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Accretion and Accretion Disks

* Spherical accretion (Bondi Hoyle)

* Standard accretion (Shakura&Sunyaev)

* Advection dominated accretion (ADAF)

* ADIOS

* Corona

* Distortions (ionisation, relativistic effects)
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Spherical Accretion (Bondi Hoyle)

L . F L - L .
The radiation pressureis F,,=—=——, sothat F,=0,—F571 |,
c 4m’ic dmr-c

where g, is the Thompson cross-section.

This has to balance the gravity exerted over an electron-proton pair: p*
. GM,(m,+m,)
— r

grav 2
r

The condition F_, <F._ then implies that accretor

rad — © grav

47xGem A » . »
L< PM,~631x10"M, ergs” ~1.26x10 (M, /M) ergs
o

This is known as the Eddington limit.

The Eddington luminosity is the maximum luminosity 4nGem,,
emitted by a body of mass M, that is powered by spherical Le = -
accretion.
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Standard Accretion (Shakura&Sunyaev 1973)

* virial theorem: half of potential is radiated away, other

half heats gas
. . 1/4
L=ty=SMM. _rrort o 7= GMJ‘{'
2 2r 4ror

* Temperature distribution

87oR; R

E

AGM M 1/4 3/4 A 1/4 101k
T(r)=~ el 1 Z63x10°K | 22| M AL
Y 8

* 2 regions:
radiation pressure > gas pressure
inner region; torus-like
gas pressure > radiation pressure
optically thin, geometrically thick disk
* Innermost radius = 6 R, = 6 GM/c?

<HE-Astro_TUM_SS52003_5>

m"’E

m-ﬂé—

—
=
1
-
=
Illlll‘ LILILILI

Intensitéit
[
o
1
o
=
T

lD‘”é‘

%

log F,

o1 1 10
Ewergie [keV]

v2exp(-hv/kT)

i -

\]J%chen Greiner



Thin Accretion Disk Models

* Cooling-Dominated Flows: viscous heating of the gas is balanced
by local radiative cooling.

* Advection-Dominated Flows (ADAF):

electrons decouple from protons: radiative cooling is very
inefficient and most of the dissipated energy is advected into
the black hole.

* Advection-Dominated Flows with Inflow and Outflow (ADIOS):
outflow is possible based on the Bernoulli number.

is interesting as it may describe jets
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Main Properties of Accretion Disk

Inflow of Matter

“"coming through Lagrange point from companion
““"being gas and/or stars from galaxy

Outwards Transport of Angular Momentum

““"through viscous stress
“"through hydromagnetic winds

“"through amplification of local viscous stress through the onset of
turbulence resulting from possible hydromagnetic, convective, or
shear flow instabilities

“"through propagating waves
““through torque resulting from the presence of nonaxisymmetric
unstable modes in self-gravitating and geometrically thick disks

Electron Corona

“"either spherical around central object
“or in two slabs (sandwich-like) above/below disk

Matter Outflow

“"either spherical wind
“"or directed outflow (jet)
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Accretion Disk:

Reflection from i1onized disk
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Other Complications (I)

Rotating vs. non-rotating BH
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Accretion Disk: Other Complications (II)
N Relativistic effects
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Accretion Disk: Observable Properties

* mass, mass accretion rate (luminosity) — spectral shape determined

Maximum disk color temperature Hard emission from very inner parts (1.26
Tmax)  ~ 1.2 keV ry < r < 7ry) is enhanced for inclined

((Teo Tose)/1.7) (M/Megg)t/4 (M/7Mg)-1/4 Kerr disks (due to Doppler boost)

is directly measured from observed X- When the disk is face-on, emission from
ray spectral shape inner part is weak, and the spectrum is
Kerr disk can be much hotter, as not very different from the Schwarzschild
innermost I“Cldil[ﬁ t;g}u;ugﬁd Bﬂ Lty case Kerr disk at d = 1 kpe, M= 1 M, Eddingten limit

10 sclar mass black hole at the Eddingten limit w=09 07 05 03 and 0.1

a=0.998
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Thermal equilibrium curve (Q,4 =Q.;)

temperature

Hot, high «, high accretion-rate state
(ionized hydrogen). --
L Outburst
H (~0.1-0.2)
i Quiescence
i (a~0.01)
v
B Cool, low «, low accretion-rate state
(neutral hydrogen)

Surface density
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Time-dependent Properties of Accretion Disk

Disk instability (Q,is> Q.0q®>~Rugv: PProq < T
Dwarf Nova type instability

Different ignition mechanism for radiation pressure-induced instability

( “S-shaped curve (thermal )
equilibrium)”

L RTiation pressure

thermal instability induced

condition.
aQ:;s > aQr_ad
oT 5 oT oo
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Compact Sources (WD, NS, BH)

* As Single Stars

F"Equation of State
“"Density/Size
““"Rotation
“*”Magnetic Field

* In Binary Systems
“"Types according to Central Object
“"Types according to Companion

Singles: Only neutron stars observable at X/Gamma-rays.
Binaries: All 3 types observable at X/Gamma-rays.
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Formation of Compact Objects
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Figure 3.  Binding energy/explosion energy ws. progenitor mass assuming no

mass loss, The solid line is the binding energy of all but the inner 3M: of the
stellar core. If the explosion energy is not at least this powerful, the star will
collapse to a black hole. The four circular dots denote the explosion energies
from core-collapse simulations and the square is the predicted explosion energy
observed from SN 1987TA,

* Type Depends on Mass of Companion star

“1-8 My, EB) White Dwarf
F"8-22 M, ‘ Neutron Star

#>22 My H) Black Hole

* WD Mass Spectrum
“"Peak at ~0.5-0.6 M
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Properties of Compact Objects

White dwarf Neutron Star Black Hole
Mass 0.4-1.4 1.4 (-3) >3
Pressure >electron pressure >neutron pressure
Density 106 g/cm3 1014 g/cm3 arbitrary
Radius 1000 km 10 km horizon
Surface T <105 K 106 K disk size
Moment of Inertia 1051 g cm2 1045 g cm2
Spin Period 10-1000 sec 0.001 sec mass
Magnetic Field  10° - 10° 6 1019 - 10!%6 none
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What is a Neutron Star?

Angular momentum conservation => period P is proportional 0 v 2 =~ 3 = 4
to the square of the radius. i+ PeRwine
. . é PSR 1913+16C
=> Collapse from R = 1000 km — 10 km will speed the . | peR 183612
rotation up by a factor of 1002 = 10,000
.- | PSR 1534+12C
b PSR 1855+08
=> P decreases from minutes to milliseconds. e sz
; :, (M15C)
R : PSR 2303+46 (Ave)
R Angular Momentum = MV R = constant N
—> > .__._. Her X-1
E - SMC X-1
————t Cen X-3
— 4U1538-52
As R decreases V must increase. i LMC X-4
PR 'Y I 2 - I PR | PR | L L
0 1 2 3 4

Neutron Star Gravitational Mass (Mg)

g R
>
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v
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Supernova Explosion => Neutron Stars

T =26 days ? BS — 0(1()_2 T) (surface field)

R~7x10°m

momentum carried

-2
B g R [ away by shell

T o R? /
T >0.4ms

field lines frozen
:| into solar plasma . R~10km

B, =0(10°T)
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43 x10"kgm2

2x10""kgm™3

128 x 10'®kgm 3
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X-ray Binary

* When a compact object Evaiving e
is part of a binary system

* Compact object can be
neutron star, white dwarf
or black hole

* When the other star fills its Roche limit
starts feeding matter to neutron star

* The compact object has an accretion disk
heated by matter falling onto it

* The accretion disk heats enough to glow in the x-ray part of the
spectrum
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X-ray Binary

Binary Star Orbit

orbit of higher

mass star
spectroscopic Binary
\ A speciroscopic binary is where there is evidence of orbital motion in
orhit of lower  the speciral features due to the Doppler effect

mass star

blueshift

Spectral lines of companion allow
velocity and period determination

o

redshift

Mass function

K’P M, sin’i
272G (M, +M,)’

J (M) =

blueshift

bl

ZErQ

velocity
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Properties of the Roche Lobe

Roche lobe Potential:

D, (r) = ‘GM oM, A

|r ’”1 |r r2

where r, and r, are the position
vectors of the centers of the two
stars and o is the angular velocity
of the binary.

Equipotential surfaces: shape of the
plot is completely dependent on
the mass ratio g ( = M,/M)), while
the scale is dependent on a.
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Types of X-ray Binaries
White Dwarf:

CV (cataclysmic variable):

Dwarf novae, polars, VY Scl stars, supersoft X-ray sources, novae

Neutron Star or Black Hole:

HMXB LMXB
Luminous (early OB star) Optically faint (blue) counterpart
high-mass companion Jow-mass companion
wind accretion disk accretion
(strong winds for M>10 M;) (RLOF instable for M>1.4M,)
hard X-ray spectra soft X-ray spectra
(T>100 million K) (T~30-80 million K)
often pulsating non-pulsating
X-ray eclipses no X-ray eclipses
Galactic plane Gal. Centre + buige
Population T older, population IT
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What is a CV?

A CV is a binary system in which one star (designated the primary)

accretes matter from a secondary star that, for whatever reason, has
exceeded its Roche lobe. More specifically, it is a semi-detached binary
with a white dwarf primary and a secondary that is typically a late-type
main sequence star.

Miscellaneous Facts Geometry of a CV:
e ~ | million in our galaxy

e a 1s typically a few times the
Earth-Moon separation

* Typical orbital periods P
range from 1-10 hours

The Roche lobe becomes filled in CV’s most typically by a decreasing semi-
major axis. The driving mechanism for the shrinkage 1s driven by magnetic
breaking of the secondary if P > 3 hours or gravitational radiation if P < 2.
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Differences between NS/BH Accretion

Neutron star Black Hole
Magnetic field yes no
Solid surface yes no
Disk extends down to NS surface innermost stable orbit
(depending on B)
Spin does not matter strong dependence
—) spectra of NS accretors should be more complicated!

Observations: spectra rather similar!!! Why?

<HE-Astro_TUM_SS52003_5> Jochen Greiner



Typical-Source Energy Spectra

* Thermal Components
& Stellar Surfaces
& Accretion Disks
% Plasma Bubbles

* Non-Thermal Components

’c Accelerated Particles
®~ Synchrotron Radiation
“” Bremsstrahlung
“"Inverse Comptonization

Accreting Black Holes

T !Ill!ll[

/
[ 11 Cygnus X-1
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Disc - Magnetic Field Interaction
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X/Gamma-Ray Spectra of Black Hole Binaries

GRO (Grove et al 98)
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Dynamically Established BH Systems

Measure mass of candidate black hole via mass function

This constitutes the strongest evidence for the existence of stellar-mass black holes in
binary systems. Currently there are at least 10 systems for which dynamical mass
determinates result in the compact object having mass greater than 3 M,, the theoretical
upper limit of a neutron star.

Source Name  Alternate Name BH Mass (Mg,,)
GRS 1915+105 — 10 -18
0538—-641 LMC X-3 7—14
0540-697 LMC X-1 4—-10
GROJ 0422+32 XN Per 1992 3.57+0.34
A0620-00 XN Mon 1975 49-10
GRS1124-683 XN Mus 1991 5.0-7.5
GRO J1655-40 XN Sco 1994 7.02 £0.22
H 1705-250 XN Oph 1977 49+1.3
1956+350 Cyg X-1 720
GS2000+25 XN Vul 1988 85+1.5
GS2023+338 V404 Cyg 12.3+0.3
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Accretion Disks Exhibit
“"Quasi-Periodic” Oscillations (QPO)

*  Rich spectrum of modes: coherence up to Q ~20

*  Highest frequency QPOs must come from close to horizon - tied to
marginally stable orbit?

*  Detailed origins of different modes still unclear

A

“c  Period of circular orbits

7« Precessional modes
¥~ Lense-Thirring precession tied to BH spin - dragging of inertial frames
¢~ Precession of periastron

“¢  Pulsational modes: “diskoseismology”
v~ Disk acts as resonant cavity under influence of GR effects

7"« Bending modes

Redundant probes of spacetime structure
... all depend on metric in different ways
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QPOs in two Microquasars
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Transient Phenomena

* Different causes
" Accretion disk instabilities (Dwarf novae, BH transients)
“"Variable mass overflow (VY Scl stars)
“"Variable density (NS/Be systems)
““"Variable irradiation

* Various types of transient sources

“"NS/Be systems
“"Dwarf novae
“"BH transients
““”Microquasars

I Complicated: time dependent phenomena in accretion disk

Short-lived: can investigate certain states only ones
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Black Hole Transients’
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The Power-Evolution of Black Hole Transients

Radio & X-ray Spectrum Accretion Disk M Radio Jet
Radio raducad
KT~ 1keV  HighSoft  SUNyaev . by mmors than 30
V ~ index  State I § times cotnpared
BRI to Low state

Sunyag¥; ! : .

Loow/Hard A ;
1 | R

+0ff) state

........

oteady
Self
absorbed

jet

Energy (k=)
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High-/Low States
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High-Energy Emission during High-/Low States

. O.].OOO_ oo rEre T T T T T T T
Several high-energy states: .

« “X-ray high/soft” state, the soft
component is dominant. It is emitted
from the inner accretion disk and can be
well modeled by a multi-color disk black-
body spectrum, where the temperature
falls as radius r3’4. The hard component is
a simple power law and may be the
signature of inverse-Compton scattering
from a non-thermal relativistic electron
population.

«“X-ray low/hard” state, the black-body
component is weak or absent, having
been Compton up-scattered to gamma-ray 0.0001

‘M
\ GRO J0422+32 (Hv}

N
0.0100} e %ﬁ

- ASCA

0.0010F

E Fg MeV? ecm™® s MeV'™h)

energies by a thermal plasma with 0.001. 0010 01()() | 10()()
temperature ~100 keV. The plasma Energy (MeV)

likely exists either as a hot inner disk or
as a patchy corona above a cold disk.
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Plasma Jets from Accreting Compact Stars
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Superluminal Motion

Relativistic, from the
cores of external Active Galaxies
have been known for some years.
Recently, such apparent
superluminal motion has been
detected from several objects within
our Galaxy for the first time. A
sequence of 3.6-cm radio images
from the black hole candidate GRS
1915+105 shows radio-luminous
ejecta moving in the sky. The
images were taken with the Very
Large Array with an angular
resolution of 0.2 arc seconds. The
illusion of superluminal motion
arises when a relativistic blob of
emitting matter is ejected close to
our line of sight to the object.
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http://gamma.nrl.navy.mil/dap-aps/astro/quasarsf/index.htm
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Disk-Jet Connection (I)
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Disk-Jet Connection (II)
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Multifrequency Observations
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