Obscuring structures in nearby Seyfert galaxies

Marc Schartmann, Konrad Tristram, Keiichi Wada, Almudena Prieto, Andreas Burkert, Leonard Burtscher, Ric Davies and many other...

OPINAS Seminar @ MPE

Marc Schartmann

Seyfert Galaxies & The Unified Scheme

- otherwise normal spiral galaxies light up, when enough gas is accreted onto the centre
- core luminosity comparable to stars of whole galaxy

- central black hole
 - $(10^{6} \text{ to } 10^{10} \text{ M}_{\odot})$
- accretion disc
- obscuring torus
- (hidden) broad line region
- narrow line region
- ionization cones
- jet emission
- contribution of obscuring material further out(?)

OPINAS Seminar @ MPE

Marc Schartmann

Seyfert Galaxies & The Unified Scheme

- otherwise normal spiral galaxies light up, when enough gas is accreted onto the centre
- core luminosity comparable to stars of whole galaxy

Unified Scheme of Active Galactic Nuclei

many open questions remain:

- same tori in Sy1 / Sy2?
- what is the geometry of the torus?
- what is the dynamical state
- what is the driver of turbulence?

Idea: better understand the distribution of gas and dust near galactic nuclei

OPINAS Seminar @ MPE

Marc Schartmann

Prieto+ 2004

OPINAS Seminar @ MPE

Marc Schartmann

ESO

- basically Young's experiment
- correlated flux = flux in the fringes
- visibilities:

$$V = F_{corr} / F_{tot}$$

• resolution:

$$\alpha = \lambda / 2 BL$$

MIDI@VLTI

Marc Schartmann

28/05/2014

Wikipedia

- basically Young's experiment
- correlated flux = flux in the fringes
- visibilities:

$$V = F_{corr} / F_{tot}$$

• resolution:

 $\alpha = \lambda / 2 BL$

MIDI@VLTI

VLT Interferometer

OPINAS Seminar @ MPE

Marc Schartmann

MIDI observations of the Circinus galaxy

General Properties

credit: Wilson (University of Maryland), HST

• spiral galaxy SA(s)b

- inclination 65 degrees
- Seyfert 2 galaxy
- black hole mass: 4 x10⁶ M \odot
- distance ~ 4 Mpc,
- 1pc ~ 50 mas
- circum-nuclear starbursts

OPINAS Seminar @ MPE

Marc Schartmann

Circinus: UV coverage

• 152 useful measurements

telescope
 combinations where
 the projected
 baseline length
 remains roughly
 constant

 directly infer source size in different directions

OPINAS Seminar @ MPE

correlated fluxes at 12 micron

- spatial scales
 ~150mas:
 moderately
 elongated emission
 along PA~100°
- on smaller scales: strong elongation along PA~45°

OPINAS Seminar @ MPE

Circinus: 3-component dust emission (Gaussian black bodies)

- model with 3 Gaussian black bodies
- false color image of the 3component model
- maser disk
- increasing silicate absorption from green to violet: 27 per arcsec
- in line with large-scale optical depth gradient due to inclination

Circinus: 3-component dust emission (Gaussian black bodies)

$\begin{array}{c} 100\\ \\ 50\\ \\ \\ 50\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $							
Silicate depth: $\tau_1 = 1.2 \pm 0.2$ Temperature: $T_1 = 317 \pm 22 \text{ K}$ Covering factor: $f_1 = 0.5 \pm 0.3$ Size: $\Delta_2 = 57 \pm 15 \text{ mas}$ Axis ratio: $r_2 = 0.16 \pm 0.04$ Position angle $\alpha_2 = 46 \pm 3^{\circ}$ Silicate depth: $\tau_2 = 1.9 \pm 0.4$ Temperature: $T_2 = 290 \pm 22 \text{ K}$ Covering factor: $f_2 = 0.6 \pm 0.3$ Size: $\Delta_3 = 93 \pm 12 \text{ mas}$ Axis ratio: $r_3 = 0.45 \pm 0.07$ Position angle: $\alpha_3 = 107 \pm 8^{\circ}$ Silicate depth: $\tau_3 = 2.4 \pm 0.6$ Temperature: $T_3 = 304 \pm 30 \text{ K}$ Covering factor: $f_3 = 0.3 \pm 0.2$						Size:	$\Delta_1 = 12 \pm 2 \text{ mas}$
Temperature: $T_1 = 317 \pm 22 \text{ K}$ Covering factor: $f_1 = 0.5 \pm 0.3$ Size: $\Delta_2 = 57 \pm 15 \text{ mas}$ Axis ratio: $r_2 = 0.16 \pm 0.04$ Position angle $\alpha_2 = 46 \pm 3^{\circ}$ Silicate depth: $T_2 = 1.9 \pm 0.4$ Temperature: $T_2 = 290 \pm 22 \text{ K}$ Covering factor: $f_2 = 0.6 \pm 0.3$ Size: $\Delta_3 = 93 \pm 12 \text{ mas}$ Axis ratio: $r_3 = 0.45 \pm 0.07$ Position angle: $\alpha_3 = 107 \pm 8^{\circ}$ Silicate depth: $T_3 = 2.4 \pm 0.6$ Temperature: $T_3 = 304 \pm 30 \text{ K}$ Covering factor: $f_3 = 0.3 \pm 0.2$	offset & DEC [mas]	100				Silicate depth:	$T_1 = 1.2 \pm 0.2$
$\int_{100}^{50} \int_{100}^{50} \int_{$			-			Temperature:	$T_1 = 317 \pm 22 \text{ K}$
$\begin{array}{c} 50\\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			∊⋖──			Covering factor:	$f_1 = 0.5 \pm 0.3$
Axis ratio: $r_2 = 0.16 \pm 0.04$ Position angle $a_2 = 46 \pm 3^{\circ}$ Silicate depth: $r_2 = 1.9 \pm 0.4$ Temperature: $r_2 = 290 \pm 22 \text{ K}$ Covering factor: $f_2 = 0.6 \pm 0.3$ Size: $A_3 = 93 \pm 12 \text{ mas}$ Axis ratio: $r_3 = 0.45 \pm 0.07$ Position angle: $a_3 = 107 \pm 8^{\circ}$ Silicate depth: $r_3 = 2.4 \pm 0.6$ Temperature: $T_3 = 304 \pm 30 \text{ K}$ Covering factor: $f_3 = 0.3 \pm 0.2$		50	-			Size:	$\Delta_2 = 57 \pm 15$ mas
Position angle $\alpha_2 = 46 \pm 3^{\circ}$ Silicate depth: $\tau_2 = 1.9 \pm 0.4$ $\tau_2 = 290 \pm 22 \text{ K}$ Covering factor: $f_2 = 0.6 \pm 0.3$ Size: $\Delta_3 = 93 \pm 12 \text{ mas}$ Axis ratio: $r_3 = 0.45 \pm 0.07$ Position angle: $\alpha_3 = 107 \pm 8^{\circ}$ Silicate depth: $\tau_3 = 2.4 \pm 0.6$ Temperature: $T_3 = 304 \pm 30 \text{ K}$ Covering factor: $f_3 = 0.3 \pm 0.2$					I	Axis ratio:	$r_2 = 0.16 \pm 0.04$
Silicate depth: $\tau_2 = 1.9 \pm 0.4$ Temperature: $T_2 = 290 \pm 22 \text{ K}$ Covering factor: $f_2 = 0.6 \pm 0.3$ Size: $\Delta_3 = 93 \pm 12 \text{ mas}$ Axis ratio: $r_3 = 0.45 \pm 0.07$ Position angle: $\alpha_3 = 107 \pm 8^{\circ}$ Silicate depth: $\tau_3 = 2.4 \pm 0.6$ Temperature: $T_3 = 304 \pm 30 \text{ K}$ Covering factor: $f_3 = 0.3 \pm 0.2$				N	-	Position angle	$\alpha_2 = 46 \pm 3^\circ$
$\begin{array}{c} 100\\ -50\\ -50\\ -50\\ -50\\ -50\\ -50\\ -50\\ -$		0		- H		Silicate depth:	$T_2 = 1.9 \pm 0.4$
-50 -50 -50 -100 -100 -100 -100 -100 -50 -50 -50 -100 -50 -50 -100 -50 -50 -100 -50 -50 -100 -50						Temperature:	$T_2 = 290 \pm 22 \text{ K}$
-50 - 100 - 100 - 100 - 50 - 50 - 100 - 50 - 5						Covering factor:	$f_2 = 0.6 \pm 0.3$
-100 - 100 - 100 - 50 - 50 - 100 - 50 - 5		-50				Size:	$\Delta_3 = 93 \pm 12 \text{ mas}$
$-100 \qquad \qquad 1 \text{ pc} \qquad 1 \text{ pc} \qquad \qquad 1 \text{ pc} \qquad 1 $						Axis ratio:	$r_3 = 0.45 \pm 0.07$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1 pc	Position angle:	α ₃ = 107 ± 8°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-100				Silicate depth:	$\tau_3 = 2.4 \pm 0.6$
$f_3 = 0.3 \pm 0.2$ offset $\delta RA [mas]$			100 50			Temperature:	T ₃ = 304 ± 30 K
			100 50	offset δRA [mas]	-50 -100	Covering factor:	$f_3 = 0.3 \pm 0.2$

all components T ~ 300 K

Marc Schartmann

comparison to other observations

OPINAS Seminar @ MPE

Marc Schartmann

H₂O maser emission

North-South Offset (mas)

- maser disk in Keplerian rotation
- outflow maser spots

Greenhill+ 2003

Marc Schartmann

Greenhill+ 03, Tristram+ 07/14

 in good agreement with the model derived from MIDI data multi-component structure: dense disk, filamentary torus, point source and emission / outflow within the cones

OPINAS Seminar @ MPE

Marc Schartmann

- high spatial resolution spectral energy distribution
- additional constraint

challenge for modelers: simultaneously fit SED plus interferometric observations

clumpy torus models

3D Radiative Transfer models for Clumpy tori

- distribute clumps in a 3D geometry
- simultaneously account for high spatial resolution data as well as interferometric data
- good idea of torus structure

ambiguities toy models

dynamical stability

Schartmann+ 2008

Circinus galaxy, Tristram+ 2007

OPINAS Seminar @ MPE

Marc Schartmann

Dynamical models of clumpy AGN tori

Cloud orbits under the influence of gravity plus radiation pressure

- cos(theta) radiation characteristic
- all orbits closed
- derive orbit structure

- torus/BLR opening angle for constant cloud column density
- slightly differs from non-dynamical approach

Plewa et al., 2013

OPINAS Seminar @ MPE

Marc Schartmann

Tori fueled by nuclear star clusters

Schartmann+ 2009/2010

AGN fueled by post-starburst evolution

- many nearby Seyferts harbor young NSC
- after violent phase of SN II explosions
- slow winds can be accreted
- two-component structure: filamentary large scale distr. & disk/torus
- seems to work for some nearby Seyfert galaxies (Davies+ 2007)
- typically leads to two-component

[bc]

OPINAS Seminar @ MPE

Marc Schartmann

Tori fueled by nuclear star clusters

- Sample of nearby Seyfert galaxies, for which SINFONI and MIDI observations are/will be available
- hydrodynamical simulations combine large and small scale observations
- many details not understood

- use as basic model
- investigate various physical processes / regions separately

OPINAS Seminar @ MPE

Marc Schartmann

Nuclear Disk/Torus Evolution

Schartmann+ 2010

- maser disc in NGC 1068: 0.65 to 1.1pc (Greenhill & Gwinn 1997)
- evolution of thin disk component
- ID effective disc model: viscous evolution, SF sink and source term

$$\frac{\partial}{\partial t}\Sigma(t,R) + \frac{1}{R}\frac{\partial}{\partial R} \left[\frac{\frac{\partial}{\partial R} \left(\nu \Sigma(t,R)R^{3} \Omega'(R) \right)}{\frac{d}{dR} \left(R^{2} \Omega \right)} \right] = \dot{\Sigma}_{input}(t,R) - \dot{\Sigma}_{SF}(t,R)$$

Lin & Pringle, 1987

connect with observations (mass, size, ...), verify scenario

Nuclear Disk/Torus Evolution

 Models reproducing maser observations in NGC 1068:

~10⁶ M_{sun} in clumpy disc model (Kumar 1999)

OPINAS Seminar @ MPE

Marc Schartmann

Radiation pressure feedback

- frequency resolved rad. transfer + gravity
- standard galactic gas/dust mixture
- accretion disc spectrum
- gas and dust dynamically, but not thermally coupled
- dust present for $T_{gas} < T_{sputt}$

Radiation pressure feedback

OPINAS Seminar @ MPE

Marc Schartmann

Radiation pressure feedback

cloud density study - mass on shells

OPINAS Seminar @ MPE

Marc Schartmann

Radiation-driven AGN tori

- self-gravitating gas disc (10^6 M_{\odot})
- central SMBH (10⁷ M_☉)
- fixed DM and stellar potential

- X-ray heating, dust radiation pressure
- ray-tracing method
- 3 Eddington ratios: 0.01, 0.1, 0.2
- 0.125pc resolution
- 32³ pc box

OPINAS Seminar @ MPE

Radiation-driven AGN tori

- self-gravitating gas disc (10^6 M_{\odot})
- central SMBH ($10^6 M_{\odot}$)
- fixed DM and stellar potential

- X-ray heating, dust radiation pressure
- ray-tracing method
- 3 Eddington ratios: 0.01, 0.1, 0.2
- 0.125pc resolution
- 32³ pc box

OPINAS Seminar @ MPE

Marc Schartmann

Radiation-driven AGN tori

X-ray heating and radiation pressure

 $0.01 \ L_{\text{Edd}}$

• thin disk

tenuous outflow

0.10 L_{Edd} • dense, puffed-

up structure

outflow ceases

$0.20 \ L_{\text{Edd}}$

• dense, puffed-

up structure

tenuous outflow

gas density distribution

OPINAS Seminar @ MPE

Marc Schartmann

"Radiation pressure driven fountain"

Wada 2012

3-component obscuring structure replaces the classical "torus":

OPINAS Seminar @ MPE

Marc Schartmann

Dust Continuum Radiative Transfer & RADMC-3D

$$\frac{1}{c} \frac{\partial I_{\nu}(\vec{x},\vec{n})}{\partial t} + \vec{n} \cdot \vec{\nabla} I_{\nu}(\vec{x},\vec{n}) = \frac{1}{4\pi} \rho_d(\vec{x}) j_{\nu}(\vec{x},T) - \rho_d(\vec{x}) \left\{ \kappa_{\nu,\text{abs}}(T) + \kappa_{\nu,\text{sca}}(T) \right\} I_{\nu}(\vec{x},\vec{n}) + \rho_d(\vec{x}) \int_{4\pi} d\Omega' \Phi(\vec{n},\vec{n}') \kappa_{\nu,\text{sca}}(T) I_{\nu}(\vec{x},\vec{n}')$$

- solve radiative transfer equation with 3D Monte-Carlo code RADMC-3D (Dullemond et al.)
- primary source SED, point-like

work in progress, comments welcome...

OPINAS Seminar @ MPE

Marc Schartmann

Dust Continuum Radiative Transfer & RADMC-3D

$$\frac{1}{c} \frac{\partial I_{\nu}(\vec{x},\vec{n})}{\partial t} + \vec{n} \cdot \vec{\nabla} I_{\nu}(\vec{x},\vec{n}) = \frac{1}{4\pi} \rho_d(\vec{x}) j_{\nu}(\vec{x},T) - \rho_d(\vec{x}) \left\{ \kappa_{\nu,\text{abs}}(T) + \kappa_{\nu,\text{sca}}(T) \right\} I_{\nu}(\vec{x},\vec{n}) + \rho_d(\vec{x}) \int_{4\pi} d\Omega' \Phi(\vec{n},\vec{n}') \kappa_{\nu,\text{sca}}(T) I_{\nu}(\vec{x},\vec{n}')$$

- solve radiative transfer equation with 3D Monte-Carlo code RADMC-3D (Dullemond et al.)
- primary source SED, point-like
- local ISM dust model: 62.5% silicate, 37.5% graphite
- spectral features
- cut at r_{in}=1pc

OPINAS Seminar @ MPE

Marc Schartmann

Wavelength-dependent appearance

 $20\% L_{Edd}$

• orders of magnitude different intensity levels

OPINAS Seminar @ MPE

Marc Schartmann

Time evolution of MIR images

12 micron

- filamentary outflow
 wide opening angle
- ceasing outflow
 vert. elongation changes to spherical shape

vertical elongationlow density cone

OPINAS Seminar @ MPE

Marc Schartmann

Spectral Energy Distributions

I% Eddington

- "Big Blue Bump", IR re-emission bump
- spectral features

evolution for
 ~ 2 Myr

 large differences to edge-on view

> typical for a thin disk

OPINAS Seminar @ MPE

Marc Schartmann

Spectral Energy Distributions

10

10³⁶

10³⁵

- much larger differences between inclination angles
- strong absorption in the visible
- deep silicate absorption features

10% Eddington

ER10.

Spectral Energy Distributions

- large differences
 between inclination
 angles
- large variety of absorption in the visible
- moderately deep abs. features in IR

OPINAS Seminar @ MPE

Marc Schartmann

28/05/2014

20% Eddington

Comparison to observed SEDs

20% Eddington

- Seyfert galaxy templates (Prieto et al. 2010)
- type I black stars
- type 2 red triangles
- normalised to total bolometric luminosity

OPINAS Seminar @ MPE

Marc Schartmann

Comparison to observed SEDs

10% Eddington

- Seyfert galaxy templates (Prieto et al. 2010)
- type I black stars
- type 2 red triangles
- normalised to total bolometric luminosity

- edge-on case: similarly good agreement, but too strong silicate absorption
- face-on case: too much extinction at short wavelengths

OPINAS Seminar @ MPE

Marc Schartmann

Comparison to observed SEDs

I% Eddington

- Seyfert galaxy templates (Prieto et al. 2010)
- type I black stars
- type 2 red triangles
- normalised to total bolometric luminosity

OPINAS Seminar @ MPE

Comparison with observations: silicate feature vs gas column density

- red line = Seyfert sub-sample
- black line = all objects
- NH probes single line of sight
- silicate feature = mixture of emission and absorption components within the beam
- linear relation found with large amount of scatter
- interpreted as being the result of clumpiness

OPINAS Seminar @ MPE

Marc Schartmann

Comparison with observations: silicate feature vs gas column density

too strong silicate feature emission

missing clumpiness in central region?

OPINAS Seminar @ MPE

Marc Schartmann

Seyfert Light Curves

• 500 micron (triangles): cold, dense disk, optically thin, in quasi-steady state

no time evolution

- at shorter wavelengths, the curves for the inclination angles split up
- the strongest evolution visible for 0.1 micron (max of opacity): scattering plus primary
 - ER01: constant (low density lifted dust)
 - ER10: rising trend, decreasing optical depth in cone (no steady state)
 - ER20: episode of strong and dense outflows

OPINAS Seminar @ MPE

Marc Schartmann

Prieto+ 2014

ESO 428-G14

- very accurate registration of the images with point sources
- K-band source identified as the nucleus
- additional nuclear obscuration by intersection of filaments spiraling towards nucleus (even traced further out towards kpc scale - fueling channels?)
- H α fills region between dominant dust spirals

OPINAS Seminar @ MPE

Prieto+ 2014

ESO 428-G14

- very accurate registration of the images with point sources
- K-band source identified as the nucleus
- additional nuclear obscuration by intersection of filaments spiraling towards nucleus (even traced further out towards kpc scale - fueling channels?)
- H α fills region between dominant dust spirals

NGC 3169

- LLAGN (Ho et al. 1995): galaxy light dominates nuclear emission
- thin dust lane crossing the centre
- conical ionized gas emission peaks close to K-band source
- apparent collimation of the ionized gas could be caused by the larger scale dust morphology
- reminiscent of 0.01 Eddington case shown above

OPINAS Seminar @ MPE

NGC 3169

- LLAGN (Ho et al. 1995): galaxy light dominates nuclear emission
- thin dust lane crossing the centre
- conical ionized gas emission peaks close to K-band source
- apparent collimation of the ionized gas could be caused by the larger scale dust morphology
- reminiscent of 0.01 Eddington case shown above

Summary I

- hot / warm dust emission parsec-sized; need interferometry to resolve them
- Circinus: warm disk + warm torus + dust in cone; silicate gradient visible ==> asymmetric appearance even on pc-scale
- clumpy torus models can simultaneously account for high-spatial resolution SEDs and interferometric data
- need for physical torus models reproducing similar morphology
- radiation pressure important ingredient
- X-ray heating plus radiation pressure on dust able to maintain geometrical thickness by invoking a "fountain" process (Wada 2012)
- dust continuum radiative transfer calculations to connect to available and future observations

OPINAS Seminar @ MPE

Marc Schartmann

Summary II

- best agreement with observations is found for models which show a three-component obscuring structure: a dense disk and a puffed-up structure in combination with a tenuous outflow component
- strong morphological differences between MIR and FIR images
- might be testable with ALMA observations (work in progress)
- some nearby Seyferts show significant dust extinction on larger scales (10-100pc)
- might cause the collimation of the ionization cone in some cases, especially for low luminosity AGN

OPINAS Seminar @ MPE

Marc Schartmann

Thanks for your attention!

OPINAS Seminar @ MPE

Marc Schartmann