- •What are cosmic rays?
- Particle acceleration
- Sources of cosmic rays
- ·Air shower experiments
- ·Čerenkov Detectors
- •Neutrino Detectors

Cosmic Rays

1912 - VICTOR HESS (Nobel Prize 1936)

- Balloon flights, Measurement of the "Höhenstrahlung" with an ionisation chamber
- Results:
 - up to 2000 m small decrease of ionisation (soil radioactivity)
 - but then dramatic increase (Hess reached a maximum height of 5300 m)

> Confirmation of the extraterrestrial origin of the cosmic radiation

What are cosmic rays?

... 98 % ionized nuclei among them 87 % protons 12 % α-particles 1 % heavy elements

... 2 % electrons

➤ cosmic rays is particle radiation !!

Chemical composition – **comparison with Solar System**

- many similarities
- → BUT: deviations with Li, Be, B (Z = 3 5) as well as Sc, Ti, V, Cr, Mn (Z = 21 - 25)
- > discrepancies: elements are not end products of nuclear synthesis!
- ➤ spallation of Carbon (Z=6), Nitrogen (Z=7), Oxygen (Z=8) or Iron (Z=26)
- deduce cosmic ray life time in Galaxy (10⁶ years) from ratio of primary (e.g. C) to secondary (e.g. Li, Be, B) particles

Energy spectrum of cosmic rays

- very wide energy range from 10⁸eV up to 10²⁰ eV
- Flux falls rapidly with increasing energy:

$$\frac{dN}{dE} \propto E^{-\gamma}$$

• Knee:

 Galactic magnetic field can keep only particles which Lamorradius is smaller or similar to dimension of Milky Way
 > 10¹⁵ eV particles leave Milky Way

- 2. Maximum acceleration in supernovae
- Ankle: contribution of extragalactic component

TeV/PeV Gamma rays are secondary products

their emission traces primary particle populations

- Hadrons
 - π^0 decay
- Electrons
 - Synchrotron radiation
 - Inverse Compton scattering
 - Bremsstrahlung
- Heavy instable particles (strings, monopoles, ...)

Problem:

to relate the gamma ray flux and the primary spectra, one needs to

- Know the properties of the production "target"
- Deconvolve energy spectra

Particle Acceleration

- 1. Cyclotron mechanism Acceleration in Solar Spots
 - Field strength in solar spots reaches 1000 Gauß
 - Magnetic fields originate through turbulent plasma motion (= currents)
 - changing magnetic fields produce electric fields which accelerate protons and electrons

$$E = e\pi R^{2} \frac{dB}{dt}$$

typische Werte: B = 2000 G, R = 10⁹ cm,
$$\frac{dB}{dt} = 2000 \frac{G}{Tag}$$

 \succ Energies up to 10¹¹ eV

- 2. Acceleration in shock fronts (Fermi-Mechanism 1. Order)
 - expelled supernova-shell exhibits a shock front against the interstellar medium
 - Consider shock front moving with u₁ and particle moving with velocity v against this shock front
 - ➤ relative energy gain:

$$\frac{\Delta E}{E} \approx \frac{2(u_1 - u_2)}{v}$$

relativistic treatment of shock acceleration and taking into account variable scatter angles gives (mit v = c):

> Energies up to 10^{14} eV

Particles bounce between magnetic field sheets acceleration takes 10000 years

• 4. Acceleration in Pulsars

- acceleration of primary particles in young, fast rotating pulsar in ,,outer gaps" (plasma free zone between open and closed field lines)
- With typical values for pulsars (Magnetic field strength upto 2.5.10⁸ T, rotation in ms-range) we get electric fields of up to 10¹⁵ V/m
- Converions of rotation energy in kinetic (acceleration) energy

> Energies up to several 10^{19} eV

- 5. Acceleration in Microquasars and Quasars
 - Doppelsternsystem aus Pulsar/Neutronenstern und Hauptreihenstern
 - In Akkretionsscheibe aus ionisierter Materie werden vorhandene Magnetfelder verstärkt und auf Keplerbahnen mitbewegt
 - strong electric field in disk (dynamo-like generated)
 - charged particles are accelerated along rotation axis

 \succ Energies up to $3 \cdot 10^{19} \text{ eV}$

Cosmic sources of high-energy particles

Propagation

- Optically thick sources
- Interactions with "starlight"
- Interactions with CMB
- Diffusion in magn. fields
- Effects of quantum gravity ...

AGN jets Supernova shock waves Decaying strings Annihilating SUSY particles

....

- **Identify mechanisms using**
- Particle composition
- Wide-band energy spectra
- Spatial and temporal characteristics

p

however, cosmic rays cannot be used to image the Universe...

<HE-Astro_TUM_SS2003_8>

Emission mechanisms: the Crab tutorial

Optical

Radio

The Crab: gammas from electrons

<HE-Astro_TUM_SS2003_8>

The quest for the sources of cosmic rays

Best (only?) candidate: Supernova explosions

Argument 1: Energy balance

 $E_{CR} \sim \rho_E V / \tau_{esc} \sim 10^{41} \text{ erg/s}$

 $E_{SN} \sim 10^{51} \text{ erg/}30 \text{ y} \sim 10^{42} \text{ erg/s}$

... need O(10%) efficiency

Argument 2: Shock acceleration as mechanism

 $dN/dE_{Shock acc} \sim E^{-2.1}$

 $dN/dE_{Obs} \sim dN/dE_{Acc} \tau_{esc}(E)$

where τ_{esc} (E) ~ E^{-0.6}

<HE-Astro_TUM_SS2003_8>

Jochen Greiner

Supernova Remnant 1006

<HE-Astro_TUM_SS2003_8>

Jochen Greiner

Highly variable emission

Mkn 421

- Time variability in requires compact source and significant boost (~10)
- SSC models describe data reasonable well, but other (e.g. hadronic) models are not completely excluded
- AGN spectra deviate from power laws, with cutoffs around a few TeV for Mkn 421 and 501 (with z ~ 0.03)
- More precise data (multiwavelength spectra, time variability) are needed to fix model details
- More sources are needed, at different z, luminosity, etc

Many new results expected for the next years ... with O(100) sources

Jochen Greiner

Multi wavelength campaigns

•Correlations between X-rays and VHE γ

Both wavelengths are produced by same electrons

•UV and Optical flare was delayed

★ Multi-wavelength campaigns

 (1995, Mrk 421)
 ✓ Whipple(VHE γ)
 ✓ EGRET(γ)
 ✓ ASCA(X-ray)
 ✓ EUVE(XUV)
 ✓ Optical Telescope
 ✓ Optical Polarimeter
 ✓ UMRAO(radio)

Infrared background I

Flux absorption due to the interaction with the infrared and microwave background

Infrared background II

Measurement spectrum and density of IR

VHE γ spectrum for e.g. Blazars Indirect investigation of IR field and measurement of Hubble constant

Catalog of TeV sources

Source	Туре	Distance	Discovery	Flux (CU)	Grade	Group
Galactic						
Crab Nebula	Plerion	~ 2 kpc	1989	1	А	Whipple,
PSR 1706-44	Plerion ?	~ 2 kpc	1995	~ 0.5	А	CANGAROO,
Vela	Plerion ?	0.2 – 0.5 kpc	1997	~ 0.7	В	CANGAROO
SN 1006	Shell SNR	~ 2 kpc	1997	~ 0.5	В	CANGAROO
RXJ 1713.7-3946	Shell SNR	1 – 6 kpc	1999	~ 0.7	В	CANGAROO
Cassiopeia A	Shell SNR	~ 3.5 kpc	1999	~ 0.03	С	HEGRA
Monoceros	Shell SNR	~ 1.6 kpc	2001	-	С	HEGRA
Centaurus X-3	Binary	~ 8 kpc	1999	~ 0.4	С	Durham
Extragalactic						
Markarian 421	XBL	z=0.031	1992	up to ~ 10	А	Whipple,
Markarian 501	XBL	z=0.034	1995	up to ~ 10	A	Whipple,
1ES 2344+514	XBL	z=0.044	1997	up to ~ 0.6	С	Whipple
PKS 2155-304	XBL	z=0.116	1999	up to ~ 2	В	Durham
1ES 1959+650	XBL	z=0.048	1999	up to ~ 2	В	Tel. Array
H 1426+428	XBL	z=0.129	2001	~ 0.1	В	Whipple,
BL Lac	XBL	z= 0.069	2001	up to ~ 2	В	Crimean
3C66A	RBL	z=0.44	1998	~ 1.5	С	Crimean
GRB 970417a	GRB		1999		С	Milagrito

A: > 5 σ , confirmed

Conclusions

- A number of astrophysical objects produce gamma rays with energies well beyond TeV scales (Crab: > 50 TeV, SNRs > 10 TeV, AGNs > 20 TeV)
- Many of these objects emit as much or more energy at TeV energies than in other wavelength ranges
- In current objects, data are consistent with a primary electron population (with energies up to and beyond 100 TeV)
- Shock wave acceleration is strongly supported, but...
- High energy electrons are much more efficient in producing gammas – O(10...100) at TeV energies – hence not obvious if electron sources will also accelerate sufficient cosmic rays
- No proof for nucleon acceleration... just around the corner?

Air Shower Experiments

Air showers consist of 3 components:

hadronic component

primary proton scatters off atmospheric nuclei, thereby producing protons, neutrons, pions, kaons, ...

- myonic component the decay of charged pions and kaons generates myons
- electromagnetic component the decay of neutral pions generates γ`s, which initiate electromagnetic cascade through pair creation and bremsstrahlung

What to measure?

- appearance of shower
 - primary particle (photon or hadron)
- penetration depth
 - ➤ heavy or light particle
- particles detected on ground
 - e.g. mass estimate from ratio of myon to electon number

<HE-Astro_TUM_SS2003_8>

KASCADE (<u>KA</u>RLSRUHER <u>S</u>HOWER <u>C</u>ORE AND <u>A</u>RRAY <u>DE</u>TECTOR)

Measurement and study of extended air showers (all 3 components)

- Measurement of energy spectrum
- Determination of

chemical composition

Energy range: $10^{14} - 10^{17} \text{ eV}$

detailed study of the ,,knee" in the spectrum

KASCADE – Schematics

Central detector

Measurement of the hadronic component and high-energy myons in shower center

200 x 200 m Detector array

trace the extended electromagnetic and myon components

Streamer tunnel

Tunnel with detector system for rekonstruction of myons

KASCADE – Detector Station

Matrix of 16 x 16 detector stations at distance of 13 m

 \succ total of 252 stations

<HE-Astro_TUM_SS2003_8>

PIERRE AUGER PROJECT

(First) Combination of particle detectors and fluorescence light detectors

- ➢ reproduce complete evolution of shower
- determine direction, energy and type of the cosmic particles

Energy range: above 10¹⁸ eV

➤ study of the highest energy particles

PIERRE AUGER PROJECT – MENDOZA (ARGENTINIA)

1600 Water-Čerenkov-detectors, distributed over area of 3000 km² (Completion 2004)

Coun ter

One of 4 fluorescence light detectors (in total 30 telescopes)

Future Experiments

- OWL (Orbiting Wide-angle Light-collectors)
 - Use of the (full) Earth atmosphere as detector
 - Observation of the fluorescence light from two satellites

"in study phase'

- EUSO (Extreme Universe Space Observatory)
 - \succ also use of Earth atmosphere as detector
 - Detector instrument(s) on the international space station ISS

"Phase A study" – Goal: Launch 2009

<HE-Astro_TUM_SS2003_8>

<HE-Astro_TUM_SS2003_8>

Image intensity **Image orientation** Image shape ➔ Shower parent

<HE-Astro_TUM_SS2003_8>

Jochen Greiner

Systems of Čerenkov telescopes and stereoscopy

A

Image of source is somewere along image of shower axis ...

Use more views to locate source!

<HE-Astro_TUM_SS2003_8>

Jochen Greiner

Telescope parameters

Telescope	Mirror area (m²)	Focal length	f/d	Mirror type	PMTs per camera
Whipple	72	(tur)	0.7	Glass	37 → 490
CANGAROO I	11	3.8	1.0	AlumPolished	256
Durham MK VI	3 x 42	7	1.0	Alum. HC	109 / 19
CAT	18	6	1.2	Ground-Glass	600
HEGRA System	4 x 8.5	5	1.4	Ground-Glass	271
MAGIC	234	17	1.0	AlumMilled	577
CANGAROO III	4 x 57	8	0.8	Composite	427
H.E.S.S.	4 x 108	15	1.2	Ground-Glass	960
VERITAS	7 x 75	12	1.2	Glass	499

Progress

<HE-Astro_TUM_SS2003_8>

Jochen Greiner

Parameters of optical s

	Reflector	f/d	# of mirror tiles	Material	Shape	Align- ment		
MAGIC	Parabolic	1.0	936	Milled aluminum comp. anodized	square	Motor s		
H.E.S.S.	Davies- Cotton	1.2	382	Ground glass, alumin., quartz	round	Motor s		
VERITAS	Davies- Cotton	1.2	~ 300	Glass, aluminized anodized	, hex	Manua I		
CANGAROO III	Parabolic	0.8	114	Composite, f aluminum, fluoride	e round	Motor s		
coated Davies-Cotton • better off-axis imaging • Same focal length for all mirror elements								
Parabolic Square o Minimizes time dispersion of 					uare or hex ow full area	mirrors coverage		
HE-Astro_TUM_SS200	3_8> pł	notons				Jochen Greine		

Time Schedule

CANGAROO

MAGIC

AIROBICC counter

MAGIC Photo sensor (2nd phase)

 GaAsP-intensified photocell (Intevac)

Figure 4.23: Cross section of a hybrid photomultiplier with avalanche diode readout.

Non-imaging Čerenkov instruments

Sample light distribution on the ground, rather than angular distribution

<HE-Astro_TUM_SS2003_8>

STACEE

CELESTE secondary reflector and PMTs

Jochen Greiner

"CELESTE was designed to reach a very low energy threshold without a large expenditure in time and resources by exploiting the mirrors of an existing structure..."

Instrument	Location	No. of heliostat s	Mirror area (sqm)	No. of PMTs	F.o.V. mrad	Threshol d (GeV)
CELESTE	Pyrenees, France	40 (→ 53)	2000 (→ 2700)	40	~10	60
STACEE	Albuquerque, US	32 (→ 64)	1200 (→ 2400)	32	~12	190
GRAAL	Almeria, Spain	63	2500	4	7 - 12	250
SOLAR 2	Barstow, US	32 - 64	1300 - 2600	32 - 64	~ 10	? .Tochen Grein:

<HF.

State of the field

Neutrino Detectors

Detector Classification

(by energy and physics)

- MeV energy range
 - * Reactor neutrinos Δm_{12}^2 and Δm_{23}^2 range
 - \Rightarrow Solar neutrinos Δm_{12}^2 range
 - \Rightarrow Terrestial neutrinos
- GeV energy range
 ☆ Accelerator experiments △m₂₃² range
 ☆ Atmospheric v experiments △m₂₃² range
- TeV to PeV energy range
 ☆ Neutrino astrophysics

Tracing cosmic rays

- Superbeams <u>electron identification</u>
- Neutrino Factory <u>muon identification (with charge)</u>
- Beta beams <u>muon</u> identification

Superbeam detectors

- ☆ Water Cherenkov
- ☆ Low Z Calorimeter
- ☆ Liquid Argon

Neutrino factory

- \rarrow neutrino beam consists of well understood mixture of $\nu_{\mu}{}^{\prime}s$ and $\nu_{e}{}^{\prime}s$
- ☆ The "golden" signature is the appearance of a wrong sign muon ~
- * Magnetic sampling calorimeter appears to be detector of choice

Beta beams

- \Rightarrow accelerate He^ (β^- emitter) and Ne^{19} (β^+ emitter) to few hundred GeV/nucleon
- \Rightarrow resulting neutrino beam is then either pure v_e or v_e with few 100 MeV
- \bigstar detector would need to identify μ 's without needing to measure the charge

The Sun is Fueled by Nuclear Reactions!

Summary of potential Sources (= cosmic ray sources)

- I. Guaranteed sources (Galactic disk, Sun, GZK)
- II. Likely steady sources at 100 TeV (Knee-CR sources, AGN)

III. Omnidirectional intensity from 100 TeV to GZK energies

(due to sources of extragalactic cosmic rays and g-ray background)

- IV. GRB contribution to I_n small (unless splendid TeV emitters), nevertheless likely neutrino sources
- V. Hidden sources unlikely (need space to accelerate)

$$v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e$$

SuperKamiokande

