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Summary. A framework for a general likelihood analysis of
correlation problems typified by that of gamma rays with other
components of the galaxy is presented. The multivariate ‘informa-
tion matrix’ contains the essential results for any particular
combination of datasets, and its use solves the general problem
of how to deal with the interdependence of the errors on the
model parameters. By diagonalizing the information matrix and
performing various operations any particular set of parameters
can be isolated analytically, and explicit formulae for doing this
are derived.

The presentation has the advantage of being concise and
practical; it is therefore proposed as a standard for communica-
tion of results in this field.

Key words: gamma rays - data analysis

1. Introduction

The study of correlations between gamma ray emission and other
constituents of the galaxy is an essential part of the interpretation
of such data. Unfortunately the subject has suffered from a
“credibility gap” arising from differing methodologies and failure
to use adequate statistical methods for what is in essence a
problem in multivariate statistics. In their analysis of the COS-B
data, the Caravane Collaboration has consistently used the likeli-
hood function in such studies (Lebrun et al., 1982, 1983, Strong
et al., 1982, Bloemen et al., 1984a, b) as well as in point source
analyses (Pollock et al., 1981, 1985) and this has contributed to
the aim of a well-defined and rigorous analysis. The essential
point is that once the input data and parameters (the “model”)
have been defined the likelihood function contains all the essen-
tial information for this particular choice of data and model,
and use can be made of theorems on the distribution of the
likelihood ratio to draw conclusions, for example, on the errors
on the parameters. Since the calculation of the likelihood function
is not in doubt the discussion of the results is greatly clarified.
Clearly it is always necessary to vary the choice of input data
and make tests based on physical knowledge in order to judge
conclusions based on such techniques, but a correct treatment
of the statistical part of the problem is still a prerequisite.
Although the likelihood function is easy to present (e.g. as
contours) when the number of variables is very small (1-3), it
is impossible when number increases: current studies using 21-cm

Send offprint requests to: A. W. Strong

and CO data with velocity information as well as other com-
ponents have typically 8 parameters, each of which is necessary
to the model and which can be determined from the correlation
analysis with varying degrees of accuracy and independence from
the other parameters. A general formalism is required to summar-
ize precisely the result of such an analysis: an elegant solution
is via the diagonalized information matrix.

2. The information matrix

Suppose the log-likelihood ratio (denoted here by L) is a function
n parameters 6; (i=1—n). Then L can be expanded about its
maximum value L, in terms of the offsets J; = 46; of the para-
meters from their maximumd-likelihood values:
1 °L

L L0+22260i 59, 9;9;. (1)
The matrix H; =3(6°L/39; 39;) is called the information mafrix.
The parameter ¥; is independently determined only if H;;=0
for all j # i. Using H we can specify the interdependence of all
the parameters in the n-dimensional space spanned by 9. H;;
can be diagonalized by the transformation

H*= Q—IHQ (2)

where Q is the matrix of eigenvectors of H. Because Q is
symmetric, Q is orthogonal (Q™'= Q7). In terms of the basis
set ¥ the eigenvectors are given by e= Q9. In terms of the
transformed variables the likelihood expansion becomes

L=Ly+Y Ax? 3)
where A; are the eigenvalues of H and where
x=) jS"-‘}j 4)

are the components of the offsets of the original parameters in
the transformed variables. The eigenvectors are the axes of the
likelihood ellipsoid and the lengths of the axes are proportional
to the square roots of the eigenvalues.

The advantage of this formalism is that L can be analytically
maximised over any subset of the parameters, keeping others
fixed as required.

3. Use of the diagonal information matrix
3.1. 1-parameter errors

An important case in practice is the determination of the error
on a single parameter when all the others are free. This requires
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maximising L over all parameters but one, i.e.

maximise AL=Y Ax? 5)

subjectto }, Qyx; = (6)
J

Introducing the Lagrangian multiplier A we therefore maximise

Y )tjx§+/1 Z Qi%; @)
J

over all x; giving

P
x=—A ®)

J
Using (6) we get

9
A=——%

ZJ
7 2)

Substituting in (5) the error estimate corresponding to a given
AL is

22
9= [AL X —"] )
JAj

This result avoids the necessity to maximise L over n—1
parameters numerically for many values of ¥; as is normally
done. If one or more of the parameters 6, is assumed to be
known the errors on the other parameters are given by equation
(9) omitting terms in A,. The errors are then smaller, reflecting
the reduction in uncertainty on the ¥,.

3.2. Errors on linear combinations of parameters

It is often desirable to obtain limits on linear combinations of
parameters; for example we may wish to know the error on the
difference of two parameters. The analysis of section (3.1.) can
be extended straightforwardly to this case as follows. The

required linear combination can be written:
Y adi=c (10)

where we require the error on the value of c. Using (6) and
introducing the Lagrangian multiplier as before we maximise

TAXIHAYY Quax;

over x; giving

T 24

Proceeding as before one obtains after some algebra

1/
Ac= [AL LXX _Qijofaiak] 2

J

(11)

which reduces to (9) when a; = §;;

3.3. Projection operators

More generally one can “‘project out” each parameter J; in turn,
each time reducing the dimensionality of the parameter space
by 1. The projection corresponds to maximising over ¥, and it

can be shown that the projected information matrix H}; becomes

H§j=Hij—£I;_;TIf’—‘ (,j# k). 12)
The magnitude of the terms in the information matrix decreases,
reflecting the implicit uncertainty in ¢, as required. By repeating
this process any subspace of parameters can be immediately
isolated. As a check, note that application of (12) n—1 times

leads to a scalar which agrees with (9).

3.4. Quality indicator

The n-dimensional hypervolume of the likelihood ellipse,
measured by the determinant of H, gives a measure of the
“quality” of the analysis since the smaller the volume the more
tightly constrained are the parameters. This is useful for compar-
ing different datasets or different treatments of the data. It can
also be used to compare the quality of results reported by different
authors in the same field.

4. Statistical interpretation

It is not the intention in this paper to review the interpretation
of the likelihood function; the reader is referred to Eadie et al.
(1982) and Cash (1979) for details. The essential result is that
the asymptotic distribution of twice the likelihood ratio (2AL
in the present notation) is Xi where p is the number of parameters
held constant in the maximisation. It should be noted that the
likelihood ratio is not the only possible way to use the information
matrix; alternatives are the use of the statistics 97I9 and
(8L/98)"I"*(dL/89) where I is the information matrix at the
true values of the parameters, which can be approximated by H
as previously described. From the fact that & and dL/d9 have
covariance matrices I and I respectively, it follows that both
these statistics are distributed as x3. The general advantage of
the likelihood ratio is that the “true” information matrix is not
required since the theorems refer to the observable H.

5. Example of application of method

The method will be illustrated by its application to the correlation
between gamma rays and gas tracers at intermediate galactic
latitudes. The data used are described in Strong (1985) to which
the reader is referred for details. Three energy ranges were treated
in that paper but here I shall consider only the 70-150 MeV range
for illustration. There are four parameters in the model: 1. g;:
the emissivity of the atomic gas in units of 10726 sr™'s™, 2. g,:
the emissivity of the molecular gas in the same units, 3. I%: the
“on-axis” background intensity in units of 107> cm™?sr™!s7?, 4.
Jres: a dimensionless factor for the inverse Compton component.
A discussion of the maximum-likelihood values themselves is
given in Strong (1985); here I discuss only the error estimates.
An analysis of the most cos-B data using the present technique
can be found in Strong et al. (1985).

Table 1(a) gives the information matrix H, the matrix of
eigenvectors Q and the eigenvalues A; The single-parameter
errors (AL = 1) on the parameters computed as described in Sect.
3.1 are given. Since in this case 2AL has a 7 distribution the
“1o” errors correspond to AL=0.5, and are therefore obtained

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1985A%26A...150..273S&amp;db_key=AST

FTI98LARA © CI50: 27350

A. W. Strong: Data analysis in gamma-ray astronomy

Table 1

(a) Information matrix H

155.3409 27.6098 81.5078 32.3011
27.6098 27.1571 18.1488 15.0374
81.5078 18.1488 50.1310 19.7353
32.3011 15.0374 19.7353 13.8205

Matrix of eigenvectors Q (norm = 10,000)
-1 —4493 —2943 —8434

-3795 2262 —8776 —1856

—2265 —8558 —242 —4642

8970 —1203 -3774 —1959
Eigenvalues

2.4662 5.3220 24.8670 213.7943

1-Parameter errors

q: 92 I Jics

0.21 0.31 0.40 0.58

(b) Errors on linear combinations

(g1 +92)

2
91— 92

0.202
0.35

(¢) The 6 2-Dimensional projections (norm = 100) with eigenvalues

91 92 I
17 99
9 -17
92 o
992 232
—43 90 0 100
I 90 43 100 0
5.18 903 6.27 10.1
=5 100 —40 91 -30 95
100 5 91 40 95 30
Jics - T T
298 227 2.55 239 2.82 7.16

from the values given by applying a factor 0.71 (see Eq (9)). To
illustrate the use of errors on linear combinations of parameters
described in Sect. (3.2), Table 1(b) gives the result for the combi-
nations (g, +¢,)/2 and (g, — ¢), i.e. the average emissivity and
difference in emissivity of the atomic and molecular components.
The projection technique of Sect. 3.3 is illustrated by the projec-
tion onto the 6 possible 2-D subspaces of the parameters; Table
1(c) shows the corresponding eigenvector matrices and eigen-
values.

The interdependence of the pairs of parameters can be
immediately seen: for example g, and g, are fairly independent
while g, and f;cs are quite strongly correlated. The accuracy of
the method depends on the validity of the approximation of Eq
(1). This can be tested by comparing the exact evaluation of the
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likelihood with that given by (1) for some typical value of .
Taking each parameter to have its maximum likelihood value
plus } of its (AL =1) error gave AL = 4.05 (exact evaluation) and
4.17 (approximation (1)). The difference is too small to have any
appreciable effect on the error estimates and we can conclude
that the method is completely satisfactory. (This test should be
made for each application since it may fail if the errors are
comparable in magnitude to the parameters themselves.)

6. Conclusions

The use of the information matrix is a simple and effective way
to summarise the results of a correlation study in cases where
the number of variables is too large to allow presentation of the
complete likelihood function. All the standard operations involv-
ing the use of the likelihood ratio to derive errors and their
interdependence can be carried out using this matrix, and explicit
formulae for these have been derived. Because of this possibility
it is a concise and efficient method of recording the outcome of
such a study; unlike other methods it allows the reader to check
the conclusions and perform further analysis if required. For these
reasons it is proposed that it be adopted as a standard way of
communicating results of correlation analyses in gamma-ray
astronomy and related fields.
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