Pata characteristics and processing

Science results

Conclusions and future perspective

Data characteristics and scientific results

Bernd Husemann (ESO Fellow)

S. F. Sánchez (PI) and the CALIFA collaboration

OPINAS seminar - 2014 May 14

Data characteristics and processing 000000000 Science results 000000 Conclusions and future perspective

Outline

1 Survey Introduction

2 Data characteristics and processing

3 Science results

4 Conclusions and future perspective

Data characteristics and processing 000000000 Science results

Conclusions and future perspective

The idea for CALIFA

Legacy survey of a large and representative sample of galaxies in the local Universe using integral-field spectroscopy

- 250 dark nights over 3 years at the Calar Alto Observatory
 - Large investment in telescope time
 - Selected after competitive review process for a large program
- Collaboration of more 80 members across 13 countries
 - PI: S. F. Sánchez (UNAM)
 - PS: J. Walcher (AIP)
 - Chair of Board: L. Wisotzki (AIP)
- Project started July 1st 2010 and is almost completed

The PMAS integral field spectrograph

Potsdam Multi-Aperture Spectrophotometer

- 3.5 telescope (Cassegrain focus)
- optimized for 350nm-900nm
- $\circ \geq 30\%$ throughput
- Exchangeable and rotatable grisms
- 2 integral field units (IFUs): Lens Array (LArr) 16×16 lenslets (0.5'' - 1.0'')Pmas fiber PAck (PPak) coarse fibre bundle $\sim 1'$ Field-of-View (FoV)

 \Rightarrow Among the largest IFU FoV's

PPak fiber bundle

- 331 science fibers
- 36 dedicated sky fibers
- 2.7" diameter fibers
- 1 arcmin FoV
- 2/3 filling factor

Data characteristics and processing 0000000000 ocience results

Conclusions and future perspective

Wavelength coverage for CALIFA

Two setups are used to cover the entire optical wavelength range:

higher resolution \Rightarrow Galaxy kinematics from Ca H+K region **lower resolution** \Rightarrow Stellar population and ionized gas

Data characteristics and processing

Science results 000000 Conclusions and future perspective

The CALIFA galaxy sample

Mother sample is drawn from SDSS:

- Diameter cuts: $45'' < D_{25} < 80''$ \Rightarrow effective usage of FoV
- Predshift cuts: 0.003 < z < 0.03
 ⇒ excludes dwarf galaxies

987 galaxies within SDSS match these basic criteria

CALIFA will observe 600 galaxies!

Color-Magnitude space

(ロ > 〈 母 > 〈 臣 > 〈 臣 〉 三 ・ のへで

Data characteristics and processing 000000000 Science results 000000 Conclusions and future perspective

Sample: footprint

Walcher et al. in prep. 2014

Data characteristics and processing 000000000 Science results

Conclusions and future perspective

Sample: completeness

Walcher et al. in prep. 2014

 \Rightarrow CALIFA sample can be volume corrected!

Data characteristics and processing 000000000

Science results 000000 Conclusions and future perspective

Sample: Luminosity function

Walcher et al. in prep. 2014

Data characteristics and processing 000000000

Science results 000000 Conclusions and future perspective

Sample: Galaxy characteristics

Walcher et al. in prep. 2014

Data characteristics and processing

Science results 000000 Conclusions and future perspective

The long way from IFU raw to reduced data

- Automated data reduction pipeline developed for CALIFA
- Quality control measurements are part of the pipeline
- Lot of effort to allow reasonable error propagation

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Data reduction and processing issues

- cosmic ray rejection
- fibre tracing
- optimal fibre extraction
- flat-fielding
- wavelength calibration
- homogenization of spectral resolution
- atmospheric dispersion correction
- astrometric registration and image reconstruction
- spectrophotometric calibration
- variance propagation
- bad pixel propagation
- QC parameters

Data characteristics and processing

Science results 000000 Conclusions and future perspective

PyCosmic: Cosmic-ray rejection for fibre-fed spectrographs

Cosmic ray detection is difficult for CALIFA given that only 1-2 frames are taken per pointing

Husemann et al. 2012, A&A, 545, A137

PyCosmic combines two things for better performance:

- edge-detection similar to L.A.Cosmic
- Spectrograph-PSF to avoid false detection of real signal

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Dither pattern and image reconstruction

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Dither pattern and image reconstruction

An individual PPak pointing has a low filling factor

Data characteristics and processing

Science results

Conclusions and future perspective

Dither pattern and image reconstruction

- An individual PPak pointing has a low filling factor
- \circ 3 dither pointings allow image reconstruction (1'')

Data characteristics and processing $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Science results

Conclusions and future perspective

Dither pattern and image reconstruction

- An individual PPak pointing has a low filling factor
- \circ 3 dither pointings allow image reconstruction (1'')
- Intrinsic spatial information still undersampled

Data characteristics and processing $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Science results

Conclusions and future perspective

Astrometric registering with SDSS images

How to properly register the CALIFA data to SDSS images?

- 1 Overlay fiber pattern
- 2 Re-construct flux from SDSS images
- 3 Offset fiber pattern and compute $\chi^2 = \sum_i \frac{(f_i^{\text{CALIFA}} f_i^{\text{SDSS}})^2}{\sigma^{\text{CALIFA2}} + \sigma^{\text{SDSS2}}}$

Data characteristics and processing

Science results

Conclusions and future perspective

Astrometric registering with SDSS images

How to properly register the CALIFA data to SDSS images?

- Overlay fiber pattern
- 2 Re-construct flux from SDSS images
- 3 Offset fiber pattern and compute $\chi^2 = \sum_i \frac{(f_i^{\text{CALIFA}} f_i^{\text{SDSS}})^2}{\sigma_i^{\text{CALIFA2}} + \sigma_i^{\text{SDSS2}}}$
- 4 Pointing position can be estimated with sub-arcsec precision

Science results 000000 Conclusions and future perspective

Standard spectrophotometric calibration is difficult

 \Rightarrow Sensitivity functions based on single PPak pointings on stars are very uncertain in their blue-to-red slope

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Possible solutions for this problem

How to solve the low covering factor and undersampling of point sources for PPak?

- Dithering on the calibration star
 - Not available for first 1.5y
 - How to check accuracy?
 - Rely on known offsets and time stability

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Possible solutions for this problem

How to solve the low covering factor and undersampling of point sources for PPak?

- 1 Dithering on the calibration star
 - Not available for first 1.5y
 - How to check accuracy?
 - Rely on known offsets and time stability
- ② Early-type galaxies as calibrators
 - high surface brightness
 - smooth radial surface brightness
 - small variations in the consortium
 - almost insensitive to seeing/DAR

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Early-type galaxies as extended spectroscopic standards!

Observing strategy

- PMAS Larr $16'' \times 16''$
- V300 grating (3600–7000Å)
- 2x1500s exposure time
- sequence: sky-target-sky-target-sky
- primary standard star observed in between

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Early-type galaxies as extended spectroscopic standards!

Observing strategy

- PMAS Larr $16'' \times 16''$
- V300 grating (3600–7000Å)
- 2x1500s exposure time
- sequence: sky-target-sky-target-sky
- primary standard star observed in between

CALIFA transmission curve derive from LArr data of NGC 3158

Data characteristics and processing

Science results 000000 Conclusions and future perspective

Early-type galaxies as extended spectroscopic standards!

Observing strategy

- PMAS Larr $16'' \times 16''$
- V300 grating (3600–7000Å)
- 2x1500s exposure time
- sequence: sky-target-sky-target-sky
- primary standard star observed in between

CALIFA transmission curve derive from LArr data of NGC 3158

 \Rightarrow 20 early-type galaxies established as secondary spectrophotometric standards across the sky (Husemann et al. in prep. 2014)

Data characteristics and processing

Science results 000000 Conclusions and future perspective

What can be inferred from the data

Data characteristics and processing

Science results 000000 Conclusions and future perspective

What can be inferred from the data

Data characteristics and processing $\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Science results

Conclusions and future perspective

The wealth of information to digest from CALIFA...

500

Data characteristics and processing 000000000

Science results

Conclusions and future perspective

The inside-out growth of galaxies

(Perez et al. 2013, ApJL, 764, L1)

- high mass galaxies build up there mass inside-out
- lower mass galaxies build up there mass in the outskirts faster

Data characteristics and processing 000000000

Science results

Conclusions and future perspective

The (non)-effect of bars

(Sanchez-Blazquez et al. in prep.)

Data characteristics and processing 000000000 Science results

Conclusions and future perspective

The stellar kinematics

Data characteristics and processing 000000000

Science results

Conclusions and future perspective

Gas-phase abundance gradients in galaxies

(Sanchez et al. 2014, A&A, 563, A49)

- disc galaxies follow a common gradient once normalized to $R_{
 m e}$
- barred and non-barred galaxies have also the same slope
- evidence for a flattening at large radii

Data characteristics and processing 000000000

Science results

Conclusions and future perspective

What is the ionizing source of LINERs

(Singh et al. 2013, A&A, 558, A43)

- LINER-like emission is an extended phenomenon in many galaxies
- excess of H $\!\alpha$ emission compared to a point-like source i.e. AGN
- \Rightarrow old post-AGB stars are likely the dominant ionizing source

Data characteristics and processing 000000000 Science results

Conclusions and future perspective

A new view on the BPT diagram

SDSS emission-line galaxies

(Kauffmann et al. 2003)

Data characteristics and processing

Science results

Conclusions and future perspective

og((L_H

32.8

A new view on the BPT diagram

SDSS emission-line galaxies

(Wisotzki, Husemann et al. in prep)

-0.5 0.0 log([NII]/Hα)

(Kauffmann et al. 2003)

- BPT diagram is almost recovered just from ${\sim}200$ galaxies

-0.

-1.0

- CALIFA allows proper volume correction of properties
- most the Hlpha is emitted by star formation

Data characteristics and processing 000000000

Science results

Conclusions and future perspective $\bullet \circ \circ$

Uniqueness of CALIFA

Large wavelength coverage

- Full optical emission-line diagnostic
- Extended view on stellar populations
- Suited to study galaxy kinematics

• Spatial coverage and sampling

- Full optical size of galaxy covered
- $_{\odot}$ \sim 1 kpc projected spatial resolution

Large homogeneous sample:

- Statistics, classification, rare objects
- Comparison studies of different types

Data characteristics and processing 000000000

Science results

Conclusions and future perspective $\bullet \circ \circ$

Uniqueness of CALIFA

Large wavelength coverage

- Full optical emission-line diagnostic
- Extended view on stellar populations
- Suited to study galaxy kinematics

• Spatial coverage and sampling

- Full optical size of galaxy covered
- $_{\odot}$ \sim 1 kpc projected spatial resolution

• Large homogeneous sample:

- Statistics, classification, rare objects
- Comparison studies of different types
- CALIFA is a legacy survey
 ready for your own ideas!!

Data characteristics and processing 000000000 Science results 000000 Conclusions and future perspective $\circ \circ \circ$

CALIFA Data Release 1 since 1st of Nov 2012

- 100 galaxies in both setups (V500 and V1200)
- Fully calibrated datacubes + errors are distributed
- Extensive automatic and manual quality control checks
- Dedicated DR1 web service as well as VO access

http://califa.caha.es/DR1

See Husemann et al. (2013, A&A, 549, A87) for more details

Data characteristics and processing 000000000 Conclusions and future perspective $\circ \circ \circ$

CALIFA Data Release 1 since 1st of Nov 2012

- 100 galaxies in both setups (V500 and V1200)
- Fully calibrated datacubes + errors are distributed
- Extensive automatic and manual quality control checks
- Dedicated DR1 web service as well as VO access

http://califa.caha.es/DR1

See Husemann et al. (2013, A&A, 549, A87) for more details

DR2 with 200-300 galaxies foreseen in autumn 2014

Data characteristics and processing 000000000 Science results 000000 Conclusions and future perspective $\circ \circ \bullet$

Comparison with other IFU surveys

