

MULTI-SPIN COMPONENTS IN GALAXIES: Dissecting kinematics and stellar populations

Lodovico Coccato (ESO)

in collaboration with:

L. Morelli; A. Pizzella; E. M. Corsini; E. Dalla Bonta' (University of Padova, Italy); M. Fabricius (MPE); Enrica Iodice (INAF-OAC); M. Arnaboldi (ESO), and others

Based on: Coccato et al. 2011, MNRAS, 412, L113; Coccato et al. 2013, A&A, 459, 3; Fabricius et al. 2014, MNRAS (ArXiv: 1404.2272)

L. Coccato: Multi-spin components in galaxies

= || 🐼 |= ;= += || = || = || = 0| = 12 ;= |= !* 👫 🔒

OUTLINE OF THE TALK

1. Panoramic of galaxies with multi-spin components. Some scenarios.

2. Presentation of a new method to study these systems: "spectral decomposition analysis".

3. Results of spectral decomposition on some multi-spin galaxies.

✓ Counter-rotations. Stars rotating along opposite direction with respect to other stars and/or gas. (see Corsini 2014, arXiv: 1403.1263 for review). Different classes:

Nature: stars vs. stars, stars vs. gas, gas vs. gas, kinematically decoupled cores.

Extension: Kinematically decoupled cores (KDC); largescale disks (e.g. NGC 4550).

 Structural components. Bulge/Disk. Nuclear stellar disks (same spin direction, but different amplitude).

 Misaligned/Orthogonal structures. Warps, Polar Ring Galaxies, Polar disk galaxies.

Counter-rotations: NGC 4550 (large scale counter-roting stellar disks)

Rubin et al. (1992)

Counter-rotations: NGC 4550 (large scale counter-roting stellar disks)

Rubin et al. (1992)

Bureau & Chung (2006)

═ !! ◙ ⊾ := +- ! ! = ! ! = ! ! ב !! ב !! !! !! !! !!

100

Structural components: Kinematically Decoupled Cores

L. Coccato: Multi-spin components in galaxies

10

0

-10

MULTI-SPIN SYSTEMS IN GALAXIES

Misaligned/Orthogonal structures

Warp: UGC 3697 (Integral galaxy)

Polar disk: NGC 4650A

Counter-rotating galaxies:

Counter-rotating galaxies:

- 2. Galaxy binary mergers: The properties of the counterrotating disks depend on the nature of the progenitors and star formation history. According to simulations, mergers of galaxies:
 - ✓ do not play a significant role (Algorry et al. 2014).
 - ✓ can explain the presence of 50% counter-rotating stars in NGC 4550 and the different flattening of the two counter-rotating disks (Crocker et al. 2009).

Polar rings/disks:

- 1. Dissipative polar merger of two disk galaxies with unequal mass (Bekki 1998; Bournaud & Combes 2003);
- 2. Tidal accretion of external material (gas and/or stars), captured by an early-type galaxy on a parabolic encounter (Reshetnikov & Sotnikova 1997; Bournaud & Combes 2003; Hancock et al. 2009);
- **3.Cold accretion** of pristine gas along a filament (Macciò et al. 2006; Brook et al. 2008).

Counter-rotating bulge (NGC 524, Katkov+2011)

MOTIVATIONS

To understand the properties and the formation mechanisms of multi-spin galaxies and their components we need to study the properties of both components:

- 1. Morphology (size, geometry)
- 2. Kinematics
- 3. Stellar population content (Age, metallicity...)

MOTIVATIONS

Aim: Study the spectral (and morphological) properties of the structural components in a galaxy, separately. For example:

- 1. Date the formation of the counter-rotating disk.
- 2. Measure the metallicity and abundance ratio of the decoupled components.
- 3. Unveil the real extension of a KDC and its kinematic properties.
- 4. Study the stellar populations of bulges by removing the contamination from the stars in the disk.
- 5. Properties of the thick and thing disks in spirals.
- 6. ...

Complication: the different structural components (i.e. counter-rotating disks, bulge/disks) are *co-spatial:* the sum of their contributions is observed.

Challenge: Separate the two components and measure them independently.

L. Coccato: Multi-spin components in galaxies

= !! 🖸 🛌 := +- !! = !! = !! = 💷 🏧 := !! 🕬

disentangling kinematics and stellar populations of two decoupled

We construct 2 independent synthetic templates as linear combinations of stars from 2 spectral libraries (\rightarrow stellar populations). Convolution with 2 Gaussian LOSVDs (\rightarrow kinematics). Iterative procedure (χ^2 minimization).

Differences in the position of absorption line features and in the H β equivalent widths between the two stellar components (\rightarrow different kinematics and stellar populations).

+ES+ 0 +

PARAMETERS IN THE CODE:

 F_1 : Mean flux of first component. F_2 = 1- F_1 : mean flux of the second component.

 V_1, σ_1 : kinematics of the first component. V_2, σ_2 : kinematics of the second component. Parametric recovery of LOSVD

SPC(λ)₁: best fitting linear combination of stellar templates of the first component.

SPC(λ)₂: best fitting linear combination of stellar templates of the second component.

All are free parameters in the code; but, if required: F can be fixed via photometric decomposition; SPC(λ) can be constrained from regions where the other component is absent; kinematics can be constrained by independent methods.

L. Coccato: Multi-spin components in galaxies

Errors on kinematics (simulations) Errors on SSP (simulations)

First application: large-scale counter-rotating stellar disks

__ || (3) |_ ;;; +- | | **=** | | **__** || **__** || **__** ;;; || |+) **※** ||

= II 💿 🛌 #= #= II == II == 📴 🛋 #= ## 💥 🔒

L. Coccato: Multi-spin components in galaxies

═**╏**┃ 図 ┣━ ╬═ ┿╾┃┃ **═** ┃ ┃ ═ |**0** 조 ╬═ ┠┚ ╬┊╽

NGC 4550

Stellar populations: Age, [Z/H], [α /Fe]

NGC 3593

L. Coccato: Multi-spin components in galaxies

__ II 🐼 ▶ ## **+** II **=** II **_** II **_** II **↓** ₩ №

Stellar populations: Age, [Z/H], [α /Fe] NGC 4550

Surface brightness (kinematic) decomposition

L. Coccato: Multi-spin components in galaxies

NGC 3593

NGC 4550

= || 🖸 🛌 := 🕂 || = || = || = 💷 🖬 🖽 💥 🐿

STELLAR MASS PROFILE

Luminosity profile + stellar populations \rightarrow M/L \rightarrow mass profile

Although it dominates the light in the central regions, "KDC" in NGC 3593 is less massive than the stars in the galaxy. The counter-rotating disks in NGC4550 have the same luminosity, but different mass profiles.

= || 🐼 |= := +- | | = || = || = 💷 🖬 🖽 💥 🐁

Results: global properties 1/2

Table 1: Luminosity-weighted values for the stellar population parameters of the stellar discs in NGC 3593, NGC 4550, and NGC 5719.

/			
	Age	$\overline{[Z/H]}$	$\left[\alpha/\mathrm{Fe}\right]$
	[Gyr]		
NGC 3593			
Main:	3.6 ± 0.6	-0.04 ± 0.03	0.09 ± 0.0
Secondary:	2.0 ± 0.5	-0.15 ± 0.07	0.18 ± 0.0
NGC 4550			
Main:	6.9 ± 0.6	-0.01 ± 0.03	0.20 ± 0.0
Secondary:	6.5 ± 0.5	-0.13 ± 0.04	0.28 ± 0.0
NGC 5719			
Main:	4.0 ± 0.9	0.08 ± 0.02	0.10 ± 0.0
Secondary:	1.3 ± 0.2	0.3 ± 0.02	0.14 ± 0.0

<u>Secondary disk</u>: Same direction of rotation as the ionized gas. Younger, less massive, different metal content, more α -enhanced than then main disk. \rightarrow Supporting the gas accretion + star formation scenario. But more statistics is needed (upcoming IFU surveys).

Results: global properties 2/2

Date the formation of the counter-rotating stellar disk

Galaxy	Formation of secondary comp.	After formation of main galaxy
NGC 3593	~2 Gyr	1.6 ±0.8 Gyr
NGC 4550	~7 Gyr	< 1Gyr
NGC 5719	~1.3 Gyr	2.7 ±0.9 Gyr

SUMMARY 1

Spectral decomposition technique that allows to separate the spectra of two kinematically distinct components in a galaxy.

- 1. It works on counter-rotating systems NGC 3593, NGC 4550, NGC 5179.
- 2. It allows to measure kinematics and stellar populations of *both* stellar components (plus ionized gas); morphologies, mass distributions of both components can be studied.
- 3. Secondary stellar component rotates in the same direction as the ionized gas.
- 4. Secondary components are always younger and have different [Z/H] than the main stellar components, and are more [α /Fe]. In agreement with the gas accretion plus star formation. Date the accretion event: ~2Gyr (NGC 3593, Δ T~1.6±0.8 Gyr), ~7Gyr (NGC 4550, Δ T<1Gyr), 1.3Gyr (NGC 5719, Δ T ~2.7±0.9 Gyr).

L. Coccato: Multi-spin components in galaxies

= || 🐼 🛌 := +- || = || = || = 0 🛋 := || || 💥 🛀

Next applications:

1. Bulge - disk decomposition

- remove the bulge (disk) contamination from the bulge (disk) light (NGC 7217, Fabricius et al. 2014)

2. Host galaxy - polar disk decomposition - remove the polar disk contamination from the host galaxy (NGC 4650A)

NGC 7217

 $\frac{VIRUS-W}{Range: 4880 - 5480 \text{ Å}}$ $\sigma_{INSTR}=15 \text{ km/sec}$ $FOV: 105'' \times 55''$ Sampl= 0.19 Å/pxl Filling factor: 1/3 Exp. per fibre: 1.5 hrs

PARAMETERS IN THE CODE:

F₁: Mean flux of first component. $F_2 = 1 - F_1$: mean flux of the second component.

 V_1, σ_1 : kinematics of the first component.

Parametric recovery of LOSVD V_2, σ_2 : kinematics of the second component.

 $SPC(\lambda)_1$: best fitting linear combination of stellar templates of the first component.

 $SPC(\lambda)_2$: best fitting linear combination of stellar templates of the second component.

+ES+ 0 +

NGC 7217 Non parametric recovery of LOSVD

<u>Problems</u>: Short wavelength region, Low kinematic separation •Large errors (esp. in the SSP recovery)

<u>Solution</u>: Use an independent routine to get the kinematics. •Extension of Maximum Penalized Likelihood Method plus kinematic double-Gaussian decomposition

NGC 7217: Non parametric recovery of LOSVD

PARAMETERS IN THE CODE:

F₁: Mean flux of first component. $F_2 = 1 - F_1$: mean flux of the second component.

 V_1, σ_1 : kinematics of the first component.

Parametric recovery of LOSVD V_2, σ_2 : kinematics of the second component.

 $SPC(\lambda)_1$: best fitting linear combination of stellar templates of the first component.

 $SPC(\lambda)_2$: best fitting linear combination of stellar templates of the second component.

PARAMETERS IN THE CODE:

 F_1 : Mean flux of first component. F_2 = 1- F_1 : mean flux of the second component.

 V_1, σ_1 : kinematics of the first component. V_2, σ_2 : kinematics of the second component.

SPC(λ)₁: best firting linear combination of stellar templates of the first component.

SPC(λ)₂: best fitting linear combination of stellar templates of the second component.

The kinematics are constrained from the non parametric approach, and used as input in the spectral decomposition

L. Coccato: Multi-spin components in galaxies

= || 🖸 🖕 #= += || = || = || = 💷 🖬 🖿 💥 🏪

The kinematics are constrained from the non parametric approach, and used as input in the spectral decomposition

The kinematics are constrained from the non parametric approach, and used as input in the spectral decomposition

The kinematics are constrained from the non parametric approach, and used as input in the spectral decomposition

__ II 🖸 ▶_ ## += II 💻 II == 00 💶 ## H 💥 🛀

NGC 7217: Conclusions

The kinematics are constrained from the non parametric approach, and used as input in the spectral decomposition

Suggested formation scenario:

The spheroidal component of NGC 7217, formed through a major merger. Properties more similar to those of an elliptical galaxy than to those of the bulges of spirals.

The disk component formed after the merger, primordial gas accretion followed by star formation.

= !! 🖸 🛌 := +- ! ! = !! = !! = 💷 🔤 📰 🐏 🔛

NGC 4650A (Polar Disk galaxy)

Central spheroid and polar disk co-exist

Problems: Short wavelength region, Low kinematic separation--> large errors

Solution:

I. Get the SSP from the spheroid from disk-free reginos II.Constrain the flux ratio of spheroid and polar disk

NGC 4650A (Polar Disk galaxy)

Problems: Short wavelength region, Low kinematic separation--> large errors

Solution:

I. Get the SSP from the spheroid from disk-free reginos II.Constrain the flux ratio of spheroid and polar disk

DISK-FREE region, get the spheroid best template from there

= || 🖸 🛌 := +- | | = || = || = 🔟 🏊 := 🖬 💥 🛀

PARAMETERS IN THE CODE:

F₁: Mean flux of first component. $F_2 = 1 - F_1$: mean flux of the second component.

 V_1, σ_1 : kinematics of the first component.

Parametric recovery of LOSVD V_2, σ_2 : kinematics of the second component.

 $SPC(\lambda)_1$: best fitting linear combination of stellar templates of the first component.

 $SPC(\lambda)_2$: best fitting linear combination of stellar templates of the second component.

PARAMETERS IN THE CODE:

 F_1 : Mean flux of first component. F_2 = 1- F_1 : mean flux of the second component.

 V_1, σ_1 : kinematics of the first component.

 V_2, σ_2 : kinematics of the second component.

Parametric recovery of LOSVD

SPC(λ)₁: best fitting linear combination of stellar templates of the first component SPC(λ)₂: best fitting linear combination of stellar templates of the

second component.

NGC 4650A Polar disk / spheroid decomposition

Coccato et al. (2014) A&A submitted

Photometric decomposition along the slit profile to constrain F_1 and F_2 in the spectroscopic decomposition.

PARAMETERS IN THE CODE:

 F_1 : Mean flux of first component. F_2 = 1- F_1 : mean flux of the second component.

 V_1, σ_1 : kinematics of the first component.

 V_2, σ_2 : kinematics of the second component.

Parametric recovery of LOSVD

SPC(λ)₁: best fitting linear combination of stellar templates of the first component SPC(λ)₂: best fitting linear combination of stellar templates of the

second component.

PARAMETERS IN THE CODE: F_1 : Mean flux of first component: $F_2 = 1$ F_1 : mean thux of the second component. V_1, σ_1 : kinematics of the first component. Parametric recovery of LOSVD V_2, σ_2 : kinematics of the second component. $\mbox{SPC}(\lambda)_1$: best fitting linear combination of stallar templates of the first component $SPC(\lambda)_2$: best fitting linear combination of stellar templates of the second component.

NGC 4650A

Kinematics

Rotation of host galaxy along the minor axis \rightarrow non axisymmetric potential.

Counter-rotation of polar disk \rightarrow multiple accretion formation episode.

<u>Stellar content:</u>

<u>Spheroid</u>: GIII (~50%) and KIII (~35%) plus contamination from young A,O,B stars (~15%). NON GRADIENTS.

<u>Disk</u>: GIII (~45%) and KIII (~35%) plus contamination from young A,O,B stars (~20%). GRADIFNT:

Young star fraction from 10% (R<1.5kpc) to 30% (R>1.5 kpc) → outer disk formed later?

SUMMARY 2

The spectral decomposition technique works also in more difficult cases, with small kinematic separation and short wavelength region.

□NGC 7217 (Bulge plus disk)

Get the kinematics from an independent method.
 →Hints for formation mechanism: re-growing of a disk an a merger remnant.

□NGC 4650A (spheroid plus polar disk)

- Get the spheroid population $(SPC(\lambda)_2)$ from disk-free regions.
- Get F1 and F1 from photometric decomposition of the slit profile.

 \rightarrow Counter-rotation of the polar disk, multiple accretion. \rightarrow Non axisymmetric potential.

= || 🖸 |= := += | | = || = || = 💷 💷 := 🗗 💥 🐁

SOCRATE

Study Of Counter Rotating gAlaxies with spectral decomposition TEchnique (an ESO/MPE/Padova collaboration)

Galaxy	Туре	Status
IC 719	S0	Katkov et al. 2013 (SAURON+SCORPIO data).
NGC 448	S0	
NGC 3593	S0/a	Coccato et al. 2013 (VIMOS/IFU)
NGC 3608	E2	
NGC 3796	S	
NGC 4138	S0	Observed (Asiago Telescope, long-slit), paper in preparation
NGC 4191	S0	Observed (Virus-W)
NGC 4259	S0	Observed (Virus-W)
NGC 4473	E5	
NGC 4528	S0	SERVER CLEAR CLEAR
NGC 4550	E7/S0	Johnston et al. 2012 (long-slit); Coccato et al. 2013 (VIMOS/IFU).
NGC 5719	Sab	Coccato et al. 2011 (VIMOS/IFU)
NGC 7710	S0	63333333333333333333333333333333333333
PGC 056772	S0/a	12222222222222222222222222222222222222

The secondary component associated to the ionized gas is the youngest in all the 5 studied galaxies.

L. Coccato: Counter-rotating Galaxies with 2D Spectroscopy