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Abstract. The significance of having detected an astrophysical gamma ray source is usually calculated by means of a formula
derived by Li & Ma in (1983). We solve the same problem in terms of Bayesian statistics, which provides a logically more
satisfactory framework. We do not use any subjective elements in the present version of Bayesian statistics. We show that for
large count numbers and a weak source the Li & Ma formula agrees with the Bayesian result. For other cases the two results
differ, both due to the mathematically different treatment and the fact that only Bayesian inference can take into account prior
knowldege.
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1. Introduction

Consider an astronomical gamma ray observation aiming to
detect a source. The existence of a source in a so-called on-
region is judged by the count number Non originating from that
region. The counts in it are due to a possible source and the
background. The latter is determined by the count number Noff

in some off-region. It must be chosen in such a way that one
can exclude a priori that it contains a source. Hence, we use
a physically motivated choice of on- and off-regions and not a
blind search. One also knows the expected ratio α of the count
numbers if there is no source in the on-region. The number α is
given by the ratio of the sizes of the two regions, the ratio of the
exposure times for both regions and the respective acceptances:

α =
κon · ton · Aon

κoff · toff · Aoff
· (1)

Given (α, Non, Noff) the question is how significantly a possible
source has been detected. A positive identification obviously
requires Non > αNoff . Li & Ma (1983) discuss several possi-
ble estimates of the significance. Estimating it as the ratio of
excess counts above background to the background’s standard
deviation yields (Li & Ma 1983, Eq. (5))

S LM 1 =
Non − αNoff√
Non + α2Noff

· (2)

However, one could as well argue that the desired measure
of significance should correspond to the probability that all
counts were due to the background. That yields (Li & Ma 1983,
Eq. (9)):

S LM 2 =
Non − αNoff√
α(Non + Noff)

· (3)

Li & Ma argue that for α < 1, S LM 1 underestimates the signifi-
cance, S LM 2 overestimates it. They finally advocate the signif-
icance S LM (Li & Ma 1983, Eq. (17)) in the form

S LM =
√

2


Non · ln




(1 + α) Non

α (Non + Noff)




+Noff · ln
(

(1 + α)Noff

Non + Noff

) 

1/2

· (4)

As a function of the random variables Non and Noff this is itself
a random variable. If no source is present this variable is nearly
normally distributed even for small count numbers (according
to the authors for Non, Noff � 10). For a single measurement
(given by the numbers α, Non and Noff) one can interpret S LM

as statistical significance. The argument of Li & Ma hinges on
the fact that S LM has a normal distribution. They have tested
this by Monte Carlo methods.

In the present paper we define and evaluate the signifi-
cance S B of the existence of a source in terms of Bayesian
statistics. We do so for several reasons.

– We consider Bayesian statistics to provide a logically more
satisfactory inference than the arguments of classical statis-
tics used by Li & Ma.

– Bayesian significance does not leave a choice between sev-
eral definitions of significance. We do not consider the prior
distribution to be a subjective element in statistical infer-
ence, nor do we take it to be uniform either. Rather we de-
fine it by a formal rule which is based on a symmetry prin-
ciple. This may be called an objective Bayesian approach.

– Bayesian statistics do not require a random variable that has
an approximately normal distribution. Bayesian inference
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is therefore valid for any count number. It does not require
verification by Monte Carlo methods.

The classical significance S LM and the Bayesian signifi-
cance S B do not have the same meaning. The first expresses
a probability that the assumption “there is no source” conflicts
with observation. The corresponding test function can be de-
fined in various ways. The second expresses the probability that
the intensity of the source is larger than zero. This probability
is taken from a posterior distribution of the intensity parameter,
which is a well-defined result of Bayesian inference. Although
the two quantities do not have the same meaning, we compare
the numerical values because the application of Bayesian statis-
tics is not common practice and there is a limiting situation in
which both values agree. It occurs in the frequent case when
the source is weak and the count numbers are high.

2. Basics of Bayesian statistics

2.1. Problems depending on one parameter

Bayesian statistics provides a way to infer physical parameters
from observed data. The dependence of the observed quantities
on the parameters is statistical. Hence, it is described in terms
of probability distributions. In the following we shall use the
Poisson distribution

pP(n|λ) = λ
n

n!
e−λ (5)

and the binomial distribution

pB(n|λ; N) =

(
N
n

)
λn(1 − λ)N−n. (6)

The parameter is a real number λ, the observed datum is a
whole number n. In order to derive the parameter, the condi-
tional distribution p(n|λ) must be proper so that
∑

n

p(n|λ) = 1. (7)

The Poisson and the binomial models are proper. The probabil-
ity for the parameter to have the value λ is found by means of
Bayes’ theorem1:

P(λ|n) =
p(n|λ) µ(λ)

∫
p(n|λ′) µ(λ′) dλ′

· (8)

The posterior distribution P(λ|n) contains the information one
can deduce from the data. It is a distribution of the parameter
given the data whereas the model p(n|λ) is a distribution of the
data given the parameter.

Bayes’ theorem does not determine the so-called prior dis-
tribution µ(λ) in Eq. (8). However, demanding in addition a
symmetry for the model yields the prior distribution: in order
to ensure an unbiased inference of λ in the sense that the in-
formation obtained on λ does not depend on the actually true
value of λ, one demands that the distribution is form-invariant.
This means that there is a group of transformations that relates

1 For improper models the prior distribution needed in Bayes’ the-
orem is not defined.

the observable n to the parameter λ. The measure of the group
can then be identified with the prior distribution in Eq. (8), see
Harney (2003, Chap. 6). The measure of the group is obtained
by “Jeffreys’ rule” (see Jeffreys 1961, Chap. 3):

µ(λ) =
〈
(∂λ ln p(n|λ))2

〉1/2

p
. (9)

Here, 〈 f (n)〉p denotes the expectation value of f with respect
to the distribution p. For the evaluation of the right hand side
of Eq. (9), see Sect. A. Under a transformation of the parame-
ters, the measure transforms with the Jacobian of the transfor-
mation, so that any derived probabilities are not affected by a
reparameterization. The measure µ is not necessarily a proper
distribution. One must only demand that the normalizing in-
tegral in Eq. (8) exists and thus the posterior distribution is
proper.

One is usually interested in an error interval for the derived
value of the parameter λ. It can be constructed as a Bayesian
interval: Given a preselected probability K, it is the shortest
interval [λ1, λ2] for which
∫ λ2

λ1

P(λ|n) dλ = K. (10)

It can be shown (see Harney 2003, Chap. 3) that if the Bayesian
interval is unique, it is defined by some constant C(K) such that
the interval contains the points for which

P(λ|n)
µ(λ)

> C(K). (11)

With (8) one sees that C(K) is the level of a contour line of the
model p(n|λ) taken as function of λ.

For the problem at hand we need the probability that the
Bayesian interval excludes some lower bound λmin. This can
be calculated from the posterior distribution in two steps:

– Find the corresponding Bayesian interval. The lower bound
is λmin, the upper bound λup > λmin is found by solving the
equation:

p(n|λup) = p(n|λmin). (12)

– The probability is then

K(λ > λmin) =
∫ λup

λmin

P(λ′|n) dλ′. (13)

As any K bigger than that would yield a Bayesian interval that
includes λmin.

For K close to unity it is handy to express it in a differ-
ent, highly non-linear scale, which we call significance S . The
conversion is done by

erf

(
S√

2

)
= K(λ > λmin), (14)

where the error function is defined by

erf

(
S√

2

)
=

1√
2π

∫ S

−S
e−x2/2 dx. (15)

This yields the significance in the Bayesian context. Note that
the term significance is used here in a sense that can be read
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as “if the posterior distribution were Gaussian, the probabil-
ity would correspond to S standard deviations”. A short-hand
form of that is “the significance is S sigma”. It is not required
that the posterior distribution is Gaussian. However, the defini-
tion (14) is motivated by the fact that for large count numbers
the posterior distribution does approach a Gaussian.

The error function in Eq. (15) is odd. For sufficently large S
it can be approximated by

erf

(
S√

2

)
≈ 1 −

√
2
π
· 1

S
· exp

(
−S 2

2

)
, (S 2 � 1, S > 0). (16)

2.2. Reducing multi-parametric problems

The appropriate model may depend on more parameters than
are interesting. That means that one has to integrate over
the uninteresting parameters. The question arises whether one
should integrate first and apply Bayes’ theorem then or if the
integration should be performed after the application of Bayes’
theorem. The second way (obtaining the full posterior distribu-
tion first and integrating afterwards) does not provide the mea-
sure of the interesting parameters only, although this measure is
needed to find the Bayesian interval via Eq. (11). This difficulty
is related to the marginalization paradox2 (Dawid 1973).

Thus it is reasonable to go to a minor model before ap-
plying Bayes’ theorem. If the final minor model has only one
parameter, one can apply the methods from Sect. 2.1.

The minor model which one constructs by integration shall
be invariant under a transformation of the integrated parame-
ters. Thus one needs the conditional measure in the integration
kernel. It is obtained by Jeffreys’ rule if one considers the in-
teresting parameters as fixed. The minor model q(n|λ1) for a
model p(n|λ1, λ2) is thus given by

q(n|λ1) =
∫

p(n|λ1, λ2)µ(λ2|λ1) dλ2. (17)

3. Solution by means of Bayesian statistics

The expected count number λon in the on-region is due to both
background counts and the possible existence of a source. With
the expected count number λoff in the off-region and the ex-
pected count number λs from the source, one has

λon = αλoff + λs, (18)

since the expectation values linearly depend upon the
intensities.

3.1. The problem in its original parameters

The probability of observing Non and Noff given the indepen-
dent parameters λon and λoff is the product of the Poisson
distributions:

p0(Non,Noff |λon, λoff) = pP(Non|λon) · pP(Noff |λoff). (19)

2 Even if the full measure factorizes into two factors, one depending
only on the interesting parameters and the other only on the uninterest-
ing ones, the factors need not be meaningful measures for the minor-
dimensional problem (Bernardo 1979). An example can be found in
Harney (2003, Chap. 12.1).

From this distribution one wants to infer the confidence level
to which λs = 0 can be excluded. Hence, λs must be one of
the parameters of the model. Going to the parameters (λs, λoff)
does not change any of the measures, as the transformation
(Eq. (18)) has the Jacobian 1. One only has to read λon

as λon(λs, λoff). The parameter λoff is not interesting, and one
has to integrate over it as discussed in Sect. 2.2. Thus the natu-
ral choice seems to be

q0(Non,Noff |λs) =
∫

p0(Non,Noff |λs, λoff) µ0(λoff |λs) dλoff. (20)

The conditional measure µ0(λoff |λs) is calculated in Eq. (A.5).
Unfortunately q0 is an improper model since µ0 is not inte-
grable (see Sect. B). This problem is somewhat unexpected. It
is a consequence of the fact that the measure of the Poisson
model (see Sect. A.3) is improper.

3.2. Transformation to a proper model

However, a simple transformation circumvents the problem.
We define

Λ = λon + λoff ,

ω =
λon

Λ
,

N = Non + Noff . (21)

The parameter ω represents the fraction of the total intensity Λ
in the on-region and has the boundaries

ωmin =
α

1 + α
≤ ω ≤ 1. (22)

Since one is free to choose the units in which the intensities are
measured, the problem can only depend on the relative inten-
sities. This freedom of gauge becomes transparent in the new
parameters. The significance can only depend on ω, the total
count number N only on the uninteresting parameter Λ. When
one introduces the new parameters ω and Λ into Eq. (19) one
sees explicitly that they are independent, since the model p0

factorizes in the new parameters (see Eq. (C.1)) according to

p0(Non,Noff |λs, λoff) = pP(N|Λ) · pB(Non|ω; N)· (23)

The total count number is given by Poisson statistics, the sub-
divison of the counts into on- and off-regions given a cer-
tain ω is governed by the binomial distribution. Therefore we
infer ω from the binomial model only and consider the total
count number N as fixed. In other words, we do not normal-
ize pB(Non|ω; N) with respect to N. Then pB is proper. The
measure µB(ω) of pB is proper (see Eq. (A.4)):

µB(ω) =

(
N

ω(1 − ω)

)1/2

· (24)

3.3. Explicit solution

One can safely apply Bayes’ theorem to pB to obtain

P1(ω|Non; N) =
pB(Non|ω; N) · µB(ω)

N1
· (25)
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The normalizationN1 is

N1 =

∫ 1

ωmin

pB(Non|ω; N) · µB(ω) dω

=
√

N ·
Γ
(

1
2+Non

)
Γ
(

1
2+Noff

)
−N! · Bωmin

(
1
2+Non,

1
2+Noff

)

Non! · Noff!
,

(26)

where Bz(a, b) is the incomplete Beta function. Therewith the
posterior distribution is:

P1(ω|Non; N) =

N! · (1 − ω)(Noff−1/2) · ω(Non−1/2)

Γ
(

1
2 + Non

)
Γ
(

1
2 + Noff

)
− N! · Bωmin

(
1
2 + Non,

1
2 + Noff

) · (27)

For the calculation of the significance one needs the integral
over P1:

I1(ω) =
∫ ω

α
α+1

P1(v|Non; N) dv

=
N! ·

(
Bω

(
1
2+Non,

1
2+Noff

)
−Bωmin

(
1
2+Non,

1
2+Noff

))

Γ
(

1
2+Non

)
Γ
(

1
2+Noff

)
−N! · Bωmin

(
1
2+Non,

1
2+Noff

) ·

(28)

The probability that a source has been detected is given by
the probability that λs > 0. In the new parameters one wants
to determine the confidence level to which one can exclude
that ω equals its lower bound ωmin. Hence, one must solve the
equation

pB(ωup) = pB(ωmin). (29)

This cannot be solved analytically. However, one can prove that
for Non,Noff > 0 exactly one solution ωup � ωmin exists, since
the binomial model has then a single maximum and no minima
(see Sect. D)3. With ωup the significance is

S B =
√

2 · erf−1(I1(ωup)), (30)

where erf−1 is the inverse of the error function. Due to the
appearance of ωup one cannot evaluate Eq. (30) any further.
However, we can give a Mathematica script which calculates
the Bayesian significance S B in the described way (see Sect. F).
In Figs. 1 and 2 the Bayesian significance is compared to the
Li & Ma formula for a set of typical count numbers.

4. Large count numbers

4.1. Li & Ma

The procedure by Li & Ma is designed for the case of large
count numbers. This is explicitely mentioned in the their paper

3 If Non = 0, any Bayesian interval includes ωmin and one cannot –
with any probability – affirm the existence of a source. The case Noff =

0 entails a Bayesian interval including ω = 1. Then one cannot affirm
the absence of a source with any probability.
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Fig. 1. Comparison of S as a function of Non for α = 0.25, Noff =

2000. Significance S LM according to Li & Ma (circles) and Bayesian
significance S B (crosses).
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Fig. 2. Comparison of S as function of Non for α = 0.25, Noff = 2000.
The difference ∆S = S − S LM is shown for S = S B (dots) and the two
estimates S = S LM 1 (Eq. (2), triangles) and S = S LM 2 (Eq. (3), stars).

(Li & Ma 1983) and it becomes apparent if one reparametrizes
Eq. (4) in the following two variables:

NBG = αNoff (31)

r =
Non − NBG

NBG
· (32)

Here, NBG is the count number expected in the on-region when
no source is present and r is the ratio of excess counts to the
expected background. A positive significance requires r > 0.
Expressing S LM in the observables (NBG, r) gives

S LM =
√

2NBG

×
(
(1 + r) ln

(1 + r)(1 + α)
1 + α + αr

+
1
α

ln
1 + α

1 + α + αr

)1/2

·(33)

Hence, S LM grows proportional to
√

NBG as one would expect
for significance. The point is that no other dependencies on NBG

are present, as the rest of Eq. (33) depends on the ratio of r
and α only.
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4.2. Bayes

For the sake of comparison we must bring the Bayesian signif-
icance into the same form, such that its dependence on NBG is
the same as for S LM. That means that one has to take the limit
of large NBG.

We can approximate the posterior distribution (Eq. (27)) by
a Gaussian for large count numbers. The apparent advantage
is that this distribution can be treated analytically. The approx-
imation is done best in the parameter in which the measure
is uniform. Then the model and the posterior distributions are
proportional to each other. Inspecting Eq. (24) shows that this
happens for the parameter

φ = arcsin
(√
ω

)
. (34)

The approximation is calculated in Appendix E. Using φ0 =

arctan(
√

Non/Noff) the result is

P2(φ|Non; N) =
1
N2

√
2N
π

exp
(
−2N (φ − φ0)2

)
. (35)

If N2 = 1, then P2 is normalized in ] − ∞,∞[. The additional
normalization factor N2 is due to the limited definition region
of ω, which means that φ is limited to

φmin = arcsin
(√
ωmin

)
≤ φ ≤ π

2
· (36)

It is handy to define the probability K2 as if φ was defined on
the entire real axis:

K2 =

∫ φup

φmin

P2(φ|Non; N) dφ

∣∣∣∣∣∣N2 = 1
, (37)

The value of K2 is

K2 = erf
(√

2N (φ0 − φmin)
)
. (38)

The corresponding significance S 2 can easily be given as an
analytical expression:

S 2 = 2
√

N (φ0 − φmin)

= 2
√

N arcsin

√
Non − √αNoff√

(1 + α)N

= 2
√

NBG

√
1 + α + αr
α

arcsin

√
α + αr − √α√

(1 + α)(1 + α + αr)
· (39)

The actual factor N2 will differ from unity. It is found by the
condition

1 =
∫ π/2

φmin

P2(φ|Non; N) dφ. (40)

For large count numbers the relevant range of φ is close to
the position of the maximum, i.e. φ0. A crucial property of P2

is that it does not vanish at φmin. The value of φ0 is not far
from φmin. Therefore one can show that the upper limit of the
integration in Eq. (40) can be replaced by infinity, as the corre-
sponding correction vanishes exponentially with growing count
numbers. Then one obtains

N2 =
1
2

(1 + K2) . (41)

Note thatN2 is close to unity, and it is necessarily smaller than
unity. With the additional normalization factor N2 the integra-
tion over P2 gives the Bayesian probability KB in our approxi-
mation. Using the fact that (1 − K2) 	 1 one gets

KB =
1
N2

K2 =
2K2

1 + K2
=

1 − (1 − K2)
1 − (1 − K2)/2

≈
(
1 − (1 − K2)

) (
1 +

1 − K2

2

)

≈ 1 − 1 − K2

2
=

1 + K2

2
· (42)

Going to the significance scale we have

erf

(
S B√

2

)
=

1
2

(
1 + erf

(
S 2√

2

))
· (43)

Using Eq. (16) one gets

1
S B

exp


−

S 2
B

2


 ≈ 1

2
1

S 2
exp


−

S 2
2

2


 · (44)

Setting S B = (1+δ) S 2 and neglecting higher orders of δ yields

S B = S 2 ·

1 +

ln 2

S 2
2


 · (45)

The second term in this formula is due to the limited defini-
tion region of the source intensity parameter λ. With Eq. (39)
one sees that its contribution becomes negligible for large NBG

as it vanishes like 1/NBG. Then one simply has S B = S 2

which is plausible, as for large count numbers the distribution
will become more and more concentrated around its maximum
and therefore in the limit the definition region of the parame-
ter no longer has an effect. So S 2 is the Bayesian expression
which can be compared to the Li & Ma significance as given
in Eq. (33). Apparently Bayesian inference and classical statis-
tics also then yield different estimates for the significance.

5. Large count numbers and weak source

Typically, in gamma ray astronomy the detected sources are at
the limit of the instruments’ sensitivities. Therefore long ob-
servation times are common. Thus the typical case is a weak
source and large count numbers. The additional request of a
weak source is expressed by the condition r 	 1. In this limit
the two significances actually do agree.

5.1. Li & Ma

Expanding the result in Eq. (33) up to the second order with
respect to r at r = 0 gives

S LM ≈ r

√
NBG

α + 1

(
1 − 2α + 1

6 (α + 1)
r

)
. (46)

The expansion is done up to the order in which we encounter a
difference to the Bayesian significance. Equation (46) is useful
for small values of r. The first order term is sufficient if one
requires that the second order term is small compared to the
leading order. This gives the condition of how weak the source
must be in that case:

r 	 6 (1 + α)
1 + 2α

· (47)
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Fig. 3. Difference ∆S = S − S LM for α = 0.3, r = 1/3 as a function
of S LM. The significance S = S B (dots) is moderately higher than
the one given by Li & Ma (squares). The curve shows S = S B as
calculated from the approximation given in Eq. (49). Note that the
Bayesian procedure can only be evaluated for integer count numbers,
not allowing for a continuous coverage on the S LM-axis. The off count
number Noff varies from 0 to 2000 for S LM from 0 to 7.5.

5.2. Bayes

Expanding the Bayesian result for large NBG – hence S 2 in
Eq. (39) – up to the second order with respect to r at r = 0:

S B = S 2 ≈ r

√
NBG

α + 1

(
1 − 1

4
r

)
. (48)

The first order is sufficient if r 	 1/4.

5.3. Comparison

To first order in r, the formula given by Li & Ma agrees with the
Bayesian result. The difference between the two significances
is of second order in r:

S 2 − S LM = r

√
NBG

α + 1

(
1

12
α − 1
α + 1

r

)
. (49)

The numerical value of the fraction (α − 1)/(α + 1) is always
in [−1, 1]. Together with the factor 1/12 one finds therefore
that the relative difference in significance is typically an order
of magnitude smaller than the value of r. For α = 1 this relative
difference is of order r2. This shows that in the case of large
count numbers and a weak source the Bayesian result and the
formula given by Li & Ma are very close to each other.

Interestingly the correction due to the limited definition re-
gion (second term in Eq. (45)) is often numerically more im-
portant than the intrinsic difference between the two results as
given by formula (49). For the case of r = 0.1, α = 0.3 and a
typical significance of 3σ the difference according to Eq. (49)
is only of order 0.4%, whereas the limited definition region
changes the significance by 6.9%. The correction by the re-
stricted definition region is more important than the intrinsic
difference given by the mathematically different treatment as
long as

S 2 · r < 12 ln 2 ·
∣∣∣∣∣
α + 1
α − 1

∣∣∣∣∣ · (50)

This case is relevant since the actual limit of large count num-
bers is hard to reach and it quickly leads to significances which
are so high that one could not doubt the existence of a source.
If condition (50) is fulfilled the difference between the two sig-
nificances is dominated – technically speaking – by the defini-
tion region. The interesting point is that an unrestricted defini-
tion region would allow a source with negative intensity. Here,
physics tells us that a source can only increase the count num-
ber since the source does not interfere with the background.
In other words: an intensity always has a value ≥ 0. One sees
how Bayesian statistics allows us to take into account a-priori
knowledge via the definition region. In classical statistics a-
priori knowledge is not taken into account. Implicitely the in-
tensity parameter of the source is completey free in ] −∞,∞[.

6. Conclusions

The decision about a signal in the presence of background
has been considered by Li & Ma in the framework of classi-
cal statistics. We have presented the Bayesian treatment of the
same problem. This yields a complete solution which is not re-
stricted to large count numbers. The Bayesian significance is
correct for any Non, Noff .

We compared the significance by Li & Ma with the
Bayesian one in the limit of large count numbers. This was dic-
tated by the fact that Li & Ma have formulated their expression
for that limit. It turns out that classical statistics and Bayesian
inference generally yield different results. They agree, how-
ever, in the limit of large count numbers and a weak source.

There are interesting cases where the limit of large count
numbers is not fully reached. Then an accurate representa-
tion of the Bayesian significance requires a correction of or-
der N−1/2 as compared to the leading term which is of or-
der N1/2. There is no room for it in the argument of Li & Ma.
The correction is due to the fact that a physical intensity pa-
rameter cannot have negative values. Bayesian inference takes
care of this piece of prior knowledge.

Appendix A: Calculation of measures

The evaluation of Eq. (9) is easy using the expectation values
for the respective distribution. For the Poisson distribution one
has

〈n〉P = λ ,
〈n2〉P = λ2 + λ. (A.1)

For the binomial distribution the expectation values are

〈n〉B = N λ ,

〈n2〉B = N λ ((N − 1) λ + 1). (A.2)

The measure of the Poisson distribution is therewith:

ln pP(n|λ) = n ln λ − λ,
∂λ ln pP(n|λ) = n

λ
− 1,

〈
(∂λ ln pP(n|λ))2

〉
P
= 1 − 2 +

1 + λ
λ
=

1
λ
,

µP(λ) = λ−1/2. (A.3)
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The measure of the binomial distribution is

ln pB(n|λ; N) = ln

(
N
n

)
+ n ln λ + (N − n) ln(1 − λ),

∂λ ln pB(n|λ; N) =
n
λ
− N − n

1 − λ ,
〈
(∂λ ln pB(n|λ; N))2

〉
pB
=

N
λ(1 − λ) ,

µB(λ) =

(
N

λ(1 − λ)
)1/2

· (A.4)

The conditional measure µ0(λoff |λs) needed in Eq. (20) is cal-
culated in the same way, using the expectation values for the
Poisson distribution:

ln p0(Non,Noff |λs, λoff) = Non ln(λs + αλoff) − λs − αλoff

+Noff ln λoff − λoff − ln(Noff! Non!) ,

∂λoff ln p0(Non,Noff |λs, λoff) =
αNon

λon
− α + Noff

λoff
− 1,

〈(
∂λoff ln p0(Non,Noff |λs, λoff)

)2
〉

p0
=
α2

λon
+

1
λoff
,

µ0(λoff |λs) =

(
α2

αλoff + λs
+

1
λoff

)1/2

· (A.5)

Appendix B: Check if the minor model is proper

It has to be checked whether the model q0 in Eq. (20) is proper.
Thus one has to evaluate
∑

Non ,
Noff

q0(Non,Noff |λs) =
∑

Non ,
Noff

∫ ∞

0
p0(Non,Noff |λs, λoff)

×µ0(λoff |λs) dλoff

=

∫ ∞

0
µ0(λoff |λs) dλoff

=

∫ ∞

0

(
α2

αλoff + λs
+

1
λoff

)1/2

dλoff . (B.1)

This integral diverges and hence q0(Non,Noff |λs) is an improper
model.

Appendix C: Transformation to a proper model

The transformation from the original parameters (λs, λoff) to the
new ones (ω,Λ) is calculated in a few lines:

p0(Non,Noff |λs, λoff)
(19)
=
λNon

on

Non!
e−λon

λNoff

off

Noff!
e−λoff

=
(Λω)Non

Non!
(Λ(1 − ω))Noff

Noff!
e−Λ

= ΛN e−Λ
1

Non! Noff!
ωNon (1 − ω)Noff

=
ΛN e−Λ

N!

(
N

Non

)
ωNon (1 − ω)N−Non

(5),(6)
= pP(N|Λ) · pB(Non|ω; N). (C.1)

Appendix D: Uniqueness of the solution

The first derivative of the model pB from Eq. (6) is

p′B(ω|Non; N) =
(Non

ω
− Noff

1 − ω
)

pB(ω|Non; N). (D.1)

It vanishes at

ω0 =
Non

N
· (D.2)

The value of the second derivative at ω0 is

p′′B(ω0|Non; N) = − N3

Noff Non
< 0. (D.3)

Hence, pB has a single maximum and no minima. Therefore for
each ω1 � ω0 one has exactly one other ω2 for which Eq. (29)
holds. Thus one has a unique solution ωup � ωmin in Eq. (29).

Appendix E: Approximation to the posterior
distribution

The result of the transformation of pB(ω) to the parameter φ =
arcsin(

√
ω) is

pφ(φ) ∼ (sin φ)2Non (cosφ)2Noff . (E.1)

The approximation is achieved by expanding the logarithm of
the distribution around its maximum and taking the exponential
of the result. Using γ = Non/Noff = α (1+ r) the maximum is at

φ0 = arctan
(√
γ
)
. (E.2)

The expansion up to second order is

ln pφ(φ) = C1(Non,N) − 2N (φ − φ0)2 + O[φ3]. (E.3)

Hence, one has

P̃2 =
1

C2
exp

(
−2N(φ − φ0)2

)
. (E.4)

With the normalization constant

C2 =

√
π

2N
(E.5)

the distribution P2 is normalized in ] − ∞,∞[.

Appendix F: Mathematica script to evaluate
Bayesian significance

Although we cannot give a close formula for the Bayesian sig-
nificance, we can show a short Mathematica script which cal-
culates the significance as given in Eq. (30).

data = { a -> 0.25,
non -> 16,
noff -> 10 };

n = non + noff;
b = non/noff;
wmin = a/(1 + a);
pBin[x_, n_, non_] := Binomial[n, non]x^non

(1 - x)^(n - non);
pRaw[x_, n_, non_] := pBin[x, n, non]

(Sqrt[n/x(1 - x)]);
norm = Integrate[pRaw[x, n, non], {x, wmin, 1}];
p[x_] := pRaw[x, n, non]/norm;
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rule = FindRoot[Evaluate[(1 - w) (1 + a)
== (wmin/w)^b /.data],

{w, wmin/a, non/n, 1}/.data];
i[w0_, w1_] := Integrate[p[w], {w, w0, w1},

GenerateConditions -> False];
temp = Evaluate[(i[wmin, w /. rule]) /. data];

Print["Sigma (Bayes): "];
sigma = InverseErf[temp] Sqrt[2]
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