Moellenhoff 1987) to
the surface brightness maps for the principal axis directions of the

Figure A1. Surface brightness (first row), ellipticity (second row), and
position angle profile (third row) for the major- (black), intermediate- (red),
and minor-axis (green) projections of the simulation plotted against the
semimajor axis a of the elliptical isophotes. The simulation demonstrates
to be generic triaxial.
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simulation in units of stellar simulation particles one can see that all
three projections differ in their surface brightness (SB) and ellipticity
profile (ε = 1 − b/a with a being the semimajor and b being the
semiminor axis of the elliptical isophotes). The position angle (PA)
profile shows some isophotal twists. Overall, the simulation appears
to show typical triaxial behaviour (see Fig. A1).

APPENDI X B: V ELOCI TY, SURFAC E
BRI GHTNESS, AND χ2 MAPS

Figs B1 and B2 show the velocity maps of the kinematic input data
and their fits by SMART for four different projection axes and an
additional psf convolved version of the intermediate axis. The plots

Figure B1. Velocity and surface brightness maps of the simulation (top row) as well as velocity maps of the model and χ2 map as deviation from the kinematic
input data with the modelled fit (bottom row) for different projections. The individual projection axis can be read from the title (for the major axis projection
and a more detailed caption description see Fig. 3).
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Figure B1 – continued

Figure B2. Velocity and surface brightness maps of the simulation (top row) as well as velocity maps of the model and χ2-map as deviation from the kinematic
input data with the modelled fit (bottom row) for the noisy and psf convolved intermediate axis projection (for a more detailed description, see caption in Fig. 3
and Section 4.5.1).

also contain surface brightness maps in form of stellar simulation
particles and χ2-maps as deviation between the simulation data and
modelled fit. As already described in Section 4.1 one can see that
SMART manages to fit the kinematic input data independent of the
chosen projection.

APPENDIX C : O RBITAL REPRESENTATIO N O F
THE PHASE SPAC E

For generating our orbital initial conditions we set up energy shells
by calculating the maximum allowed potential energy for NE radii
between the minimum allowed pericenter chosen to be rperi,min =
rmin and the maximum allowed apocenter of rapo,max = rmax. The
radial bins are sampled by using formula 4. Each energy shell iE ∈
[1, NE] is then subdivided in iE(Lz) sequences. We empirically find
iE(Lz) = i2

E as appropriate choice for the number of sequences per
energy shell. The orbits for a specific sequence share the same initial
z-component of the angular momentum Lz,iE . These Lz,iE sequences
are logarithmically sampled between the minimum and maximum

allowed Lz-value in dependence of the radius r(iE) of the specific
bin.

The final orbital initial spatial conditions (ri, θ i, φi) are then given

(i) by randomly sampling azimuthal angles φi ∈ [0, 2π ],
(ii) by setting the elevation angles θ i = 0 because every orbit

crosses the equatorial plane, and
(iii) by randomly sampling possible radial values ri be-

tween the minimum and maximum allowed apsis, i.e. ri ∈[
rperi(Lz,iE ), rapo(Lz,iE )

]
.

While sampling the energy as an integral of motion is straightforward,
the sampling of Lz is an arbitrary way to qualify the azimuthal
velocity vφ as the parameter we actually want to sample. In analogy,
one could also sample the elevation velocity vθ in terms of the
x-component of the angular momentum Lx, which is discussed in
more detail in Section 4.5.4. The computation of rperi(Lz,iE ) and
rapo(Lz,iE ) is thereby done under the wrong assumption that Lz,iE was
conserved. Strictly speaking, this is only true for an axisymmetric
potential as limiting case. However, our tests above show that this
does not bias the results obtained with our orbit library. The remaining
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1458 B. Neureiter et al.

Figure C1. Orbital Phase-space coverage in the x − y plane. We here plot the normalized velocity components vx, vy of all orbits in a single energy shell. This
includes the orbital starting points (thick dots) as well as SOS-crossings during the time evolution of the orbits (thin dots). To consider all five dimensions of our
starting space we distinguish between several radial and azimuthal annulus sectors of the plane (the chosen radial and azimuthal intervals are labelled above the
individual panels). The orbit library produces a representative coverage of the phase space because the orbital imprints homogeneously fill the area enclosed by
the unit circle.

initial velocity conditions (vr, i, vθ , i, vφ, i) can then be subsequently
computed as

(i) vφ,i = Lz,iE

ri
,

(ii) vr, i ∈ [0, vr, max ] with vr,max =√
2 (E − � (ri , θi = 0, φi)) − v2

φ,i , where E is the total energy and

� the potential and

(iii) vθ,i =
√

2 (E − � (ri , θi = 0, φi)) − v2
φ,i − v2

r,i .

More initial conditions are generated by filling the surfaces of
section (SOS; Henon & Heiles 1964; Richstone 1982). The surface
of section, also called Poincaré section, consists of the ri- and vr, i-
values of the orbits crossing the equatorial plane, i.e. θ i = 0, in
upwards direction. The topology of the SOS depends on the integrals
of motion. The orbit library representatively fills the phase-space if
the SOS is properly filled. For this, we randomly generate azimuthal

angles φi which get divided in Nsector azimuthal sectors. For each
azimuthal sector, we then sample (ri, vr, i)-tuples that are chosen so
that their distance to the nearest imprint-tuple is maximized. The
remaining initial conditions vφ, i and vθ , i are generated as before. To
create a homogeneous distribution of pro- and retrograde orbits, the
orbits contained in the library which are later on classified as regular
orbits (see Section 2.3.1) get duplicated by changing the sign of their
direction of rotation.

For an illustration of our 5D starting space of the stellar orbits
in Fig. C1, we show a series of 2D plots with velocity spheres
on annulus sectors (chosen radial and azimuthal sections) in the
equatorial plane (i.e. θ = 0). Since the magnitude of the velocity

vector
√

v2
x + v2

y + v2
z is determined by the energy E, it is sufficient

to plot vx, vy-imprints for a certain energy shell (the remaining
vz-component is then given as velocity shell in dependence of the
value of E). We show both, the velocity components vx, vy of the
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Triaxial orbit models 1459

Figure C1 – continued

orbital initial starting point (marked as thick dots) as well as the
orbital imprints for every crossing event in the subsequent time
evolution (thin dots). The velocity components are normalized by
vmax(r, θ, φ) = √

2(E − �(r, θ, φ)), with � being the gravitational
potential. The different colours correspond to the different orbit
types. Fig. C1 shows that the orbits of our orbit library homoge-

neously represent the accessible phase space. A sufficient coverage
of the phase space is crucial for a reliable model. In addition, one can
see that the actual starting points of the orbits can be chosen in very
different ways. Our random choice is only one possibility that leads
to an appropriate phase-space representation. Most of the space gets
automatically filled by the orbital imprints over time.
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Figure C1 – continued

APPENDIX D : O PTIMIZATION A LGORITHM
AND TEST

To find the unique set of orbital weights that maximizes Ŝ our code
conceptionally seeks for a solution

∇wŜ = 0, (D1)

subject to the constraints (19).
Technically, we follow Richstone & Tremaine (1988) and treat the

orbital weights w and the kinematical model predictions

�y ≡ �Ldata − �Lmod (D2)

as independent variables. The actual dependence �y = �y( �w) (equa-
tion 16) is added to the constraints.

Thus, let

�x ≡
( �w

�y
)

(D3)

be the Norbit + Ndata new variables, then the model solves

∇x Ŝ − CT · λ = 0 (D4)

for the xi and for Ndata + Nphot Lagrange multipliers λj (combined in

the vector �λ). The matrix

C ≡
(

Porb 0
Lorb 1

)
(D5)

contains the constraint equations( �pdata

�Ldata

)
= C · �x. (D6)

Equation (D4) is non-linear and solved with a Newton method:

�x(n+1) = �x(n) −
(

dg

dx

)−1

�g, (D7)

or,

��x(n) = −
(

dg

dx

)−1

�g, (D8)

where

g ≡ ∇x Ŝ − CT · λ. (D9)
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Triaxial orbit models 1461

Figure D1. Recovery of the orbital weights of the RANDOM test model
described in Section D. Each dot represents one orbit with the colour
indicating the number of LOSVD data points Nconstraints that the orbit
contributes to. For the recovery of the weights we fitted the kinematics of
the RANDOM model using our fiducial constant bias factors ωi = const.
(Shannon entropy). Due to the degeneracy in the χ2 minimization, the
recovered orbital weights differ from the original weights. Larger differences
are observed for orbits which are less constrained by data (blue points).

At each iteration, the Lagrange multipliers are updated via (D6),(

 �pdata


 �Ldata

)
= C · 
�x, (D10)

which leads to

A · �λ =
(


 �pdata


 �Ldata

)
+ C ·

(
dg

dx

)−1

· ∇x Ŝ, (D11)

A ≡ C

(
dg

dx

)−1

CT. (D12)

The Jacobian dg
dx is diagonal and its inverse is easy to compute.

The only matrix that needs to be inverted numerically is A and its
dimension is Ndata + Nphot < Norbit.

Modulo the scaling by ( dg
dx )−1, A reads

A =
(

Porb Porb
T Porb Lorb

T

Lorb Porb
T Lorb Lorb

T + 1

)
. (D13)

The required linear algebra operations are implemented through the
LAPACK library (Anderson et al. 1999).

In practice, to find the best-fitting orbit model, we start with a very
small value α0 and then iteratively increase α until χ2 does not change
anymore. Everytime we change α → α + dα the unique solution
to equation (7) will shift slightly from �w to �w + d �w in the space of
the orbital weights. Because f ≡ −Ŝ is differentiable with respect
to α we can keep the new solution �w + d �w in an arbitrarily small
neighbourhood around �w by limiting dα accordingly. For strictly
convex f, the Newton method converges locally (and the convergence
is quadratic). This means that once we have found a solution for some
value of α, the convergence of the Newton steps for neighbouring α

+ 
α is guaranteed (and fast) if we use the solution at α as starting
point for the search at α + 
α: it is only a question of limiting

α, if necessary. In this way, we can iteratively solve for any value
of α starting from α0. In practice, we increase α by a factor of 2
in each iteration. Intermediate steps with a smaller α increment are
inserted in case an iteration has not converged (which almost never
happens).

At the initial α0 we start from a homogeneous distribution of orbital
weights. Methods with guaranteed convergence even from starting
points outside of the constraint conditions have been developed.
We do not use such methods, because in practice we always find
the solution of equation (D4) even from an initially homogeneous

Figure D2. Same as Fig. D1, but here we fitted the RANDOM model using ωi

= exp(1)·wi , ran. With these bias factors the unique maximum of equation (7)
should occur at the original weights wi, ran of the RANDOM model. And
indeed, even though we start the fit with an initial guess where all the
weights are equal, the true solution is reproduced with very high precision.
This demonstrates the robustness and high accuracy of our optimization
algorithm. The two different fits presented here and in Fig. D1 illustrate
how the maximum entropy technique with variable ωi can be used to sample
different solutions that minimize the χ2.

Figure D3. Internal velocity structure of the two fits presented in Fig. D1
(black lines) and D2 (red lines). Despite the different orbital weight distribu-
tions, the anisotropy in the second-order velocity moments is almost equally
well recovered in both cases. This provides evidence that when using the full
information contained in the entire LOSVDs, the remaining degeneracies in
the recovery of the distribution function of triaxial galaxies (i.e. the differences
in the detailed population of the various orbits) have only little impact on the
‘macroscopic’ internal galaxy properties like the anisotropy β. This, in turn,
is crucial for a precise mass reconstruction.

distribution of orbital weights. Since the solution is global and unique
for each α, convergence at any step of the α sequence can be tested
based on equation (D4) itself.

To test our implementation, we reconstruct the kinematical data
of a toy model with randomized orbital weights. The toy model is
constructed as a maximum-entropy model [i.e. through maximization
of Ŝ in equation (7) with α = 0]. The bias factors ωi for the
orbital weights are set to ωi = 10ri , where ri ∈ [0, 3] are random
numbers. After maximization of Ŝ subject to the density constraints,
the resulting orbital weights wi satisfy the density constraints of
the N-body simulation. Due to these density constraints, the wi are
not directly proportional to the random ωi, yet they are still very
strongly affected by them and thus we call this toy model with
randomised orbital weights RANDOM in the following. We adapt
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1462 B. Neureiter et al.

rperi,min = rmin = 0.05 kpc and rapo,max = rmax = 21 kpc. If an orbit
conserves the sign of at least one angular-momentum component,
then this orbit has a duplicate companion orbit with opposite direction
of rotation in the library (this concerns tube orbits and spherical
orbits; see also Section C). Let i+ and i− denote the orbital indices of
such a pair of orbits, where i+ refers to the orbit with initial velocity
components vr, vθ , vφ > 0. To increase the degree of difficulty for
reconstructing the RANDOM model, we modify the weights of orbits
in such a pair:

wi+,ran = (1 − cw) · (wi+ + wi− ),

wi−,ran = cw · (wi+ + wi− ). (D14)

By using cw = 10−3, equation (D14) leads to increased weights
wi+,ran and almost eliminated weights wi−,ran, corresponding to an
internal rotation of the model (see also Thomas et al. 2007). We then
modelled the LOSVDs of the major axis projection of this RANDOM
toy model with SMART in order to test our solver algorithm for the
orbital weights.

Because the χ2 minimization is non-unique (cf. Section 5), the
solution of equation (7) will in general not occur at the true weights
wi,ran of the RANDOM model. We therefore tried two different con-
figurations: (i) we used the default orbital bias factors ωi = 1 (Shan-
non entropy) and (ii) we set ωi = exp(1)·wi , ran. In the second case, we
push the maximum entropy solution towards the original, randomly
generated weights. Only in this case, we can predict the location of the
global solution analytically and test our implementation rigorously.
For ensuring fair conditions we set the initial weights to wi, ini = 1 in
both cases when we start the minimization. An efficient optimization
algorithm should be able to find two equivalent degenerate solutions,
one for case (i) and a different one for case (ii). The true orbital
weights of the RANDOM model should be recovered (only) in the
latter case.
SMART is indeed able to fit the input data for both cases very

well. We stopped the minimization at χ̄2 = 2 × 10−9 for ωi = 1
and χ̄2 = 5 × 10−9 for ωi = exp(1) · wi, ran. Fig. D1 shows the
comparison between the true orbital weights of the RANDOM model
and the recovered weights when using ωi = 1 (case (i) above). As
expected, these weights differ from the RANDOM weights, since the

χ2 minimization and, hence, the recovery of the entire phase-space

distribution function, is non-unique. Orbits that contribute to a larger
number of LOVSD data points and, in turn, are better constrained
by the data have fitted weights that tend to be closer to the true
ones. Fig. D2 shows the orbital weights of the input model and
the modelled fit using ωi = exp(1)·wi , ran. As explained above, in
this case we expect the recovered solution to exactly match with
the RANDOM model. Fig. D2 demonstrates the high quality of our
solver algorithm since the fitted weights indeed match exactly with
the RANDOM weights (
w̄ = 4 × 10−9).

The two different fits presented in Figs D1 and D2 illustrate how
the maximum entropy technique with variable ωi can be used to
sample different solutions that are equivalent with respect to the χ2

minimization.
In Fig. D3, we compare the ‘macroscopic’ internal velocity

structure of these two fits. Even though the detailed population of the
orbits (i.e. the exact phase-space distribution function) of both models
differ, they both reproduce the internal moments of the RANDOM
model very well (rmsσ = 5 × 10−3 for ωi = 1 and rmsσ = 3 × 10−5 for
ωi = exp(1)·wi , ran). As further discussed in Section 5, this suggests
that when fitting the full LOSVDs the remaining degeneracies in the
recovery of the distribution function of a triaxial galaxy (with known
normalized densities) show only little effect on the ’macroscopic’
galaxy parameters of interest.

APPENDI X E: O RBI T FRAC TI ON R ECOV E RY
W H E N T E S T I N G TH E U N I QU E N E S S O F TH E
ANI SOTRO PY RECOVERY

We here show the remaining orbit fraction recovery plots for the
analysis described in Section 5.2. The recovery of the z-loops was
already shown in Fig. 14 of that section.

Here, we plot the recoveries of the fraction of orbits classified
as x-loops (see Fig. E1), box/chaotic orbits (see Fig. E2) as well as
spherical/Kepler orbits (see Fig. E3). Independent of the line of sight
(different rows) or chosen entropy method (black lines), the orbit
class fractions of the individual input toy-models (different rows) are
well recovered.
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Triaxial orbit models 1463

Figure E1. Recovery of the x-loop orbit fractions of different input toy models by models with different entropy methods. We here show the same analysis as
in Figs 13 and 14 but now for the reconstruction of the fraction of orbits classified as x-tubes. Independent of the tested projection, the x-loop fractions of the
individual input toy models are well recovered by the models using different entropy methods.
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Figure E2. Recovery of the box/chaotic orbit fractions of different input toy models by models with different entropy methods. For a more detailed caption
description see Figs 13 and E1.
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Figure E3. Recovery of the spherical/Kepler orbit fractions of different input toy models by models with different entropy methods. For a more detailed caption
description see Figs 13 and E1.
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