INTEGRAL School, Les Diablerets (CH), March/April 2000

"Radionuclides and Gamma-Ray Line Astronomy"

Invited Lectures by Roland Diehl MPE Garching

• Part I:

Gamma-Rays and Nucleosynthesis

- Nucleosynthesis Processes
- Radioactive Decay
- **Cosmic Nucleosynthesis Sites**

• Part II:

- **Observed Cosmic Radioactivities**
- Supernovae
- Diffuse Radioactivities & Various Connections

INTEGRAL School, Les Diablerets (CH) April 2000

Part II

• Observed Cosmic Radioactivities

- a) Supernovae
- **b) Diffuse Radioactivities**

INTEGRAL School, Les Diablerets (CH) April 2000

COMPTEL Measurement of ²⁶Al in 1.809 MeV Line

- Instrumental Energy Resolution ~ 8% FWHM
- Measured Counts in 1.809 MeV Line (1.7-1.9 MeV):
 - ~ 3000 from GC Region
 - * ~ 90000 from all-Sky
- Signal/Background Ratio ~2%
- Instrumental Background Modelled from Adjacent Energy Bands
- Spatial Resolution ~4° (= Response FWHM)

© Roland Diehl

INTEGRAL School, Les Diablerets (CH) April 2000

COMPTEL All-Sky Image at 1.8 MeV: ²⁶Al Nucleosynthesis in the Galaxy

INTEGRAL School, Les Diablerets (CH) April 2000

COMPTEL 1.809 MeV Maps and Possible Source Commemparts

Different Imaging Methods (ME, MREM, MLik)

INTEGRAL School, Les Diablerets (CH) April 2000

CO map of molecular gas

IR map at 240 μm, dust

Radio map at 53 GHz, free electrons

IR map at 3.5 μm, starlight

© Roland Diehl

-0.50 -0.28 -0.06 0.17 0.39 0.61 0.83 1.06 1.28 1.50

x 10⁻³

²⁶Al Candidate Source Objects

- Novae (O-Ne Enriched)
 - Hot Hydrogen Burning, T~few 10⁸K
 - Yields: ~ $10^{\text{-8}}\,M_{\odot}$ per event, ~ $0.4...5\,\,M_{\odot}$ for entire Galaxy
 - ⊗ Enrichment Scenarios Uncertain, Overall Ejected Nova Mass Not Understood
- Supernovae (core collapse)
 - Explosive H Burning in O/Ne Shell, Explosive C Burning
 - Yields: ~ $10^{\text{-5}}$... 5 $10^{\text{-4}}\,M_{\odot}\,\text{per event},$ ~1-2 M_{\odot} for entire Galaxy
 - ⊗ Impact of Neutrino Spallation ([↑]), Na-Al Cycle Leak and Metastable ²⁶Al Decay (↓)?

O Wolf Rayet Stars

- Hydrostatic H Burning (MS), Wind Phase ${\sim}x\ 10^6y\ Later \rightarrow Product$ Release into ISM
- Yields: ~ $10^{-4}...~10^{-5}~M_{\odot}$ per event, ~ 0.9 M_{\odot} for entire Galaxy
- ⊗ Convective-Shell Boundary Mixing & Rotation Impacts Uncertain
- \odot AGB Stars (massive AGB, M > 3 M_o)
 - H Shell Burning, eventually Hot Bottom Burning Contributions, Admixture of He Burning Products During Pulses
 - Yields: ~10⁻⁴....10⁻⁸ M_{\odot} per star (but over T~7 τ_{26Al}), ~ 1 M_{\odot} for entire Galaxy

© Convective & Pulse Mixing Unceertain; Hot-Bottom Burning Uncertain INTEGRAL School, Les Diablerets (CH) April 2000

Nucleosynthesis in the Galaxy: ²⁶Al 1.809 MeV Gamma-Rays

- First All-Sky Map in a Nucleosynthesis Line (COMPTEL) \Rightarrow
 - •Galactic Emission Dominates the 1.8 MeV Sky
 - •Significant Outer-Galaxy Features (Cygnus, Vela)
 - •Non-Smooth Emission Along Galactic Plane
 - •No Brightened Galactic Bulge (i.e., old stars)
- ⇒ Nucleosynthesis Occurs in the Present Epoch of Universe
- \Rightarrow Massive Stars are Dominating Sources of ²⁶Al

Ref.: COMPTEL: Schönfelder et al., IEEE 1993; Gamma-Ray Lines: Diehl & Timmes, PASP 1998; 1.8 MeV Imaging: PhD Theses Oberlack 1998, Knödlseder 1998
INTEGRAL School, Les Diablerets (CH) April 2000
© Roland Diehl

Global Parameters of ²⁶Al Distribution

•Method:

Variation of Parameters in First-Order Models

Scale Height ~130 pc (from Spiral-Arm Model)

Galactocentric Scale Radius ~ 5 kpc (from Exponential-Disk Model)

•Method:

Uncertainty Limits from Fitted Coefficients of Different Relevant Models

^{ce}total ²⁶Al Mass ~2.2 M_o (+/- 0.15 M_o)

(if only global, no local/localized 26Al assumed)

 $^{\circ}$ Galactic-Bulge Contribution < 0.18 M_o (2 σ)

*General Spiral-Structure Significance >4***σ**

@ Spiral-Arm Component 0.5 $M_o < M_{26Alspiral-arms} < 2.5 M_o$ (2 σ)

INTEGRAL School, Les Diablerets (CH) April 2000

Fluxes in the 1.809 MeV ²⁶Al Line from Inner Galaxy

- Different Instruments Reflect Different Systematics
- Methods of Flux Determination Differs Among Instruments

Galactic Distribution of Massive Stars: other Measurements

On the Massive-Star Origin of ²⁶Al

- Consistency Check on Massive-Star Outputs: (Knödlseder 1999) Equating line-of-sight integrated I_{1.8MeV} to I_{free-free_emission}
 - Plausible ~8 10⁻⁵ M_o Average Yield of ²⁶Al per "OV star"
 - Consistent total ²⁶Al Mass of ~ 2.4 M_o
 - Plausible ~10000 WR Stars in Galaxy
 - But: => SN (II+Ib) rate ~ 1.8/100y (?)
- Agreement of 1.8 MeV Emission Distribution with Source Tracers
 - Free-Electron Emission Distribution (53 GHz COBE) ,
 i.e., mainly from Ionization by Massive-Star UV
 Photons
 - Warm Dust Emission, i.e., from SN and Massive-Star Winds' Heating of IS Dust (>100 μm COBE)
 - Distribution of Known Massive Stars (i.e., Young Clusters, WR Stars, O Stars) (but: incomplete at d>3 kpc)
- Irregular Patterns of Massive-Star Locations Observed in LMC, M31; Same as Overall Irregularity of 1.8 MeV Emission?
- ²⁶Al Disk Latitude Extent > Gas, But < Old Population (=> "puffed up" by SN/Wind Ejection?)

COMPTEL 1.8 MeV Image from Vela Region

- Extended Emission with Peak at l~267°/b~0°
- Significant Large-Scale Background Emission
- Which Stellar Groups/Regions Contribute (Distances?)?
- Does the Vela SNR Contribute Significantly?
- Does the RX J0852-4622 SNR Contribute Significantly? (Distance?)
- Note: τ_{26Al} ~ 10⁶ y,
 ⇒Multiple Events Likely

INTEGRALIS agod MES Diabilides Regionrfr 2006 OMPTEL All-Sky Survey (Phases 1-6) Roland Diehl

The Vela Region in ²⁶Al/1.8 MeV and ²⁶Al Tracer Candidates

Dominating Gas Features Appear Active Nucleosynthesis Sites, with Active Ionization and Heated Dust

INTEGRAL SCHOOL, LES DIADIERETS (CH) APTIL ZUUU

The Vela SNR in X-Rays

Ref: Aschenbach, Egger, & Trümper 1995 Natu

Strain Content of the second secon

- PSR B0833-45 is Central Compact Remnant
- Thermal SNR (kT~0.3 keV) with Central Synchrotron Nebula (Vela-X)

Protrusions Extending ~degrees Beyond SNR: SN Ejecta Clumps

INTEGRAL Schon, T.Q. Biablere (SUCH) April 2000

The Vela SNR and 1.809 MeV Emission

•Distance to Vela SNR:

~ 120 pc (Vela Pulsar Polar Cap X)250... 600 (Vela SNR Fragments & Kinematics) p •SN II ²⁶Al Yields from Santa Cruz Models (WW'93; T et al '95)

=> Compatible with SNII Nucleosynthesis Models

A New X-SNR in the Vela Region

Declination (2000.0)

Fig. 1. Grey scale image of RX J0852.0-4622 for E > 1.3 keV. Coordinotes are right ascension, declination of epoch 2000.0. Contour levels are (in black) 1.5, 2.3, (in white) 3.5, 5.2, 8.2, 9.2 in units of 10⁻¹⁰ PSPC counts s⁻¹⁰ arcmin⁻¹⁰.

INTEGRAL School, Les Diablerets (CH) April 2000

The 1.809 MeV Emission and RXJ0852-4622

•Distance to RX J0852-4622:

~ 120 pc (COMPTEL 26Al Map) 1000 (VMR)... 1500 (ROSAT X Spectrum) pc •SN II ²⁶Al Yields from Santa Cruz Models (WW'93; T et al '95)

=> Unclear if Significant or Dominating Contributor

Constraints on WR11 from It's ²⁶Al Yield

The γ^2 -Velorum System

The Vela Region at 1.8 MeV

- Extended Emission from ²⁶Al with Peak at l~267°/b~0°
- Vela SNR Emission ~as Expected (& Not Dominating)
- RX J0852-4622 SNR Contribution Unclear (Distance?)
- Contribution from γ^2 Velorum/WR11 Lower Than Expected
- ²⁶Al Emission Peak Coincides with Other Objects and Signs of Nucleosynthesis Activity in the Region
 Edge of Vela Molecular Ridge = Very Active Region?

Cygnus Region ²⁶Al Emission

75 70 65

INTEGRAL School, Les Diablerets (CH) April 2000

1.8 MeV Gamma-Rays from the Cygnus Region

Modeling Time-Dependent²⁶Al Content of Star Clusters

- Stellar Content (IMF)
- **Stellar Evolution**
 - The second secon
 - **WR** Phase
- ²⁶Al Yields per Star

yields

1.809 MeV "Light Curve" for an OB Association

INTEGRAL School, Les Diablerets (CH) April 2000

Massive Stars & Nearby Candidate ²⁶Al Source Regions

Diehl R., Knödlseder J., Oberlack U., Bennett K., Bloemen H., Hermsen W., Ryan J., Schönfelder V., von Ballmoos P.

- Issue: Are Massive Stars the Dominant ²⁶Al Producers?
- Method: Test (on COMPTEL 1.8 MeV Data) Distributions from:
 - Galaxy-Wide Tracers
 - O Nearby Regions Model Scale Height COMPTEL 1.8 MeV P1-5

• **Results**:

- **Galaxy-Wide: Disk R**₀5kpc,z₀130pc
- Spiral Structure
- Nearby Regions Not (yet) Detected

Fits of Nearby Component Models, COMPTEL 1.8 MeV P1-5

INTEGRAL School, Les Diablerets (CH) April 2000

⁶⁰Fe Decay

INTEGRAL School, Les Diablerets (CH) April 2000

²⁶Al and ⁶⁰Fe: Diagnostics for ²⁶Al from SNII versus WR

²⁶Al/⁶⁰Fe Flux Ratio Limits

© Roland Diehl

⁶⁰Fe in Solar System

Deep-Ocean Ferromagnetic-Crust Isotope Analysis

- Slowly-Growing Sample from South Pacific Floor (enriched cosmic contributions),
 3 layers of 20 mm total, depth 1300m, Age Determination by Co (0-2.8/3.7-5.9/5.9-13.4 My)
- 23 ⁶⁰Fe Events Identified from Accelerator Mass Spectroscopy
 - (14/7/2 events per layer)
- $\bigcirc => I \sim 1..7..9 \ 10^{6} \ ^{60}Fe \ cm^{-2} \ My^{-1}$

O Potential Sources:

- CR Spallation in Earth Atmosphere
- **CR Spallation in Interstellar Dust**
- r n Capture Sequences (?)
- ☞ Cosmic Supernovae ~10⁻⁴ M_☉ per SN
- Cosmic-Ray Spallation in Earth Atmosphere (⁸⁴Kr(p,11p14n)⁶⁰Fe) Constrained from ³⁶Cl (⁴⁰Ar(p,2p3n)³⁶Cl) to I<10⁴ ⁶⁰Fe cm⁻² My⁻¹
- Interstellar Spallation Contribution (⁶²Ni, ⁶⁴Ni) Constrained to <4 10⁴ ⁶⁰Fe cm⁻² My⁻¹
 - Supernova Ejecta ?? d~30pc (v_{SNEjecta}>v_{SolarWind}) / T_o~5 My

Positron Sources in the Galaxy

			disk		bulge
•	Radioactivities				
	• Thermonuclear Supernovae (⁶⁰ Co)	??		40-100%	
	• Core-Collapse Supernovae				
	· ⁷ ⁴⁴ Ti		12-24 %		??
	e 26Al		10%		5-12%
	• Novae (⁷ Be, 22 Na)		< 2%		5-12%
•	Black-Hole Sources / Jets	??		??	
•	Pulsars		< 10%		??

-> Expected Disk Emission (central sr)

~5-10 10⁻⁴ ph cm⁻² s⁻¹

Annihilation Gamma-Rays from the Inner Galaxy

- I_{full-map} ~2.2 10⁻³ ph cm⁻² s⁻¹ Annihilation Rate ~ 3.3 ± 0.5 10⁴³ e⁺ s⁻¹
- Ps Fraction 0.97 ±0.03
- Extended Diffuse Emission with Bright Bulge and Faint Disk Emission $I_{bulge} \sim 3.3 \ 10^{-4} \text{ ph cm}^{-2} \text{ s}^{-1},$ $I_{disk} \sim 10^{-3} \text{ ph cm}^{-2} \text{ s}^{-1} (\sim 10^{*26} \text{Al e}^{+})$ $I_{gaussian, 16 \text{deg}} \sim 9 \ 10^{-4} \text{ ph cm}^{-2} \text{ s}^{-1}$
- No Point Source (1E1740.7-29.42)
- No Time Variability
- Indication of Northern 'Fountain'
- Improved Constraints from 511+Ps γ 's

total annihilation emission (continuum with 511 keV line)

Roland Diehl

C

INTEGRAL School, fes Diablerets (CH) April 2000

Gamma-Ray Line Shape Diagnostics

Line Shaping Processes:

Galactic Rotation
 Contribution is Small
 (< 1.7 keV)

Thermal Broadening Requires Very High Temperature ~10⁸K, or kT~10keV

Kinetic Broadening is
 Measurable above ~ 100
 km/s, Can Be Diagnostic for
 Acceleration and SN Ejecta

Measurement Example²⁶Al:

GRIS Balloone-borne Ge Detector Galactic-Plane Scans (100° fov) J. Naya et al., Nature, 1996)

- ⇒ Line Width ~6.4 ±1.2 keV, > Instrumental
- ⇒ 5.4 keV Doppler Equivalent: ~540 ± 140 km/s

General Considerations on ²⁶Al Ejecta:

- Time Scales: $\tau_{SNR \text{ Evolution}} 10^5 \text{y}$; $\tau_{26\text{Al Decay}} 10^6 \text{y}$; $\tau_{Stellar \text{ Associations}} \sim 10^7 \text{y}$
- Aluminium is Refractory, Condensation onto Dust Grains is Likely
- Grain Formation in Core-Collapse Supernovae is Known (SN1987A Opt/IR Lightcurve)
- Dust Particles can be Decomposed in SNR/Wind Shocks
- SNR/Wind Shocks are Acceleration Sites for Energetic Particles / Cosmic Rays (e.g. SN1006)
- Atomic ²⁶Al would be Slow ($\tau_{Coulomb-Losses} < 10^4$ y), Dust Mass-to-Charge Ratio allows $\tau_{Coulomb-Losses} \sim 10^7$ y

Model: (see Chen et al. 1997; Ellison et al. 1997; Sturner & Naya 1999)

- ²⁶Al is Predominantly Embedded in SNII Dust Grains
- Grains may catch up with SN Shock, or else Leave the Late SNR with ~Initial Velocity into ISM
- Dust Grains Spend Significant Time in Dilute ISM: Atom/Dust Collisions Determine Grain Energy Losses $\tau_{Collisions} \sim 100/N_H y$
- \bullet Shock Acceleration May Produce Dust at Velocity up to 10^4 km/s $_\odot$

Isotopic Patterns: Si

- Analysis of Isotopic Abundances for Individual Grains in the Laboratory
- Correlations Reflect Grain Production Environment

 $\delta^{i}Si/^{28}Si~(\text{\%}) = (({^{i}Si}/^{28}Si)\text{Grain}/({^{i}Si}/^{28}Si)\text{Solar - 1}) \times 1000$

© Roland Diehl

²⁶Al/²⁷Al Isotopic Ratio

- Isotopic Ratio is Typical for Production Environment
- Meteoritic Samples (Solar System)
- Meteoritic Samples (Interstellar Grains)
- Gamma-Ray Measurement (ISM) (Assuming Solar ²⁶Al/²⁷Al in 4 10⁹ M_o ISM, 2 M_o of ²⁶Al)
- 26 Al/²⁷Al ~ 5 10⁻⁵ 26 Al/²⁷Al ~ 10⁻⁵...1 26 Al/²⁷Al ~ 1 10⁻⁵
- SNII Production with Chemical Evolution ²⁶Al/²⁷Al ~ 3 10⁻⁶ (Assuming SN Production Ratio ²⁶Al/²⁷Al 6 10⁻³, Chemical Evolution with Infall k=4)

INTEGRAL School, Les Diablerets (CH) April 2000

Achievements in Gamma-Ray Line Astronomy

- Radioactivity is Diagnostic Tool for SNae & Novae
- Maps of Diffuse Radioactivity from Galaxy & All-Sky Available (few deg)
- Individual & Peculiar Source Regions Established and Being Studied
- Energetic-Particle Collisions Can Be Studied through Nuclear-Excitation Lines

SN1987A, SN1991T, SN1998bu, Cas A, WR11, Vela SNR; Nova Velorum

1.809 MeV, 511 keV, (1.16 MeV, ...)

GC Region (+Fountain), Inner Galaxy, Galactic Disk & Bulge, Vela & Cygnus Region, etc.

Solar-Flare Spectra (SMM, OSSE, COMPTEL)

Awaited Gamma-Ray Line Contributions

- Early-Lightcurve ⁵⁶Ni Lines from a SN Ia
- [•] ²²Na from Novae, Early 511 keV Flash, ⁷Be
- 1809 keV Emission Region Localization (3D)
- ²⁶Al Mass in the Galaxy Decomposed Sources
- ⁶⁰Fe Correlation with ²⁶Al?
- Positron Decay Map of the Galaxy (~511 keV)
- ¹²C & ¹⁶O Excitation Lines from CR/ISM
- Line Shapes, Line Shapes, Line Shapes....

Nucleosynthesis Studies with Gamma-Ray Lines: Summary

• Radioactivity Gamma-Rays Provide Unique Data About:

- **Energy Source of SN Light Curves**
- **Figure 8** For the second seco
- ***** Massive-Star Distribution in the Galaxy

Gamma-Ray Line Details are Part of the Study of:

- *** Nucleosynthesis Reaction Cycles**
- **SN Explosion Mechanism & 3D Effects**
- **Stellar Convection Zone Detail**
- **Evolution of Young Supernova Remnants**
- Cosmic-Ray Origin
- Achievements:
 - ***** Maps of Radioactivity in ²⁶Al (t~10⁶y) and e+ Annihilation
 - The detections of SN Radioactivity in ⁵⁶Ni, ⁵⁷Ni, ⁴⁴Ti
 - Detailed Astrophysics Studies of
 - » Young SNR Cas A (44Ti)
 - » Localized Massive-Star Regions